IV exercise

Consider a supply model for edible chicken,

$$\ln(QPROD_t) = \beta_1 + \beta_2 \ln(P_t) + \beta_3 \ln(TIME) + \beta_4 \ln(QPROD_{t-1} + e_t)$$

QPROD = aggregate production of fresh chicken, P = real price index of fresh chicken, PF = real price index of broiler feed, TIME = 1,2,...,52. The supply equation is dynamic, with lagged production on the right-hand side. This predetermined variable is know at time t and is treated as exogenous. Some potential external instruments are $\ln(Y)$, where Y is per capita income; $\ln(PB)$, which is log of broiler price; POPGRO = percentage population growth; $\ln(P_{t-1})$, which is log of the broiler price lagged one period; $\ln(EXPTS)$, which is log of chicken exports. Use the newbroiler.gdt data from our website.

- 1. Estimate the equation using least squares. Are the signs and significance what you anticipated?
- 2. Estimate the equation using an IV estimator with all available instruments. Compare to results in (a).
- 3. Test for the endogeneity of ln(P).
- 4. Check whether the instruments are strong enough.
- 5. Do you suspect the validity of any instruments on logical grounds. If so, which ones and why? Check the instrument validity using the Sargan test.