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Preface to 4th edition

The previous edition of this manual was about using the software package called gretl to do
various econometric tasks required in a typical two course undergraduate or masters level econo-
metrics sequence. This version tries to do the same, but several enhancements have been made
that will interest those teaching more advanced courses. I have come to appreciate the power and
usefulness of gretl’s powerful scripting language, now called hansl. Hansl is powerful enough to
do some serious computing, but simple enough for novices to learn. In this version of the book,
you will find more information about writing functions and using loops to obtain basic results. The
programs have been generalized in many instances so that they could be adapted for other uses
if desired. As I learn more about hansl specifically and programming in general, I will no doubt
revise some of the code contained here. Stay tuned for further developments.

As with the last edition, the book is written specifically to be used with a particular textbook,
Principles of Econometrics, 4th edition (POE4 ) by Hill, Griffiths, and Lim. It could be used with
many other introductory texts. The data for all of the examples used herein are available as a
package from my website at http://www.learneconometrics.com/gretl.html. If you are
unfamiliar with gretl and are interested in using it in class, Mixon Jr. and Smith (2006) and
Adkins (2011a) have written a brief review of gretl and how it can be used in an undergraduate
course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of Econometrics. Each
chapter contains a brief description of the basic models to be estimated and then gives you the
specific instructions or gretl code to reproduce (nearly) all of the examples in the book. Where
appropriate, I’ve added a bit of pedagogical material that complements what you’ll find in the text.
I’ve tried to keep this to a minimum since this is not supposed to serve as a substitute for your
text book. The best part about this manual is that it, like gretl, is free. It is being distributed in
Adobe’s pdf format and I will make corrections to the text as I find errors.

Gretl’s ability to process user written functions greatly expands the usefulness of the application.
In several of the chapters functions are used to estimate models, select models, and to compute
various statistics. The scripting language, continues to evolve in useful ways, becoming more
transparent in use and more functional. Though not explored in this book, the ability to give
function writers access to the basic GUI and to package things into bundles is s very exciting
development.
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Functions can be shared and imported easily through gretl, especially if you are connected to
the internet. If gretl doesn’t do what you want it to now, stay tuned. It soon may. If recent
activity is any indication, I am confident that the the gretl team will continue to improve this
already very useful application. I hope that this manual is similarly useful to those using Principles
of Econometrics.

There are some significant changes in the 4th edition of POE and that means there are some
changes in this book from the previous edition. As in the previous edition of this e-book, I have
attempted to provide gretl instructions for each and every example in the book. My solutions are
not necessarily the most elegant. In some cases elegance gives way to simplicity of programming,
especially with respect to the types of students who are likely to be using this book. I have made
an effort to generalize some of the script so that it will be easier to adapt to new needs. I’ve also
made liberal uses of loops and functions. These are powerful tools and a thorough understanding
of them can take your gretl and econometric skills to the next level. Feel free to send suggestions.

Another change in this version of the book is that I’ve made some effort to generalize some of
the scripts. Although that should make it easier to generalize them to a new use, it does mean that
they have become a little more complicated. A heavy reliance on user written functions is evident.
I invite users to take the time to work through these in order to advance your programming and
econometric skills.

To make things easier to find in the book, I have added an index. In the pdf, you can click on
the page number listed in the index and be taken to the relevant spot in the text. Also, the figure
numbers, equation numbers, and citations are also ‘hot’ and can be used in this fashion as well.
Since some may prefer to print the manual out rather than work from the .pdf, I opted to make
the ‘hot’ links black in color, which disguises their functionality.

Finally, I want to say that my conversion to gretl was not immediate. In fact I still use other
software as occasions require, though more infrequently. That said, I have become a true believer
in the power of gretl. It is now my go to software. I trust it. It is simple to use and to program.
In my opinion it combines the best of Gauss and Eviews. It is both a high level programming
language and a useful front-end for doing standard econometrics. The ease with which one can
move back and forth from both uses makes it truly unique. As a former Gauss user, I find gretl up
to the tasks that I choose. I heartily recommend that you take some time to work with it and to
learn it. You can’t help but come to appreciate its power. Its worth is derived from what it does,
not its price.

I want to thank the gretl team of Allin Cottrell and Riccardo Lucchetti for putting so much
effort into gretl. I don’t know how they find the time to make this such a worthwhile project. It
is a terrific tool for teaching and doing econometrics. It has many capabilities beyond the ones
I discuss in this book and other functions are added regularly. Also, Jack has kindly provided me
with suggestions and programs that have made this much better than it would have been otherwise.
Any remaining errors are mine alone.

I also want to thank my good friend and colleague Carter Hill for suggesting I write this and
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Oklahoma State University and our College of Business for continuing to pay me while I work on
it.
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Preface to 5th edition

Principles of Econometrics Hill et al. (2018) in now in its 5th edition and the book has undergone
significant updating. Since the purpose of this manual is to show you how to reproduce all of the
examples in POE5, a lot has changed here as well. Also, gretl itself has evolved in the years since
the 2014 edition of this manual appeared.

There are several new commands (e.g., midasreg and kalman) and some of the options to
existing commands have changed. Minor changes to syntax have also been made (for instance,
logical equality is not g==1 rather than g=1, end loop is not endloop and so on. There have
been some additions to the available options and accessors. Some of the gretl menu tree has been
rearranged as well.

In this edition, I have spent more time manipulating gnuplot through the new plot command.
This command gives the user access to some of the important features of gnuplot in a relatively
straightforward way.

The printf commands are used more extensively to produce output. This makes what the
routines do more apparent with the passage of time. I’ve also used the assignment operator to
add model results to the session. This is a wonderful facility that makes accumulating results and
conducting subsequent tests very easy via the GUI.

I’ve also chosen to place the accompanying datasets into the working directory. Most operating
systems have a “documents” directory where the user places new files. This is where I locate my
working directory and it is where I choose to store the datasets (in a subdirectory called data).
When working on remote systems, this location is usually available to the user. This is a bit clumsy
in that gretl permits installation of the datasets into gretl itself. Once installed the datasets are
available from tabs in the gretl data files window. Feel free to install the data elsewhere, but take
care that the referenced file locations to the data files used in the supplied scripts will need to be
modified.

You’ll notice that the manual has grown by 50% since the last edition, despite trying to reduce
redundancy by making better use of cross-referencing. A lot of this comes in Chapter 16 where
in POE5 the authors computed marginal effects AND their standard errors. Although this is
fairly easy to compute in gretl, it requires new functions and some rather messing looking code.
In this effort, I also used a very nice function package, lp-mfx, written by Allin Cottrell that
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computes various probabilities for qualitative choice models. Allin was also kind enough to let me
use his Hausman-Taylor function in Chapter 10. Other packages from the gretl database are used,
including HIP and GIG from Jack Lucchetti and waldTest by Oleh Komashko. Also, I want to
thank Sven Schreiber for cleaning up and maintaining the growing library of function packages
available from the server. Sven culled through every package to ensure that it was complete and in
working order. I also want to thank Allin, Jack, and Sven for their support and feedback on this
project.

Finally, I must remind users that the purpose of this manual is to supplement the textbook
POE5 Hill et al. (2018); it is not a stand alone work, though it is relatively self-contained. When
confusion arises, please consult POE5. This has been a fun project and I hope users find it helpful
as they explore the possibilities of gretl. It is fine software that is suitable for teaching and
research. If it had been available when my career started – and of course a computer to run it
– I’d have published a hundred papers by now (wishful thinking perhaps). I can confidently say,
however, that had gretl been available in its current form my grasp of econometric principles and
computing would be much stronger, especially earlier in my career. I hope others will find it as
inspiring to use as I do.

Copyright c© 2007, 2008, 2009, 2011, 2018 Lee C. Adkins.
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Chapter 1

Introduction

Some of the basic features of gretl are introduced in this chapter. You’ll learn how to install
it, how to get around the various windows in gretl, and how to import data. At the end of the
chapter, gretl’s powerful scripting language, hansl, will be introduced as well.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a software
package for doing econometrics that is easy to use and powerful. It features a very user-friendly
interface that makes it snap to use in a classroom. Its flexibility, extensibility, and accuracy make
it well-suited for research as well. Gretl is distributed as free software that can be downloaded from
http://gretl.sourceforge.net and installed on your personal computer. Unlike software
sold by commercial vendors (SAS, Eviews, Stata to name a few) you may redistribute and/or
modify gretl under the terms of the GNU General Public License (GPL) as published by the Free
Software Foundation. That means that you are free to patch or extend gretl as you see fit.

Gretl comes with many sample data files and its internet capabilities give access to several very
useful databases served by Wake Forest University. From the gretl website, you can download and
install sample data sets from many of the leading textbooks in econometrics, including the one that
this book is based on, Principles of Econometrics by Hill et al. (2018).

Gretl offers a full range of least-squares based estimators, either for a single equation and for
a system, including vector autoregressions and vector error correction models. Several specific
maximum likelihood estimators (e.g., probit, ARIMA, GARCH) are also provided natively; more
advanced estimation methods can be implemented by the user via generic maximum likelihood or
nonlinear GMM. Gretl uses a separate Gnu program called gnuplot to generate graphs and is
capable of generating output in LATEX format. Gretl is under constant development so expect an
occasional bug, but in my experience it is quite stable to use with my Windows and Ubuntu Linux
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systems. The main developers, Allin Cottrell and Jack Lucchetti, participate daily in discussions
on the gretl forums and quickly sort out any bugs that are reported.

Which brings me to the final plug for gretl, which is inspired by its openness. As seen with
a lot of the better quality open source software, a community of developers and users are woven
together via active user and developer forums. The input from their many participants helps to
make gretl quite dynamic. If gretl will not estimate what you want today, tune-in tomorrow and
someone may have written the code to estimate your econometric problem.

Furthermore, gretl is enhancing its scripting language to facilitate sophisticated add-ons to its
basic functionality. In short, gretl is quickly becoming software worth getting to know for research
as well as for pedagogical uses.

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropriate executable file
for the computer platform you are using. For Microsoft Windows users the appropriate site is
http://gretl.sourceforge.net/win32/. One of the nice things about gretl is that macOS
and Linux versions are also available. If you are using some other computer system, you can
download the source code and compile it on whatever platform you’d like. This is not something
you can do with any commercial software package.

Gretl depends on some other (free) programs to perform some of its magic. If you install gretl
on your Mac or Windows based machine using the appropriate executable file provided on gretl’s
download page then everything you need to make gretl work should be installed as part of the
package. If, on the other hand, you are going to build your own gretl using the source files, you
may need to install some of the supporting packages yourself. I assume that if you are savvy enough
to compile your own version of gretl then you probably know what to do. For most, just install
the self-extracting executable, gretl install.exe, available at the download site. Gretl comes with
an Adobe pdf manual that will guide you through installation and introduce you to the interface.
I suggest that you start with it, paying particular attention to the first 3 chapters, which discuss
installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econometrics, 5th edition (POE5 )
by Hill et al. (2018), you should also download and install the accompanying data files that go with
this book. The file is available at

http://www.learneconometrics.com/gretl/.

There you will find compressed zip files that can be downloaded and installed on your computer.
For the scripts in this book, I have mine installed in my documents folder

\Documents\gretl\poe5\data
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directory of your computer’s harddrive.1 If you have installed gretl in any place other than
\Documents\gretl\poe5\data then unzip the files into the new location. Another likely place
on a Windows system is in your user directory (mine is \leead, which is in my Users directory
on the C: drive.):

C:\Users\leead\AppData\Roaming\gretl\data\poe5

If you unzip the data file here, they you will need to change the included script files so that they
point to the proper data location. If located here, you can simply issue an open datasetname.gdt
to open your file.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to use gretl’s rather simple
and intuitive language syntax, the easiest way to use the program is through its built-in graphical
user interface (GUI). The graphical interface should be familiar to most of you. The GUI allows
you use your computer’s mouse to open dialog boxes. Fill in the desired options and execute the
commands by clicking on the OK button. Gretl is using your input from the dialogs, delivered by
mouse-clicks and a few keystrokes, to generate computer code that is executed in the background.
Of course, you can generate your own programs directly, either by using a command line version
or by using the GUI via the gretl console or through scripts.

Gretl’s command line version is a separate executable that gives you access to gretl commands
directly from your computer’s command prompt. This bypasses the GUI altogether. To open the
command line version of gretl in Windows, open a command window and type "C:\Program
Files\gretl\gretlcli.exe" (Figure 1.1). Be sure to use the correct path to your gretl

Figure 1.1: Opening the command line interface version of gretl from a command prompt.

installation and to enclose everything in quotes if there are spaces in any of the file or directory
names.

1My system is 64-bit. If your copy of Windows is 32-bit then your directory structure is likely to be different from
mine.
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In Windows 10 the Run dialog box allows you to browse for the file. Choose Start>Run to
open the dialog shown in Figure 1.2. In the box, use Browse button to locate the directory in

Figure 1.2: Opening the command line interface version of gretl using Start>Run

which gretl is installed. Click OK and the command line version shown in figure 1.3 opens. There

Figure 1.3: The command line version of gretl

are a couple of messages that certain entries could not be found in the Windows registry, which
in this case means that these programs are not installed or registered on my particular machine.
If you receive these, don’t be alarmed. Gretl will still operate. The question mark (?) is the
command prompt. To open one of the data sets that installs with gretl, type open engel at
the prompt. The gretl data set engel.gdt opens and some information about how much data and
which variables it contains are printed to the screen. From here one can issue gretl commands or
run scripts. To close the window, type exit.

If you are in fact using the Microsoft Windows operating system, then you probably won’t be
using gretl from the command line very often anyway. This version of the program is probably
the most useful for Linux users wishing to run gretl from a terminal window. If your machine is
resource constrained, the command line interface is a way to free resources that would otherwise
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be used to operate the graphical interface. The command line version will not be discussed further
in this manual.

A better way to execute single gretl commands is through the gretl console. In normal
practice, the console is easier to use than the gretlcli.exe. It offers some editing features and
immediate access to other ways of using gretl that aren’t available in the straight command line
version of the program. The console and its use is discussed in section 1.3.1.

To execute a series of commands, use scripts. One of the great things about gretl is that it
accumulates commands executed singly from the console into a command log that can be run in
its entirety at another time. This topic can be found in section 1.3.2. So, if you have completed
an analysis that involves many sequential steps, save the commands in a script file which can be
reopened and run in one step to reproduce the results.

The script environment is often used to conduct Monte Carlo simulations in econometrics.
Monte Carlo studies use computer simulation (sometimes referred to as experiments) to study the
properties of statistics. This is especially useful when the mathematical properties of your statistic
is particularly difficult to derive analytically. In the exercises below, there are rudimentary examples
of how these experiments can be constructed and used in econometrics. Also, you can consult a
separate paper of mine Adkins (2011b) that can be found at http://www.learneconometrics.
com/pdf/MCgretl/index.htm.

The main window of the graphical user interface, which is opened using gretl.exe, is shown below
in Figure 1.4.

Figure 1.4: The main window for gretl’s GUI

Across the top of the window you find the menu bar. From here you import and manipulate
data, analyze data, and manage output. At the bottom of the window is the gretl toolbar. This
contains a number of useful utilities that can be launched from within gretl. Among other things,
you can get to the gretl web site from here, open the pdf version of the manual, or open the MS
Windows calculator (very handy!). More will be said about these functions later. Also, on the
right-hand-side you’ll see the current working directory. For this manual, I’ve created a \gretl\
poe5 directory in my documents folder to serve as my working directory. To set your working
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directory choose File>Working directory from the pull-down menu to open the dialog box
shown in figure 1.5.

Figure 1.5: Use this dialog to change the working directory. The working directory is where gretl
reads and writes files.

1.1.3 Common Conventions

In the beginning, I will illustrate examples using a number of figures (an excessive number to
be sure). These figures are screen captures of gretl’s windows as they appear when summoned
from the pull-down menus. As you become familiar with gretl the appearance of these figures will
diminish and I will direct you to the proper commands that can be executed from the console or as
a script using commands only. More complex series of commands use gretl scripts, which as noted
above, can be executed in a single batch.

Dialog selection via the GUI will refer to the menu path as A>B>C which indicates that you
click on option A on the menu bar, then select B from the pull-down menu and further select
option C from B’s pull-down menu. All of this is fairly standard practice, but if you don’t know
what this means, ask your instructor now.

There are a few tricks used in this manual to make scripts work on various platforms without
much modification. Gretl contains special macros for the location of commonly used files. The
working directory is where gretl reads and writes to. To refer to this location generically, use the
@workdir macro. The gretl installation directory is referenced by @gretldir, and temporary
storage can be accessed via @dotdir. If any of these directories have spaces in their names,
then be sure to enclose the command in double quotes. For example, on my Windows 10 system,
gretl is installed in the c:\Program Files\gretl directory. The data sets for POE5 are in

6



"@workdir\data\". To refer to this location I can simply use "@workdir\data\".

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be used by your software
can be challenging. There are many softwares use proprietary data formats that make transferring
data between applications difficult. You’ll notice that the authors of POE5 have provided data in
several formats for your convenience. In this chapter, we will explore some of the data handling
features of gretl and show (1) how to access the data sets that accompany your textbook (2) how
to bring one of those data sets into gretl (3) how to list the variables in the data set and (4) how
to modify and save your data. Gretl offers great functionality in this regard. Gretl provides access
to a very large number of high quality data sets from other textbooks as well as from sources in
industry and government. Furthermore, once opened in gretl these data sets can be exported to a
number of other software formats.

First, load the food expenditure data used in Chapter 2 of POE5. The data set contains two
variables named x and y. The variable y is weekly expenditures on food in a household and x is
weekly income measured in $100 increments. From the main gretl window click on File>Open
data>Sample file as shown in Figure 1.6.

Figure 1.6: Opening sample data files from gretl’s main window

Alternately, you could click on the open dataset button on the toolbar. The button looks like a
folder and is on the far right-hand side of the toolbar. This opens another window (Figure 1.7) that
contains tabs for each of the data compilations that are installed in the gretl/data directory of
your gretl program. If you installed the data sets that accompany this book into gretl’s installation
directors (e.g., c:\Program Files\gretl) then a tab will appear like the one shown in Figure
1.7.

7



Figure 1.7: This is gretl’s data files window. Notice that in addition to POE5, data sets from
Ramanathan (2002), Greene (2003), are installed on my system.

As of May 2018, there are data sets from several other prominent texts available on the gretl
website. Click on the look on server icon in the data files dialog (third from the left). This reveals
the following list (Figure 1.8) with links to the available downloads.

Click on the POE 5th ed. tab and scroll down to find the data set called ‘food’, highlight

it using the cursor, and open it using the ‘open’ button at the top of the window. This will
bring the variables of the food expenditure data set into gretl. At this point, select Data on the
menu bar and then Display values as shown in Figure 1.9.

From the this pull-down menu a lot can be accomplished. You can edit, add observations, and
impose a structure of your dataset. The structure of your dataset is important. You can choose
between time series, cross sections, or panel data structures. The options Gretl gives you depend
on this structure. For instance, if your data are structured as a time series, gretl will allow you
to take lags and differences of the variables. Certain procedures that can be used for time-series
analysis will only be available to you if your dataset has been structured for it. If a gretl command
is not available from the defined dataset structure, then it will be greyed out in the pull-down
menus.

Gretl gives you the opportunity to import data. Expanding this (File>Open data>User
file) launches an open file dialog box shown in Figure 1.10. Expanding the scroll arrows reveals
a list of supported import formats. These include CSV, Stata, Excel, Eviews, SPSS, and SAS (if
installed). For instance, simply dragging a Stata dataset onto the main gretl window will bring
the data into gretl.
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Figure 1.8: These sets of data from various textbooks are available for installation into gretl.
Highlight the one you want to install and click on the diskette icon.3

Figure 1.9: Use the cursor to highlight all of the variables. Then click Data>Display values to
list the data set.

Also, from the File pull-down menu you can export a data set to another format. The export
feature is particularly useful for getting data into R.

If you click on File>Databases>On database server (Figure 1.11) you will be taken to a
web site (provided your computer is connected to the internet) that contains a number of high
quality data sets. You can pull any of these data sets into gretl in the same manner as that
described above for the POE5 data sets. If you are required to write a term paper in one of your
classes, these data sets may provide you with all the data that you need. The database server is
discussed in more detail below.
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Figure 1.10: The open file dialog allows you to open gretl data sets and to import others in various
formats.

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results even faster by using gretl’s
language. The language can be used from the console or by collecting several lines of programming
code into a file and executing them all at once in a script. Gretl now has a name for its scripting
language, hansl. Hansel is a recursive acronym for hansl’s a neat scripting language (or handy
scripting language), and it is certainly that. There are many things you can do using this powerful
tool. Hansl’s syntax is particularly easy to use, in my opinion, and I strongly recommend that you
learn to use it.

An important fact to keep in mind when using gretl is that its language is case sensitive. This
means that lower case and capital letters have different meanings in gretl. The practical implication
of this is that you need to be very careful when using the language. Since gretl considers x to be
different from X, it is easy to make programming errors. If gretl gives you a programming error
statement that you can’t quite decipher, make sure that the variable or command you are using is
in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively. A console window opens
and from the prompt (?) you can execute gretl commands one line at a time. You can open the
gretl console from the Tools pull-down menu or by a left mouse click on the “Gretl console”

button on the toolbar. This button is the third one on the left side of the toolbar in Figure
1.4. From the console you execute commands, one by one by typing gretl code after the command
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Figure 1.11: There are a number of databases that contain useful data for use in your own projects.
The left-most icon on the tool bar will list the series in the database. The diskette icon will install
the series into your

prompt. Each command that you type in is held in memory so that you can accumulate what
amounts to a “command history.” To reuse a command, simply use the up arrow key to scroll
through the commands you’ve typed in until you get to the one you want. You can edit the
command to fix any syntax errors or to make any changes you desire before hitting the enter key
to execute the statement.

From the command prompt, ‘?’ you can type in commands from the gretl language. For
instance, to estimate the food expenditure model in section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s scroll bar on the right
hand side to scroll up (or down) as needed.

Remember, (almost) anything that can be done with the pull-down menus can also be done
through the console. Of course, using the console requires the correct language syntax, which can
be found in the Gretl Command Reference. The command reference can be accessed using
CTRL+H or from Help on the menu bar in the main gretl window.

Clicking on anything in blue will take you to the desired information for that command. Ob-
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Figure 1.12: The toolbar appears at the bottom of the main menu.

viously, the keyboard shortcut F1 will also bring up the command reference (Figure 1.13). You’ll
also notice that .pdf versions of the command and function references can also be retrieved from
the Help drop-down menu.

Figure 1.13: The command reference can be accessed in a number of ways: The ‘life-saver’ icon on
the toolbar, Help>Command reference from the pull-down menu, or keyboard shortcut F1.

Commands can be searched by topic from the command reference window. An index appears in
the left side panel (see Figure 1.14). Choose the desired category from the list and select a command
(e.g., Estimation>arch). The words indicated in blue text are links to related commands. For
instance, clicking on arch takes you to the reference entry for ARCH modeling.

The function reference is a relatively new addition to gretl that will help you to locate the
names gretl uses to temporarily store results (called accessors), to transform variables, and to
write your own programs. To access the function reference, click Help>Function reference from
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Figure 1.14: Finding help on the arch command using the Command Reference

the pull-down menu as shown in Figure 1.15.

In addition, the current list of available accessors can be summoned using the varlist com-
mand:

1 varlist --type=accessor

By default varlist prints a listing of the series in the current dataset (if any); ls may be used
as an alias. When the --type option is given, it should be followed (after an equals sign) by one
of the following typenames: series, scalar, matrix, list, string, bundle or accessor.
The effect is to print the names of all currently defined objects of the named type. The varlist
command can quickly become your best friend in gretl.

1.3.2 Scripts

Gretl commands can be collected and saved into a file that can be executed at once and used
again. This starts by opening a new script from the file menu. The command File>Script
files>New script>gretl script from the pull-down menu opens the script editor shown in Figure
1.16. Type the commands you want to execute in the box using one line for each command.

13



Figure 1.15: The function reference can be accessed by Help>Function reference from the
pull-down menu.

The continuation command, the backslash (\), is used when there is a very long command
that exceeds one line. To save the file, use the “save” button at the top of the box (first one from
the left). If this is a new file, you’ll be prompted to provide a name for it; this one I called engel ch1,
which shows up at the top of the editor window.

To run the program, click the mouse on the “gear” button. In the figure shown, the engel.gdt
gretl data file is opened. The series commands are used to take the logarithm of y and x, and
the ols command discussed in section 2.4 is used to estimate a simple linear regression model that
has ln(foodexp) as its dependent variable and ln(income) as the independent variable. Note, the
model also includes constant.

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button or by using the keyboard command, Ctrl+N.4

One of the handy features of the command script window is how the help function operates. At

the top of the window there is an icon that looks like a lifesaver . Click on the lifesaver button
and the cursor changes into a question mark. Move the question mark over the command you want
help with and click. Voila! You either get an error message (Sorry, help not found) or you are
taken to the topic from the command reference. Generally, this works successfully on commands
that are highlighted in color in the script editor.

4“Ctrl+N” means press the “Ctrl” key and, while holding it down, press “N”.
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Figure 1.16: The script editor is used to collect a series of commands into what gretl calls a script.
The script can be executed as a block, saved, and rerun at a later time.

1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models, graphs, and data files into
a common “iconic” space. The session window appears below in Figure 1.17. The session window

Figure 1.17: The session window

is very handy. It contains icons that give you immediate access to information about the data set,
that opens the edit data window, that display any scalars you have computed, summary statistics,
correlations and any notes you have made.

Objects are represented as icons and these objects can be saved with the session for later use.
When you re-open a saved session, these objects are available again. To add a model to your session,
use the File>Save to session as icon option from the model’s pull-down menu. Or, most gretl
estimation and graph commands can be assigned to an object using the assignment operator <-.
For instance, to assign a least squares estimated model to a session icon called m1 in a script, use:
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1 m1 <- ols l_foodexp const l_income

To add a graph, right click on the graph and choose the option save to session as icon. Most
graphs can also be assigned to an icon from a script as well. Don’t forget to save the session before
exiting gretlif future access to these is desired; right click on the session window and choose Save
session or from the main gretl window, select File>Session files>Save session as shown below
in Figure 1.18.

Figure 1.18: Saving a session

Once a model or graph is added, its icon will appear in the session icon view window. Double-
clicking on the icon displays the object, while right-clicking brings up a menu which lets you display
or delete the object. You can browse the dataset, look at summary statistics and correlations, and
save and revisit estimation results (Models) and graphs.

The model table is a way of combining several estimated models into a single table. This is
very useful for model comparison. From the gretl manual (Cottrell and Lucchetti, 2018, pp. 16):

In econometric research it is common to estimate several models with a common depen-
dent variable the models contain different independent variables or are estimated using
different estimators. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates
and standard errors) for a given model, and each row contains the estimates for a given
variable across the models.
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In the Icon view window gretl provides a means of constructing such a table (and
copying it in plain text, LATEX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display
window, under the File menu, select Save to session as icon or Save as icon
and close.

2. Repeat step 1 for the other models to be included in the table (up to a total of six
models).

3. When you are done estimating the models, open the icon view of your gretl session,
by selecting Icon view under the View menu in the main gretl window, or by
clicking the session icon view icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled Model table. Decide which model you
wish to appear in the left-most column of the model table and add it to the table,
either by dragging its icon onto the Model table icon, or by right-clicking on the
model icon and selecting Add to model table from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second
model selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on
its icon. Under the Edit menu in the window which appears, you have the option
of copying the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on
the model table icon and select Clear table. Then go back to step 4 above and
try again.

In section 6.3 you’ll find an example that uses the model table and an example on page (192).

1.3.4 Generating New Variables

In this manual, new variables are created, statistics are computed based on gretl output, and
matrix calculations are performed using gretl’s scripting language. This means that we will be
generating series, scalars, matrices, lists, and even strings. How does gretl handle these?

Gretl is very forgiving in the generation of new results. The ‘mother’ command for doing this is
genr. The genr command pretty much does it all. In the appropriate context, series, scalar
and matrix are synonyms for this command.

To create a new scalar result, say create a constant c that is equal to 3, you could use scalar c
= 3 or genr c = 3. The scalar and genr commands let gretl know that you are calculating
something and calling it c.

To create a new variable, one can use the series command or genr. Suppose there is a
variable in the dataset called food_exp. You want to create a new variable as the natural log-
arithm of food_exp. This can be done using series or genr (e.g., series l_food_exp =
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ln(food_exp)). In the context of a genr or series formula, variables must be referenced by
their names, not their ID numbers. The formula should be a well-formed combination of variable
names, constants, operators and functions. Further details on some aspects of this command can
be found in the Gretl Users Guide.

So, the genr command may yield either a series or a scalar result. For example, the formula
x2 = x * 2 naturally yields a series if the variable x is a series and a scalar if x is a scalar. The
formulae x = 0 and mx = mean(x) naturally return scalars. The genr command handles both
cases seamlessly.

You may want a scalar result to be expanded into a series or vector. This is done using series
as an “alias” for the genr command. For example, series x = 0 produces a series all of whose
values are set to 0. You can also use genr as an alias for scalar. It is not possible to coerce a
vector result into a scalar, but the keyword indicates that the result should be a scalar: if it is not,
an error occurs.

In many cases, genr, series, scalar, or matrix statements can be omitted and gretl will
figure out what to compute based on what is on the right-hand side of your equation. This is
dangerous though, because you may inadvertently be trying to compute objects with incompatible
dimensions or of incompatible types.

I am told by members of the gretl team that it is better practice to call things what they are
and so series, scalar, and matrix are better than the generic (but equally effective) genr.
I think there are good reasons to get started on the right foot by adopting good programming
practices.5 There are at least three commands that demand the use of genr, rather than series.
These involve creating a time index (genr time) and dummy variables (genr unitdum and
genr dummy). These cases will be pointed out when we get to them.

One of the advantages of using descriptive prefixes to series, scalars, and matrices occurs when
writing and debugging functions. Gretl functions are a powerful way to extend gretl’s capabilities.
They can be finicky though. The inputs must be identified by type as does any output. Type
mismatches are a common source of error. So, the more thought that goes into daily use will pay
dividends later should you decide to start writing your own gretl functions. Note, there are many
user written functions in this manual, so be prepared.

1.4 GNUPLOT

At the end of each chapter that follows you will find listings of the entire gretl script used to
generate the results that are contained in it. When a graph is generated using gnuplot (which
is actually pronounced ”new plot”) in a script or from the console, the output may be written
to a file that is placed in the working directory of gretl. If you are not sure where that is, click

5Astute programmers will note that my own programming leaves much to be desired. Adopting better practices
when learning to program would have made doing econometrics much easier.
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File>Working directory in the main gretl window to find or change this location. The location
of the file will also be echoed to the screen so it should be fairly easy to locate.

To view the graph and to edit it requires opening the gnuplot program. Before launching
gnuplot for the first time, open gretl’s preference and enable Allow shell commands in the
General preferences tab (see Figure 1.19).

Figure 1.19: The General tab of the preferences dialog. To launch gnuplot from the console
you need to enable Allow shell commands.

In MS Windows, open the gretl console and type:

open engel
gnuplot foodexp income --output=tmp.plt
launch wgnuplot

This will look like
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Now, navigate to the gnuplot window shown in Figure 1.20 and at the gnuplot command prompt
type

pwd

This will reveal the current directory and it should should be your working directory, which is
the default place where graphs are stored using gretl. If not, then use gnuplot’s file>change
directory dialog to get to the desired location. The path and filename inside the single quotes
locates the file on your harddrive. Gretl places these plots into your working directory, which can
be set using File>Working directory from the main gretl window. Figure 1.20 shows what this
looks like.

Another way to do this is to open a command window (Figure 1.2) and type "C:\Program
Files\gretl\wgnuplot" at the command prompt. The double quotes are necessary since the
folder name has a space in it. This will launch the gnuplot program shown in Figure 1.20, from
which you can search for and open graphs that are written to the harddrive. This implementation
has improved since the last version of this manual and is better documented in the gretl Users
Guide. Although scripts are given to generate graphs in this text, the best way to do it is by using
the GUI or from the console. Graphs generated via GUI or the console open to the screen; graphs
created in scripts are saved in the working directory by default, but may be directed to the screen
using the appropriate option.

Once the graph is generated and visible on screen, a right-click of the mouse allows you to edit
the graph and to save it in a variety of useful formats. That is what I have done in a number of
graphs that follow to make them easier to read from the .pdf.

There are a number of other types of plots you can make in gretl. These include boxplots,
histograms, qqplots, mixed frequency time series, and range/mean plots. The underlying engine
that generates these is gnuplot, but gretl gives you easy access to their generation. You can also
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Figure 1.20: The GNUPLOT program window. This is opened from within gretl by typing launch
wgnuplot from the console. Type load ’filename’ to load ’filename’, which should in-
clude the correct path. In this case the file to load is ’tmp.plt’.

access gnuplot by script through File>Script files>New script>gnuplot script from the main
menu.

Finally, there is a new set of commands in gretl that provide an alternative to the gnuplot
command. The plot block provides may be more convenient when you are producing an elaborate
plot (with several options and/or gnuplot commands to be inserted into the plot file). The plot
block accepts gretl options as well as gnuplot commands. The syntax to employ literal gnuplot
commands in gretl is tricky, if only because gnuplot commands themselves have their own peculiar
syntax. There are many examples in this manual that demonstrate some of these.
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Chapter 2

Simple Linear Regression

In this chapter you are introduced to the simple linear regression model, which is estimated
using the principle of least squares. A simple food expenditure model is estimated by least squares.
An elasticity is computed, predictions are made, data are graphed and some other statistics com-
puted using least squares results are considered. At the end of the chapter, a simple Monte Carlo
simulation is conducted to explore the properties of least squares in repeated sampling.

2.1 Simple Linear Regression Model

The simple linear regression model is

food expi = β1 + β2incomei + ei t = 1, 2, . . . , n (2.1)

where food expi is the dependent variable, incomei is the independent variable, ei is random error,
and β1 and β2 are the parameters to be estimated. The errors of the model, ei, have an average
value of zero for each value of incomei; each has the same variance, σ2, and are uncorrelated
with any of the other residuals. The independent variable, incomei, must take on at least two
different values in your dataset. If not, a slope cannot be estimated! The error assumptions can
be summarized as ei|incomei iid N(0, σ2). The expression iid stands for independently and
identically distributed and means that the errors are statistically independent from one another
(and therefore uncorrelated) and that each has the same probability distribution. Taking a random
sample from a single population accomplishes this.

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl. The data file is
included in your gretl sample files–provided that you have installed the Principles of Econometrics
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data supplement that is available from our website. See section 1.1.1 for details.

Figure 2.1: The main gretl window. The food expenditure data is loaded from food.gdt using
File>Open data>Sample file and choosing the food dataset from the sample files that accom-
pany POE5.

Load the data from the data file food.gdt. Recall, this is accomplished by the commands
File>Open data>Sample file from the menu bar.1 Choose food from the list. When the file
containing the data are loaded into gretl, the main window will look like the one in Figure 2.1.
Notice that the Descriptive label column contains some information about the variables in the
program’s memory. For some of the datasets included with this book, it may be blank. These
descriptions, when they exist, are used by the graphing program to label your output and to help
you keep track of variables that are available for use. Before graphing output or generating results
for a report or paper, consider adding meaningful labels to your variables to make the output easier
to understand. This can be accomplished by editing the attributes of the variables.

To do this, highlight the variable whose attributes you want to edit, right-click, and the menu
shown in (see Figure 2.2) appears. Select Edit attributes to open a dialog box (Figure 2.3) where
the variable’s name can be changed, a description assigned, and a display name given. Describe and
label the variable food_exp as ‘Food Expenditure’ and income as ‘Weekly Income ($100).’ The
dialog can also be opened using F2 from the main gretl window or using the keyboard shortcut,
CTRL+E. Finally, the setinfo command can be used to set the description and the label used
in graphs.

In the following example a script opens the food.gdt dataset, adds variable descriptions, and
assigns a label to be used in subsequent graphs.

1 open "@workdir\data\food.gdt"
2 setinfo food_exp -d "household food expenditure per week" \
3 -n "Food Expenditure/Week"

1Alternately, you could click on the open data button on the toolbar. It is the one that looks like a folder on the
far right-hand side.
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Figure 2.2: Highlight the desired variable and right-click to bring up the pull-down menu shown
here. You can also use F2 or keyboard shortcut ‘CTRL+e’ to bring up the dialog.

Figure 2.3: Variable edit dialog box

4 setinfo income -d "weekly household income" -n "Weekly Income"
5 labels

The -d flag is given followed by a string in double quotes. It is used to set the descriptive label.
The -n flag is used similarly to set the variable’s name in graphs. Notice that in line 2 setinfo
uses the continuation command (\) since this command is too long to fit on a single line. The
labels command in line 5 will have gretl print the current descriptions to the screen.
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Figure 2.4: Use the dialog to plot of the food expenditure against Weekly Income

2.3 Graph the Data

One way to generate a graph of the food expenditure data that resembles the one in Figure

2.6 of POE5, is to use the button on the gretl toolbar (fourth icon from the right). Clicking
this button brings up a dialog to plot the two variables against one another. Figure 2.4 shows this
dialog where x is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5. Notice
that the labels applied above now appear on the axes of the graph.

Figure 2.5 plots weekly food expenditures on the y axis and weekly income on the x. Gretl,
by default, also plots the fitted regression line. The benefits of assigning labels to the variables
becomes more obvious. Both X- and Y-axes are informatively labeled and the graph title is changed
as well. More on this later.

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the food expenditure equation.

food expi = β1 + β2incomei + ei t = 1, 2, . . . , n (2.2)

From the menu bar, select Model>Ordinary Least Squares from the pull-down menu (see
Figure 2.6) to open the dialog box shown in Figure 2.7. From this dialog you’ll need to tell gretl
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Figure 2.5: XY plot of the food expenditure data

which variable to use as the dependent variable and which is the independent variable. Notice that
by default, gretl assumes that you want to estimate an intercept (β1) and includes a constant as
an independent variable by placing the variable const in the list by default. To include x as an
independent variable, highlight it with the cursor and click the green Add arrow button.

The gretl console (see section 1.3.1) provides an easy way to run a regression. The gretl

console is opened by clicking the console button on the toolbar, . The resulting console window
is shown in Figure 2.8.

At the question mark in the console simply type

ols foodexp const income

to estimate your regression function. The syntax is very simple, ols tells gretl that you want
to estimate a linear regression using ordinary least squares. The first variable listed will be your
dependent variable and any that follow, the independent variables. These names must match the
ones used in your data set. Since ours in the food expenditure example are named, foodexp and
income, respectively, these are the names used here. Don’t forget to estimate an intercept by
adding a constant (const) to the list of regressors. Also, don’t forget that gretl is case sensitive
so that x and X are different entities.

26



Table 2.1: OLS estimates using the 40 observations 1–40.

OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

This yields window shown in Figure 2.9 below. The results are summarized in Table 2.1. An
equivalent way to present results, especially in very small models like the simple linear regression,
is to use equation form. In this format, the gretl results are:

̂food exp = 83.4160
(43.410)

+ 10.2096
(2.0933)

income

n = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(standard errors in parentheses)

Finally, notice in the main gretl window (Figure 1.4) that the first column has a heading called
ID #. An ID # is assigned to each variable in memory and you can use the ID # instead of its
variable name in your programs. For instance, the following two lines yield identical results:

1 ols food_exp const income
2 ols 1 0 2

One (1) is the ID number for food_exp and two (2) is the ID number of income. The constant
has ID zero (0). If you tend to use long and descriptive variable names (recommended, by the way),
using the ID number can save a lot of typing (and some mistakes). It can also make figuring out
which variables are in the model, difficult so choose your poison.
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2.4.1 Elasticity

Elasticity is an important concept in economics. It measures how responsive one variable is to
changes in another. Mathematically, the concept of elasticity is fairly simple:

ε =
percentage change in y

percentage change in x
=

∆y/y

∆x/x
(2.3)

In terms of the regression function, we are interested in the elasticity of average food expenditures
with respect to changes in income:

ε =
∆E(y)/E(y)

∆x/x
= β2

x

E(y)
. (2.4)

E(y) and x are usually replaced by their sample means and β2 by its estimate. The mean of
food_exp and income can be obtained by using the cursor to highlight both variables, use the
View>Summary statistics from the menu bar and equation (2.4) can be computed by hand.
This yields the output shown in Figure 2.10.

Or from the console type:

1 summary foodexp income

So, using the numbers from the regression and the summary statistics we get 10.2096∗19.605/283.57 =
0.705855.

This can be made easier by using the gretl language to do the computations–no calculator
needed! Simply open up a new script and type in:

1 ols food_exp const income --quiet
2 scalar elast=$coeff(income)*mean(income)/mean(food_exp)

Following a least squares regression, gretl stores the least squares estimates of the constant and
the slope in variables called $coeff(const) and $coeff(income), respectively. In addition,
it uses mean(income) and mean(food exp)to compute the mean of the variables income and
food_exp. The --quiet option is convenient when you don’t want or need the output from the
regression printed to the screen. The result from this computation appears below in Figure 2.11.

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food expenditure of an
average household having weekly income of $2000 is:̂food expi = 83.42 + 10.21incomei = 83.42 + 10.21(20) = 287.61 (2.5)
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Remember, income is measured in $100, so 20 in the above expression represents 20*$100=$2,000.
The gretl script is:

scalar yhat = $coeff(const) + $coeff(income)*20

which yields the desired result, 287.61.

2.4.3 Estimating Variance

In section 2.7 of POE5, you are given expressions for the variances of the least squares estimators
of the intercept and slope as well as their covariance. These estimators require an estimate of the
overall variance of the model’s errors, σ2. Gretl does not explicitly report the estimator, σ̂2, but
rather, its square root, σ̂. Gretl calls this “S.E. of regression” which from the output is 89.517.
Thus, 89.5172 = 8013.29. Gretl also reports the sum of squared residuals, equal to 304505.2, from
which σ̂2 can be calculated. Dividing the sum of squared residuals by the estimator’s degrees of
freedom yields σ̂2 = 304505/38 = 8013.29.

The estimated variances and covariance of the least squares estimator can be obtained once the
model is estimated by least squares by selecting the Analysis>Coefficient covariance matrix
command from the pull-down menu of the model window as shown in Figure 2.12. The result is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const

4.38175 income

So, estimated variances of the least squares estimator of the intercept and slope are 1884.44 and
4.38175, respectively. The least squares standard errors are simply the square roots of these num-
bers. The estimated covariance between the slope and intercept −85.9032.

You can also obtain the variance-covariance matrix by specifying the --vcv option when esti-
mating a regression model. For the food expenditure example use:

1 ols food_exp const income --vcv

to estimate the model using least squares and to print the variance covariance matrix to the results
window.
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2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares is through an ex-
periment. In section 2.4.3 of POE5 are presented with results from 10 different regressions (POE5
Table 2.2). These were obtained using the dataset table2-2.gdt which is included in the gretl
datasets that accompany this manual. To reproduce the results in this table you could estimate 10
separate regressions

open "@workdir\data\table2_2.gdt"
ols y1 const x
ols y2 const x
.
.
.
ols y10 const x

The ten regressions can be estimated more compactly using one of gretl’s loop constructs. The
first step is to create a list that contains the variable names for the dependent variables as in line 1
of the script below. The statement list ylist is used to put data series into a collection called
ylist; each of the series, y1, y2, ..., y10 are included. Such named lists can be used to make
scripts less verbose and easier to modify. In gretl lists are series ID numbers and can be used
only when a dataset is in place. The foreach loop in line 2 uses an index variable, i, to index a
specified list of strings. The loop is executed once for each string in the list. The numerical value
of the index starts at 1 and is incremented by 1 at each iteration. To refer to elements of the list,
use the syntax listname.$i. Be sure to close the loop using endloop.

1 open "@workdir\data\table2_2.gdt"
2 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
3 loop foreach i ylist
4 ols ylist.$i 0 x
5 endloop

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main
window, via the item Define or edit list. This dialog is shown in Figure 2.13

A simple modification of the hansl script collects the results of the 10 samples and finds the
average values of the estimated coefficients. Simply add the progressive option to line 3 as in:

3 loop foreach i ylist --progressive
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This shows how easy it is to conduct a Monte Carlo simulation in gretl. This will be discussed at
length below in section 2.8.

You can also generate your own random samples and conduct a Monte Carlo experiment using
gretl. In this exercise 100 samples of data from the food expenditure data are generated, the slope
and intercept estimated with each data set, and the sampling performance of the least squares
estimator over those 100 different samples is summarized. What will become clear is that the
outcome from any single sample is a poor indicator of the true value of the parameters.

Start with the food expenditure model:

food expi = β1 + β2incomei + ei (2.6)

where food expi is total food expenditure for the given time period and incomei is income over the
same period. Suppose further that we know how much income each of 40 households earns in a
week. Additionally, we know that on average a household spends at least $80 on food whether it
has income or not and that an average household will spend ten cents of each new dollar of income
on food. In terms of the regression this translates into parameter values of β1 = 80 and β2 = 10.

Our knowledge of any particular household in a population is considerably less. We don’t know
how much it actually spends on food in any given week and, other than differences based on income,
we don’t know how its food expenditures might otherwise differ. Food expenditures will vary for
reasons other than differences in family income. Some families are larger than others, tastes and
preferences differ, and some may travel more often or farther making food consumption more costly.
It is impossible for us to know beforehand exactly how much any household will spend on food,
even if we know how much income it earns. All of this uncertainty is captured by the error term
in the model. For the sake of experimentation, suppose we also know that ei ∼ N(0, 882).

With this knowledge, the properties of the least squares estimator can be studied by generating
samples of size 40 using the known data generation mechanism. One hundred food expenditure
samples are created using the known parameter values, the model estimated for each using least
squares, and then summary statistics are used to determine whether least squares, on average
anyway, is either very accurate or precise. So in this instance, we know how much each household
earns, how much the average household spends on food that is not related to income (β1 = 80),
and how much that expenditure rises on average as income rises. What is unknown is how any
particular household’s expenditures responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic component of food
expenditure for the ith household is 80+10× incomei. This differs from its actual food expenditure
by a random amount that varies according to a normal distribution having zero mean and standard
deviation equal to 88. So, we use computer generated random numbers to generate a random error,
ei, from that particular distribution. Repeat this for the remaining 39 individuals. This generates
one Monte Carlo sample and which is used to estimate the parameters of the model. The results
are saved and then another Monte Carlo sample is generated and used to estimate the model and
so on.

In this way, as many samples of size 40 as desired can be created. Furthermore, since the
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underlying parameters are for these samples are known, we can determine how close our estimators
get to revealing their true values.

Now, computer generated sequences of random numbers are not actually random in the true
sense of the word; they can be replicated exactly if you know the mathematical formula used to
generate them and the ‘key’ that initiates the sequence. In most cases, these numbers behave as if
they randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script found in below:

2 open "@workdir\data\food.gdt"
3 set seed 3213789
4 loop 100 --progressive --quiet
5 series u = normal(0,88)
6 series y1= 80+10*income+u
7 ols y1 const income
8 endloop

The first line opens the food expenditure data set that resides in the data folder of the working
directory. The next line, which is actually not necessary to do the experiments, sets the key, referred
to as the seed, that initiates the pseudo-random numbers at a specific point. This is useful, since
it will allow one to get the same results each time the script runs.

In Monte Carlo experiments loops are used to estimate a model using many different samples
that the experimenter generates and to collect the results. The simplest loop construct in gretl
begins with the command loop NMC --progressive --quiet and ends with endloop. This
is called a count loop. NMC in this case is the desired number of Monte Carlo samples and
the option --progressive is a command that prevents the output at each iteration from being
printed to the results window; the --quiet option will suppress some printing to the screen as
well.

There are a couple of useful commands that can be added to the program. The print command
collects (scalar) statistics that you have computed and finds their averages and standard deviations.
The store command stores these in a gretl data file. These are discussed further below.

Within the loop itself, each new sample is generated and instructions are given about how it
should be used and where to store desired results. The series command generates new variables.
In the first line u is generated using the gretl command normal(), which when used without
arguments produces a computer generated standard normal random variable. In this case, the
function contains two arguments (e.g., series u = normal(0,88)). The normal function
takes an ordered pair as inputs (commonly referred to as ‘arguments’), the first of which is the
desired mean of the random normal and the second is its standard deviation. The next line adds
this random element to the systematic portion of the model to generate a new sample for food
expenditures (using the known values of income from the dataset).
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Next, the model is estimated using least squares. After executing the script, gretl prints out
some summary statistics to the screen. These appear as a result of using the --progressive
loop option. The result appears in Figure 2.14. Note that the average value of the intercept is
about 88.147. This is getting close to the truth. The average value of the slope is 9.55972, also
reasonably close to the true value. If you were to repeat the experiments with larger numbers of
Monte Carlo iterations, you will find that these averages get closer to the values of the parameters
used to generate the data. This is what it means to be unbiased. Unbiasedness only has meaning
within the context of repeated sampling. In your experiments, you generated many samples and
averaged results over those samples to get close to finding the truth. In actual practice, you do not
have this luxury; you have one sample and the proximity of your estimates to the true values of
the parameters is always unknown.

In section 2.8 and in the script at the end of this chapter, you will find another example of
Monte Carlo that is discussed in POE5. In this example, a sample of regressors is generated using
a simple loop and the properties of least squares is examined using 1000 samples. The use of the
print and store commands will be examined in section 2.8 as well.

2.6 Estimating Nonlinear Relationships

Since economic relationships are often not linear, we need to be able to create models that allow
the independent and dependent variable to be nonlinearly related. Consider the following simple
regression

price = β1 + β2sqft + e (2.7)

The parameter, β2 measures the expected change in price given an additional square foot of living
space in the home. As specified, this marginal effect is the same for homes of every size. It might
make more sense to allow the marginal effect to depend on the size of the house. Larger houses
also tend to be more luxurious and therefore another square foot of living area might add more to
the average home price. This can be modeled by using a quadratic term in the model.

price = α1 + α2sqft2 + e (2.8)

The marginal effect of another square foot is now ∂price/∂sqft = 2α2sqft. The estimated elasticity
is equal to

ε̂ = ŝlope× sqft

price
= (2α̂2)× sqft2

price
(2.9)

Obviously, the slope and elasticity depend on the size and price of the home. The user must select
values at which these are to be evaluated. This is done in the script below where slopes for houses
of size 2000, 4000, and 6000 square feet are computed. The elasticities are computed for prices
of $117,461.77, $302,517.39, and $610,943.42. The scalar and series variable types used here
are not strictly necessary in gretl. I’ve used them to make things more clear and it is a good
programming practice in general.
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1 open "@workdir\data\br.gdt"
2 series sqft2 = sqftˆ2
3 ols price const sqft2
4 scalar slope_2000 = 2*$coeff(sqft2)*2000
5 scalar slope_4000 = 2*$coeff(sqft2)*4000
6 scalar slope_6000 = 2*$coeff(sqft2)*6000
7 scalar elast_2000 = slope_2000*2000/117461.77
8 scalar elast_4000 = slope_4000*4000/302517.39
9 scalar elast_6000 = slope_6000*6000/610943.42

The output from the regression is

p̂rice = 55776.6
(2890.4)

+ 0.01542
(0.000313)

sqft2

n = 1080 R̄2 = 0.6921 F (1, 1078) = 2426.0 σ̂ = 68207.

(standard errors in parentheses)

and the graph of home price against size is shown on the righthand side of Figure 2.15.

Another way to estimate a nonlinear relationship between price and sqft is to alter the functional
form of the model. A log-linear model uses the logarithm of a variable as the dependent variable,
and the untransformed value of regressor as the independent variable. In the simple home price
model this is

ln(price) = γ1 + γ2sqft + e (2.10)

The logarithmic transformation is often used on data that come from a heavily skewed distribution
that has a long-tail to the right. Taking a look at the histograms for price and it natural logarithm
shown in Figure 2.16 reveals just this sort of data and how the natural log can ‘regularize’ the series.
These graphs were produced by first taking the natural log and then using the freq function to
generate the histograms. The code is

1 series l_price = ln(price)
2 freq price
3 freq l_price

Finally, the log-linear model is estimated and the predicted values from the regression are plotted
against house size.

1 logs price
2 ols l_price const sqft
3 series l_yhat = $yhat
4 series yhat = exp(l_yhat)
5 gnuplot price yhat sqft --output=display --suppress-fitted
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In the first line, an alternative method of generating the natural logarithms is used. The logs
command can be handy, especially when finding the logarithms of several series; just list all of the
desired series after the logs command. The regression is estimated in line 2, the predicted values
from the regression saved to a new series called yhat in line 3, and then converted back to price
by taking the antilog in line 4. The price and predicted values are plotted against sqft in the last
line, with the output sent to the computer display.

The estimated equation is:

̂ln(price) = 10.839
(0.0246)

+ 0.0004113
(9.708e–006)

sqft

n = 1080 R̄2 = 0.6244 F (1, 1078) = 1794.8 σ̂ = 0.32147

(standard errors in parentheses)

The graph appears on the left-hand side of Figure 2.15. Comparing the log-linear model to
the quadratic shows that the nonlinearity estimated by the log-linear is similar, but a bit more
pronounced.

Several useful statistics can be generated using these estimates. For instance, a quick prediction
could be made about home prices for houses of given size.

p̂rice = exp(10.839 + 0.0004113sqft)

At 2000 and 4000 square feet, the simple prediction is:

1 scalar p_2000 = exp($coeff(const)+$coeff(sqft)*2000)
2 scalar p_4000 = exp($coeff(const)+$coeff(sqft)*4000)

which yields p_2000=115975 and p_4000=263991.

Marginal effects

∂p̂rice

∂sqft
= γ̂2p̂rice = 0.0004113p̂rice

For houses priced at $100,000 and $500,000 this is computed:

1 scalar me_100k = $coeff(sqft)*100000
2 scalar me_500k = $coeff(sqft)*500000

This produces me_100 = 0.0411269 and me_500 = 0.205634.

Elasticities are the marginal effects multiplied by x/y. In this model it becomes γ̂2sqft

35



1 scalar e_2000 = $coeff(sqft)*2000
2 scalar e_4000 = $coeff(sqft)*4000

which yields e_2000 = 0.822538 and e_4000 = 1.64508.

2.7 Regression with an Indicator Variable

An indicator variable is a variable that can be equal to one of two possible values. Commonly,
this an indicator variable can be a 1 or a 0. So for instance, if a house is located in the University
Town subdivision the variable is given the value of 1 and if not it is equal to 0.

utown =

{
1 if house is in University Town

0 if not
(2.11)

One can look at the empirical distributions of the two sets of home prices using histograms. In this
case, the smpl command is used to limit the sample to each of the two cases.

1 open "@workdir\data\utown.gdt"
2 smpl utown == 0 --restrict
3 freq price --plot=display --nbins=13
4 smpl utown == 1 --replace --restrict
5 freq price --plot=display --nbins=13

In line 2 the --restrict option of the smpl command is used to restrict the sample to the
observations for which the series utown is zero. The double equal sign is a logical operator (as
opposed to an assignment operator). In this line it checks to see whether the value of utown
is equal to 0. The freq command is used to generate the histogram for the price series. The
--plot=display option will send the plot to the computer screen and the --nbins=13 option
sets the number of bins for the histogram to 13. The latter ensures that the plots look just like the
ones in Figure 2.18 of POE5.

The regression model becomes

price = β1 + β2utown + e (2.12)

As pointed out in POE5, taking the expected value of a regression is very useful when it contains
an indicator variable. This will reveal how to interpret its coefficient. In this model

E[price|utown] = β1 + β2utown =

{
β1 + β2 if utown = 1

β1 if utown = 0
(2.13)
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So, estimating the model using the utown.gdt data yields

p̂rice = 215.732
(1.3181)

+ 61.5091
(1.8296)

utown

n = 1000 R̄2 = 0.5306 F (1, 998) = 1130.2 σ̂ = 28.907

(standard errors in parentheses)

This implies that the average home price (in $1000) in University Town is 215.7325 + 61.5091 =
277.2416 and the average price elsewhere is 215.7325.

The script that produces the same result is straightforward:

1 open "@workdir\data\utown.gdt"
2 ols price const utown --quiet
3 scalar ut = $coeff(const)+$coeff(utown)
4 scalar other = $coeff(const)
5 printf "\nThe average home price: \n \
6 University Town = $%.2f \n \
7 Elsewhere = $%.2f\n", \
8 ut*1000,other*1000

The output is

The average home price:
University Town = $277241.60
Elsewhere = $215732.49

The last command in this script uses a function called printf. printf stands for print
format and it is used to gain additional control over how results are printed to the screen. In the
next section contains a brief explanation of how to use it.

2.7.1 Using printf

The printf command can be very useful in programming gretl to produce output that is
comprehensible and neat. In the preceding example I have combined descriptive text and numerical
results. The syntax of printf comes from the C programming language and it can be a bit tricky
to use, so I will try to explain a little about it. I use it extensively in the rest of this book so that
you get the used to it. Once used, its mystery quickly evaporates–the syntax is really quite elegant.

The printf function is divided into two parts. The first part consists of what you want written
to the screen, and the second contains the computations that you want placed within the text.
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1 printf "\nThe average home price: \n \
2 University Town = $%.2f \n \
3 Elsewhere = $%.2f\n", \
4 ut*1000,other*1000

The first part, called the format string, is enclosed in double quotes and occupies the first three
lines. The \n command stands for ‘new line’ and it tells gretl to issue a line feed (in old computer
lingo, that means go to a new line). It is used at the beginning and the end of the format string
and is not strictly necessary. In this case, a line feed is given before and after the format string to
give a little more white space to your printed output. If you want line feeds, be sure to put these
inside the double quotes that enclose the format string.

The \ that follows the line feed is the line continuation command. Putting the entire command
on several lines makes it easier to code and harder to make an error.

Within this ‘sentence’ or ‘format string’ are two format commands. A format command
tells gretl how the numerical results are to be printed. A format command begins with the %
symbol and is followed by instructions about how many digits and what kind of format to use for
the numerical result you want printed. These formats are also adopted from the C programming
language. The format %f is a fixed point format and the number that falls between the percent
sign % and the desired format f indicates the overall width of what is to be printed and the number
decimal places to print. So, %.2f tells gretl to print only two numbers to the right of the decimal
without limiting the overall number of characters for the number. Note, the dollar sign ($) that
precedes the format command %.2f) is actually part of the string that will be printed to the screen
(e.g., University Town = $).

Recognized numeric formats for the format command are %s, %e, %E, %f, %g, %G and %d,2 in
each case with the various modifiers available in C. Examples: the format %.10g prints a value
to 10 significant figures; %12.6f prints a value to 6 decimal places, with a width of 12 characters.
The format %s should be used for strings.

The second part of the printf command contains the values to be printed at each of the
format commands. There must be one result for each format command. These are separated by
commas. Since there are two format commands, gretl is expecting two results to be listed. The
result computed and stored in ut will be printed at the first format command, %.2f, and the one
in other will be printed at the second %.2f. Also, note that these can be operated on within the
printf command. Each of these scalars is being multipled by 1000.

The values to be printed must follow the format string, separated by commas. These values
should take the form of either (a) the names of variables, (b) expressions that are valid for the
genr command, or (c) the special functions varname() or date().

2%e is for scientific notation with lower case e, %E is scientific upper case, %g picks the shorter of %e or %f, and
%G picks the shorter of %E or %f. The format command %d is for a signed decimal integer.
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Finally, there is a trick to get printf to print a percent sign. Since % is used to mark the
placement of numbers. To print a percent sign it must be preceded by another percent symbol, %;
hence, 90%% prints as 90%.

2.8 Monte Carlo Simulation

Appendix 2H in POE5 discusses some of the rudimentary features of Monte Carlo simulations.
Figure 2H.1 plots true pdfs for two normal random variables. One is N(200, 502) and the other is
N(300, 502). The essential features of this graph can be generated in gretl from the GUI.

From the menu bar select, Tools>Distribution graphs from the pull-down menu. This opens
the add distribution graph dialog shown in Figure 2.17. In this instance we choose the normal
tab and set mean to 200 and std. deviation to 50. Click OK. Find the menu icon on the graph
located in the lower right corner of the graph window. Click on it and select Add another curve
from the fly-out menu. Then, return to the dialog and change the mean to 300 and click OK. This
produces the graph shown in Figure 2.18

2.8.1 MC Basics

The first step in a Monte Carlo exercise is to model the data generation process. This requires
what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully
specified parametric model “is one for which it is possible to simulate the dependent variable
once the values of the parameters are known” (Davidson and MacKinnon, 2004, p. 19). First you’ll
need a regression function, for instance:

E(yi|Ωi) = β1 + β2xi (2.14)

where yi is your dependent variable, xi the dependent variable, Ωi the current information set,
and β1 and β2 the parameters of interest. The information set Ωi contains xi as well as other
potential explanatory variables that determine the average of yi. The conditional mean of yi given
the information set could represent a linear regression model or a discrete choice model. However,
equation (2.14) is not complete; it requires some description of how the unobserved or excluded
factors affect yi|Ωi.

To complete the the specification we need to specify an “unambiguous recipe” for simulating the
model on a computer (Davidson and MacKinnon, 2004, p. 17). This means we’ll need to specify a
probability distribution for the unobserved components of the model and then use a pseudo-random
number generator to generate samples of the desired size.
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2.8.2 A Simple Example

In this example the data generation process will be as follows. We will let n = 40 and based on
the food expenditure model discussed above.

foodexpi = β1 + β2incomei + ei i = 1, 2, · · · , 40. (2.15)

The errors of the model will iid N(0, 88). The parameters β1 = 80 and β2 = 10.

1 # Monte Carlo simulation
2 open "@workdir\data\food.gdt"
3 set seed 3213789
4 loop 1000 --progressive --quiet
5 series u = normal(0,88)
6 series y1= 80+10*income+u
7 ols y1 const income
8 endloop

The food.gdt data are loaded and a seed for the pseudo-random number generator is chosen. A
progressive loop of 1000 iterations is initiated. The errors are generated from normals variates
having a mean of zero and a standard deviation of 88. These are added to the systematic part of
the model that depends on the income variable in the data as well as the chosen parameters for
the simulation. Finally, the regression is run and the loop closed. The progressive option takes care
of collecting results and printing them to the screen.

OLS estimates using the 40 observations 1-40
Statistics for 1000 repetitions
Dependent variable: y1

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 79.7886 43.3898 42.6064 5.00518
income 10.0183 2.09756 2.05451 0.241353

You can see that the average estimate of the mean over 1000 samples of size 40 is 79.8, which is
very close to our parameter, 80. Likewise the slope is very close to 10.

2.8.3 MC using fixed regressors

In this example a set of regressors is generated and used repeatedly to generate new samples
of the dependent variable using known parameters. This is what we did in the preceding section
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using the food expenditure data.

yi = β1 + β2xi + ei i = 1, 2, · · · , 40. (2.16)

In this example we set the intercept β1 = 100 and the slope β2 = 10. The errors are N(0, 502).
The errors of the model will iid N(0, 88). The parameters β1 = 100 and β2 = 10. Finally, let
x1, x2, · · · , x20 = 10 and let x21, x22, · · · , x40 = 20. This gives us enough information to simulate
samples of yi from the model. The nulldata command opens an empty dataset containing 40
observations. The series x is generated using gretl’s conditional assignment operator.3 Here
is how it works. The series x is created. The statement in parentheses is checked. The question
mark (?) is the conditional assignment. If the statement in parentheses is true, then x is assigned
the value to the left of the colon. If false it gets the value to the right. So, when index (a gretl
default way of identifying the observation number) is greater than 20, x is set to 20, if index is less
than or equal to 20 it is set to 10.

Normal random variates are added to the model, it is estimated by ols, and several statistics
from that computation are retrieved, printed, and stored in a specified location.

The hansl script is

1 # Generate systematic portion of model
2 nulldata 40
3 # Generate X
4 series x = (index>20) ? 20 : 10
5

6 # Generate systematic portion of model
7 series ys = 100 + 10*x
8

9 loop 10000 --progressive --quiet
10 series y = ys + normal(0,50)
11 ols y const x
12 scalar b1 = $coeff(const)
13 scalar b2 = $coeff(x)
14 scalar sig2 = $sigmaˆ2
15 print b1 b2 sig2
16 store "@workdir\coef.gdt" b1 b2 sig2
17 endloop

This loops from 1 to 10000 in increments of 1.

The print statement used in this context actually tells gretl to accumulate the things that
are listed and to print out summary statistics from their computation inside the loop. The store
command tells gretl to output b1, b2, and sig2 to an external file. The --progressive option

3A ternary operator has three parts. In this case, the parts give us a fancy way of creating if/else statements. The
first part, a, lies to the left of ?, the second, b, falls between the question mark and the colon and the last, c, is to
the right of the colon, e.g., a?b:c. If a is true, then b if not, then c.
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to the loop command alters the print and store commands a bit, and you can consult the Gretl
Users Guide for more information about how.

Here is the output from the Monte Carlo. First, the output from the progressive loop:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 100.275 25.0830 24.8378 2.86075
x 9.97793 1.58222 1.57088 0.180930

Statistics for 10000 repetitions

In a progressive loop, gretl will print out the mean and standard deviation from the series of
estimates. It works with all single equation estimators in gretl and is quite useful for Monte Carlo
analysis. From this you can see that the average value of the constant in 1000 samples is 100.491.
The average slope was 9.962. The third column gives the mean of the standard error calculation
from the simulation. If the standard errors are being estimated consistently, then these should be
fairly close to the standard deviation of estimated coefficients to their left. The outcome from the
print command is:

mean std. dev
b1 100.275 25.0830
b2 9.97793 1.58222

sig2 2500.41 574.421

When the print command is issued, it will compute and print to the screen the ‘mean’ and
‘std. dev.’ of the estimated scalar. Notice that b1 and b2 match the output produced by the
--progressive option. The print command is useful for studying the behavior of various
statistics (like tests, confidence intervals, etc) and other estimators that cannot be handled properly
within a progressive loop (e.g., mle, gmm, and system estimation commands).

The store statement works behind the scenes, but yields this informative piece of information:

store: using filename C:\Users\leead\Documents\gretl\poe5\coef.gdt
wrote C:\Users\leead\Documents\gretl\poe5\coef.gdt

This tells you where gretl wrote the dataset that contains the listed scalars, and that is was written
properly. Now you are ready to open it up and perform additional analysis. In this example, we
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have used the @workdir macro. This tells gretl to write the file to the currently defined working
directory. You could write files to gretl’s temporary directory using @dotdir\coef.gdt.

The data set is opened and the summary statistics generated (again, if needed)

1 open "@workdir\coef.gdt"
2 summary
3 freq b2 --normal --plot=display

From here you can plot frequency distribution and test to see whether the least squares estimator
of slope is normally distributed.

The histogram certainly appears to be normally distributed compared to the line plot of the normal.
Also, the hypothesis test of the normality null against nonnormality cannot be rejected at any
reasonable level of significance.

2.8.4 MC using random regressors

In this simulation we replace the fixed regressors with random draws from a N(15, 1.62) distri-
bution.
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1 # Generate systematic portion of model
2 nulldata 40
3 loop 10000 --progressive --quiet
4 series x = normal(15,1.6)
5 series y = 100+10*x + normal(0,50)
6 ols y const x
7 scalar b1 = $coeff(const)
8 scalar b2 = $coeff(x)
9 scalar sig2 = $sigmaˆ2

10 print b1 b2 sig2
11 store "@workdir\coef_random.gdt" b1 b2 sig2
12 endloop
13

14 open "@workdir\coef_random.gdt"
15 summary
16 freq b2 --normal --plot=display

The simulation results are:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 101.469 78.2445 76.4855 12.5717
x 9.89660 5.18802 5.07225 0.835130

Although the means have not changed much, the coefficients are much more variable when the
regressors are random. The standard deviation of the coefficients is roughly three times what is
was in the fixed regressor case. The results are quite similar to those in Table 2H.2 in POE5.

2.9 Script

The script for Chapter 2 is found below. These scripts can also be found at my website http:
//www.learneconometrics.com/gretl.

1 set echo off
2 open "@workdir\data\food.gdt"
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3 setinfo food_exp -d "household food expenditure per week" \
4 -n "Food Expenditure/Week"
5 setinfo income -d "weekly household income" -n "Weekly Income"
6 labels
7

8 #Least squares
9 ols food_exp const income --vcv

10 ols 1 0 2
11

12 #Summary Statistics
13 summary food_exp income
14

15 #Plot the Data
16 gnuplot food_exp income --output=display
17

18 #List the Data
19 print food_exp income --byobs
20

21 #Elasticity
22 ols food_exp const income --quiet
23 scalar elast=$coeff(income)*mean(income)/mean(food_exp)
24

25 #Prediction
26 scalar yhat = $coeff(const) + $coeff(income)*20
27

28 #Table 2.2
29 open "@workdir\data\table2_2.gdt"
30 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
31 loop foreach i ylist
32 ols ylist.$i const x
33 endloop
34

35 #Find the averages using progressive loop
36 open "@workdir\data\table2_2.gdt"
37 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
38 loop foreach i ylist --progressive
39 ols ylist.$i const x
40 endloop
41

42 # slopes and elasticities at different points
43 open "@workdir\data\br.gdt"
44 series sqft2 = sqftˆ2
45 ols price const sqft2
46 scalar slope_2000 = 2*$coeff(sqft2)*2000
47 scalar slope_4000 = 2*$coeff(sqft2)*4000
48 scalar slope_6000 = 2*$coeff(sqft2)*6000
49 scalar elast_2000 = slope_2000*2000/117461.77
50 scalar elast_4000 = slope_4000*4000/302517.39
51 scalar elast_6000 = slope_6000*6000/610943.42
52

53 # histogram for price and log(price)
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54 series l_price = ln(price)
55 freq price
56 freq l_price
57

58 # estimate the quadratic model
59 open "@workdir\data\br.gdt"
60 square sqft
61 ols price const sqft
62 ols price sq_sqft
63 series yhat = $yhat
64 gnuplot price yhat sqft --output=display --suppress-fitted
65

66 # Example 2.7
67 # estimate the log-linear model
68 logs price
69 ols l_price const sqft
70 series l_yhat = $yhat
71 series yhat = exp(l_yhat)
72 # Figure 2.17
73 gnuplot price yhat sqft --output=display --suppress-fitted
74

75 # marginal effects at $100,000 and $500,000
76 scalar me_100k = $coeff(sqft)*100000
77 scalar me_500k = $coeff(sqft)*500000
78 # predicted prices at 2000 and 4000 square feet
79 scalar p_2000 = exp($coeff(const)+$coeff(sqft)*2000)
80 scalar p_4000 = exp($coeff(const)+$coeff(sqft)*4000)
81 # elasticity at 2000 and 4000 square feet
82 scalar e_2000 = $coeff(sqft)*2000
83 scalar e_4000 = $coeff(sqft)*4000
84 # semi-elasticity
85 scalar se = $coeff(sqft)*100
86

87 # generate Figure 2.18 in POE4
88 open "@workdir\data\utown.gdt"
89 smpl utown = 0 --restrict
90 freq price --show-plot --nbins=13
91 smpl utown = 1 --replace --restrict
92 freq price --show-plot --nbins=13
93

94 # regression using indicator variables
95 open "@workdir\data\utown.gdt"
96 logs price
97 ols l_price const utown --quiet
98 scalar ut = $coeff(const)+$coeff(utown)
99 scalar other = $coeff(const)

100 printf "\nThe average in Utown is %.4f and the \
101 average elsewhere is %.4f\n",ut,other
102

103 # Appendix 2H.4
104 open "@workdir\data\mc1_fixed_x.gdt"
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105 ols y const x
106

107

108 # Monte Carlo simulation
109 open "@workdir\data\food.gdt"
110 set seed 3213789
111 loop 1000 --progressive --quiet
112 series u = normal(0,88)
113 series y1= 80+10*income+u
114 ols y1 const income
115 endloop
116

117 # Monte Carlo simulation #2
118 # Generate systematic portion of model
119 nulldata 40
120 # Generate X
121 series x = (index>20) ? 20 : 10
122

123 # Generate systematic portion of model
124 series ys = 100 + 10*x
125

126 loop 10000 --progressive --quiet
127 series y = ys + normal(0,50)
128 ols y const x
129 scalar b1 = $coeff(const)
130 scalar b2 = $coeff(x)
131 scalar sig2 = $sigmaˆ2
132 print b1 b2 sig2
133 store "@workdir\coef.gdt" b1 b2 sig2
134 endloop
135

136 open "@workdir\coef.gdt"
137 summary
138 freq b2 --normal --plot=display
139

140 # Monte Carlo simulation #3
141 # Generate systematic portion of model
142 nulldata 40
143 loop 10000 --progressive --quiet
144 series x = normal(15,1.6)
145 series y = 100+10*x + normal(0,50)
146 ols y const x
147 scalar b1 = $coeff(const)
148 scalar b2 = $coeff(x)
149 scalar sig2 = $sigmaˆ2
150 print b1 b2 sig2
151 store "@workdir\coef_random.gdt" b1 b2 sig2
152 endloop
153

154 open "@workdir\coef_random.gdt"
155 summary
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156 freq b2 --normal --plot=display
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Figure 2.6: From the menu bar, select Model>Ordinary Least Squares to open the least squares
dialog box.

Figure 2.7: The specify model dialog box opens when you select Model>Ordinary least squares
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Figure 2.8: The gretl console window. From this window you can type in gretl commands directly
and perform analyses very quickly–if you know the proper commands.

Figure 2.9: The models window appears with the regression results. From here you can conduct
subsequent operations (graphs, tests, analysis, etc.) on the estimated model.

Figure 2.10: Summary statistics

50



Figure 2.11: Results from commands written to the console that compute an elasticity based on a
linear regression.

Figure 2.12: Obtain the matrix that contains the least squares estimates of variance and covariance
from the pull-down menu of your estimated model.
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Figure 2.13: Choose Data>Define or edit list from the gretl menu bar

Figure 2.14: The summary results from 100 random samples of the Monte Carlo experiment.
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Figure 2.15: Price versus size from log-linear and quadratic models.

Figure 2.16: Price and its natural logarithm.

Figure 2.17: This dialog allows you to graph various distributions. It can be used multiple times
to overlay graphs.
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Figure 2.18: Figure 2H.1 in POE5 plots two normal distributions having different means. Using
the menu icon select Add another curve before returning the Add distribution graph dialog
to insert the second graph. This similar graph is produced using one of the Tools in gretl.
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Chapter 3

Interval Estimation and Hypothesis
Testing

In this chapter, I will discuss how to generate confidence intervals and test hypotheses using
gretl. Gretl includes several handy utilities that will help you obtain critical values and p-values
from several important probability distributions. As usual, you can use the dialog boxes or hansl
– gretl’s programming language – to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters is. One way of doing
this is to look at the least squares parameter estimate along with a measure of its precision, i.e.,
its estimated standard error. The confidence interval serves a similar purpose, though it is much
more straightforward to interpret because it gives you upper and lower bounds between which the
unknown parameter will lie with a given frequency in repeated samples.1

In gretl you can obtain confidence intervals either through a dialog or by manually building
them using saved regression results. In the ‘manual’ method one can use the genr or scalar
commands to generate upper and lower bounds based on regression results that are stored in
gretl’s memory, letting gretl do the arithmetic. You can either look up the appropriate critical
value from a table or use the gretl’s critical function. Both are demonstrated below.

1This is probability in the frequency sense. Some authors fuss over the exact interpretation of a confidence interval
(unnecessarily I think). You are often given stern warnings not to interpret a confidence interval as containing the
unknown parameter with the given probability. However, the frequency definition of probability refers to the long
run relative frequency with which some event occurs. If this is what probability is, then saying that a parameter
falls within an interval with given probability means that intervals so constructed will contain the parameter that
proportion of the time.
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Consider the equation of a confidence interval from POE5

P [bk − tcse(bk) ≤ βk ≤ bk + tcse(bk)] = 1− α (3.1)

Recall that bk is the least squares estimator of βk, and that se(bk) is its estimated standard error.
The constant tc is the α/2 critical value from the t-distribution and α is the total desired probability
associated with the “rejection” area (the area outside of the confidence interval).

You’ll need to know the critical value tc, which can be obtained from a statistical table,
the Tools>Statistical tables dialog contained in the program, or using the gretl command
critical. First, try using the dialog box shown in Figure 3.1. Pick the tab for the t distribution
and tell gretl how much weight to put into the right-tail of the probability distribution and how
many degrees of freedom your t-statistic has, in our case, 38. Once you do, click on OK. You’ll get
the result shown in Figure 3.2. It shows that for the t(38) with α/2 right-tail probability of 0.025
and α = 0.05, the critical value is 2.02439.2

Figure 3.1: Obtaining critical values using the Tools>Statistical tables dialog box.

Figure 3.2: The critical value obtained from Tools>Statistical tables dialog box.

2You can also get the α level critical values from the console or in a script by issuing the command scalar c =
critical(t,38,α). Here α is the desired area in the right-tail of the t-distribution.
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Example 3.1 in POE5

This example is based on the food expenditure model first considered in Chapter 2.

food expi = β1 + β2incomei + ei i = 1, 2, . . . , n

The goal is to estimate a 95% confidence interval for the slope, β2. Using a combination of accessors
and output from the critical value finder dialog we can generate the lower and upper bounds (using
the gretl console) with the commands:

1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3 scalar lb = $coeff(income) - 2.024 * $stderr(income)
4 scalar ub = $coeff(income) + 2.024 * $stderr(income)
5 print lb ub

The first line opens the dataset. The second line (ols) solves for the estimates that minimize
the sum of squared errors in a linear model that has food_exp as the dependent variable with a
constant and income as independent variables. The next two lines generate the lower and upper
bounds for the 95% confidence interval for the slope parameter β2. The last line prints the results
of the computation.

The gretl language syntax needs a little explanation. When gretl makes a computation, it
will store certain results like coefficient estimates, their standard errors, sum of squared errors in
volatile memory. These results can be accessed and used to compute other statistics, provided
you know the accessor’s name. These so-called accessors carry a $ prefix and a list of what
can be accessed after estimation can be found in the function reference or by using varlist
--type=accessor. Lines 3 and 4 use accessors for the coefficients ($coeff(income)) and
standard errors ($stderr(income)) of the variable in parentheses. The list of accessors is growing
rapidly in response to user requests, so I recommend checking it whenever you are looking for a
stored result to use in a computation.

In the above example, gretl uses the least squares estimates and their estimated standard er-
rors to compute confidence intervals. Following the ols command, least squares estimates are
stored in $coeff(variable name). Since β2 is estimated using the variable income, its co-
efficient estimate is saved in $coeff(income). The corresponding standard error is saved in
$stderr(income). Consult the function reference (Figure 1.15) to see a list of accessors.

Equivalently, you could use gretl’s built-in critical function to obtain the desired critical
value. The general syntax for the function depends on the desired probability distribution. This
follows since different distributions contain different numbers of parameters (e.g., the t-distribution
has a single degrees of freedom parameter while the standard normal has none!). This example
uses the t-distribution and the script becomes:
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1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
4 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
5 print lb ub

The syntax for the t-distribution is critical(t, degrees-of-freedom, α/2). The
degrees-of-freedom from the preceding regression are accessed with $df and for a 1 − α = 95%
confidence interval, set the last parameter to α/2 = 0.025.

The example found in section 3.1.3 of POE5 computes a 95% confidence interval for the income
parameter in the food expenditure example. The gretl commands above were used to produce the
output found below.

Replaced scalar lb = 5.97205
Replaced scalar ub = 14.4472

lb = 5.9720525

ub = 14.447233

To use the dialogs to get confidence intervals is easy as well. First estimate the model using least
squares in the usual way. Choose Model>Ordinary least squares from the main pull-down
menu, fill in the dependent and independent variables in the ols dialog box (Figure 2.7) and click
OK. The results appear in the models window (Figure 2.9). Now choose Analysis>Confidence
intervals for coefficients from the models window’s pull-down menu to generate the result shown
in Figure 3.3. The boxed α icon can be used to change the size of the confidence interval, which

Figure 3.3: The 95% confidence interval for the income coefficient in the food expenditure example
using the dialog.

can be set to any (integer) percentage level you desire.
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A gretl Function to Compute Confidence Intervals

Since confidence intervals like this based on a t-distributed random variable are common, I
wrote a simple program to produce them with minimal effort and to provide better looking output.
This function is used throughout the remainder of this manual and can be found in the
following section.

Since confidence intervals are computed for many models, it is worth writing a function in
gretl that can be reused. The use of functions to perform repetitive computations makes programs
shorter and reduces errors (unless your function is wrong, in which case every computation is
incorrect!) In the next section, gretl functions are introduced and one that computes the model
selection rules discussed above is presented.

3.2 Functions in gretl

Gretl provides a mechanism for defining functions, which may be called via the console, in the
context of a script, or (if packaged appropriately) via the programs graphical interface. The syntax
for defining a function is:

function return-type function-name (parameters)
function body

end function

The opening line of a function definition contains these elements in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must
be one of the following types: void (if the function does not return anything), scalar,
series, matrix, list, string or bundle.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; anything longer will be truncated. Function names
cannot contain spaces. You will get an error if you try to define a function having the same
name as an existing gretl command. Also, be careful not to give any variables (scalars,
matrices, etc.) the same name as one of your functions.

4. The functions parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown.

The confidence interval function is designed to compute a 1− α% confidence interval centered
at a t-distributed random variable and print the results to the screen. Its basic structure is:
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function void t_interval (scalar b, scalar se, scalar df, scalar p)
[some computations]
[print results]
[return results]

end function

As required, it starts with the keyword function. The next word, void, indicates that the
function will returned nothing when used. The next word is t_interval, which is the name
given to the function. The t_interval function has four arguments that will be used as inputs.
The first, b, is a t-distributed scalar statistic that is the interval’s center, next is a scalar, se, that
contains the estimated standard error of b, df is a scalar for the degrees of freedom, and p is the
desired coverage probability of the interval. The inputs are separated by a comma and there are
spaces between the list of inputs.

1 function void t_interval(scalar b "statistic for interval’s center",
2 scalar se "standard error of b",
3 scalar df "degrees-of-freedom for the t-distribution",
4 scalar p "coverage probability for the interval")
5 scalar alpha = (1-p)
6 scalar lb = b - critical(t,df,alpha/2)*se
7 scalar ub = b + critical(t,df,alpha/2)*se
8 printf "\nThe %.2f confidence interval centered at %.2f is\
9 (%.2f, %.2f)\n", p, b, lb, ub

10 end function

In line 5 the p is converted to α to be used in the critical value function inputs. Lines 6 and
7 compute the bounds of the interval and the final statement, printf produces output to the
screen.3

At this point, the function can be highlighted and run. Then, run the regression and call the
function using the appropriate arguments.

1 ols food_exp const income
2 t_interval($coeff(income),$stderr(income),$df,.95)

which produces the output:

The 95% confidence interval centered at 10.21 is (5.972, 14.447)

The function performs as expected.

3See section 2.7.1 for information on how to use printf.
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3.3 Repeated Sampling

Tables 3.1 and 3.2 in POE5

In this section, ten samples found in table2 2.gdt are used to produce ten sets of 95% confidence
intervals. To make the program simpler, the loop construct introduced in Chapter 2 is employed.
The script to estimate these in the loop is:

1 open "@gretldir\data\poe\table2_2.gdt"
2 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
3 loop foreach i ylist --progressive --quiet
4 ols ylist.$i const x
5 scalar b1 = $coeff(const) # in gretl you can use genr or scalar
6 scalar b2 = $coeff(x)
7 scalar s1 = $stderr(const)
8 scalar s2 = $stderr(x)
9

10 # 2.024 is the .025 critical value from the t(38) distribution
11 scalar c1L = b1 - critical(t,$df,.025)*s1
12 scalar c1R = b1 + critical(t,$df,.025)*s1
13 scalar c2L = b2 - critical(t,$df,.025)*s2
14 scalar c2R = b2 + critical(t,$df,.025)*s2
15

16 scalar sigma2 = $sigmaˆ2
17 store @workdir\coeff.gdt b1 b2 s1 s2 c1L c1R c2L c2R sigma2
18 endloop

As in Chapter 2, the dataset is opened and a list is created that contains each of the ten samples
of the dependent variable. The foreach loop is initiated in line 3 and the --progressive
and --quiet options are chosen. The model is estimated using least squares and the coefficients,
standard errors, lower and upper confidence limits and variance are generated and stored in the
dataset coeff.gdt, which is placed in the user designated working directory @workdir on your
harddrive.

As if that is not easy enough, there is an even simpler syntax that will accomplish the same
thing. It uses the fact that the dependent variables all begin with the letter ‘y’ and have number
suffixes. In this case the foreach loop can be simplified by replacing lines 2-4 with:

2 list ylist = y* # use the wildcard
3 loop foreach i ylist --progressive
4 ols $i const x

Once this is executed, one can open coeff.gdt and perform further analysis. In this case, I will print
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the upper and lower confidence bounds as Hill et al. have done in Table 3.2 of POE5.

1 open @workdir\coeff.gdt
2 print c1L c1R c2L c2R --byobs

The --byobs option is used with the print command, otherwise each of the series will be printed
out separately. The result appears below in Figure 3.4. Recall that the true value of β2 = 10 and

Figure 3.4: Confidence intervals for 10 samples.

each of the estimated intervals contains it. The actual value of the intercept is 80, and β1 falls also
falls within the estimated boundaries in each of the samples. In a large number of samples, we
expect about 5% of the intervals will not contian the true value of the parameters. This is explored
in the next simulation.

3.4 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using a simple Monte Carlo
study. In this case, 100 samples are generated and we count the number of times the confidence
interval includes the true value of the parameter. The simulation will be based on the food.gdt
dataset. A more thorough set of experiments can be found in sections 3.7.1 and 3.7.2 .

The new script looks like this:
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1 open "@workdir\data\food.gdt"
2 set seed 3213798
3

4 loop 100 --progressive --quiet
5 series u = normal(0,88)
6 series y = 80 + 10*income + u
7 ols y const income
8

9 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)
10 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)
11 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr(income)
12 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)
13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar p1 = (80>c1L && 80<c1R)
16 scalar p2 = (10>c2L && 10<c2R)
17

18 print p1 p2
19 store @workdir\cicoeff.gdt c1L c1R c2L c2R
20 endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data set (open @workdir\
cicoeff.gdt) and examining the data will reveal interval estimates that vary much like those in
Tables 3.1 and 3.2 of POE5. In line 5 of this script, pseudo-random normals are drawn using the
normal(mean,sd) command, and the mean has been set to 0 and the standard deviation to 88.
The samples of y are generated linearly (80+10*food_exp) to which the random component is
added in line 6. A regression is estimated. Then, the upper and lower bounds are computed. In
lines 15 and 16 gretl’s “and” logical operator, &&, is used to determine whether the coefficient (80
or 10) falls within the computed bounds. The operator && yields the intersection of two sets so
if 80 is greater than the lower bound and smaller than the upper p1, then the condition is true
and p1 is equal to 1. If the statement is false, it is equal to zero. Averaging p1 and p2 gives the
proportion of times in the Monte Carlo that the condition is true, which amounts to the empirical
coverage rate of the computed interval.

With this seed, I get the following

OLS estimates using the 40 observations 1-40
Statistics for 100 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 84.9634 45.3240 41.7692 4.92305
income 9.76211 2.15209 2.01414 0.237393
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Statistics for 100 repetitions

mean std. dev
p1 0.950000 0.217945
p2 0.940000 0.237487

You can see that the intercept falls within the estimated interval 95 out of 100 times and the
slope within its interval 94% of the time.

3.5 Hypothesis Tests

Hypothesis tests allow us to compare what we assume to be true with what we observe through
data. Suppose that I believe that autonomous weekly food expenditure is no less than $40, I draw
a sample, compute a statistic that measures food expenditure, and then compare my estimate to
my conjecture using a hypothesis test.

3.5.1 One-sided Tests

In section 3.4 of POE5 the authors test several hypotheses about β2 in the food expenditure
model. One null hypothesis is that β2 = 0 against the alternative that it is positive (i.e., β2 > 0).
The test statistic is:

t = (b2 − 0)/se(b2) ∼ t38

provided that β2 = 0 (the null hypothesis is true). Select α = 0.05 which makes the critical value
for the one sided alternative (β2 > 0) equal to 1.686. The decision rule is to reject H0 in favor of
the alternative if the computed value of the t-statistic falls within the rejection region of the test;
that is if it is larger than 1.686.

The required information to compute t is contained in the least squares estimation results
produced by gretl:

Model 1: OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000
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Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

The computations
t = (b2 − 0)/se(b2) = (10.21− 0)/2.09 = 4.88

Since this value falls within the rejection region, then there is enough evidence at the 5% level of
significance to convince us that the null hypothesis is incorrect; the null hypothesis rejected at this
level of significance.

Gretl is used to get the p-value for this test using the Tools pull-down menu (Figure 3.5).
In this dialog, you enter the desired degrees of freedom for your t-distribution (38), the value of

Figure 3.5: The dialog box for obtaining p-values using the built in statistical tables in gretl.

b2 (10.21), its value under the null hypothesis–something gretl refers to as ‘mean’ (0), and the
estimated standard error from the printout (2.09). This yields the information in Figure 3.6: The

Figure 3.6: The result produced by the p-value finder dialog box.

area of a t38 random variable to the right of 4.88, i.e., the p-value of the test, is almost zero. Since
the p-value is well below α = .05, the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values from several distribu-
tions. The pvalue function works similarly to the critical function discussed in the preceding
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section. The syntax is:

scalar p = pvalue(distribution, parameters, xval)

The pvalue function computes the area to the right of xval in the specified distribution.
It returns a scalar equal to the the size of the computed area. Distribution choices include z for
Gaussian, t for Student’s t, X for chi-square, F for F , G for gamma, B for binomial, L for Laplace,
P for Poisson, W for Weibull, or E for generalized error. There are values for some non-central
distributions as well (χ, F, t). The argument parameters refers to the distribution’s known
parameters, as in its degrees of freedom. So, for this example try

1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3

4 # Example 3.2
5 scalar t2 = ($coeff(income)-0)/$stderr(income)
6 scalar p2 = pvalue(t,$df,t2)
7 printf "\nHa: b2>0 \n t = %.2f, critical value = %.2f \n \
8 alpha = 0.05, p-value = %.3f\n", tratio1, c2, p2

The result is

Ha: b2>0
t = 4.88, critical value = 1.69
alpha = 0.05, p-value = 0.000

The p-value (9.72931e-006) is rounded to zero and very close to the value produced by the dialog
box. This values differ because the value in the dialog box was rounded to 4.88 whereas the
computed value here has many more significant digits to use in the computation.

Example 3.3 in POE5

In example 3.3, the authors of POE5 test the hypothesis that β2 = 5.5 against the alternative
that β2 > 5.5. The computations

t = (b2 − 5.5)/se(b2) = (10.21− 5.5)/2.09 = 2.25

The significance level in this case is chosen to be 0.01 and the corresponding critical value can be
found using a tool found in gretl. The Tools>Statistical tables pull-down menu bring up the
dialog found in Figure 3.1.

This result from the critical values window is shown below:
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t(38)
right-tail probability = 0.01
complementary probability = 0.99
two-tailed probability = 0.02

Critical value = 2.42857

The 0.01 one-sided critical value is 2.42857. Since 2.25 is less than this, we cannot reject the null
hypothesis at the 1% level of significance.

Example 3.3 is verified using the following hansl script

1 # Example 3.3
2 #One sided test (Ha: b2>5.5)
3 scalar tratio2 = ($coeff(income) - 5.5)/ $stderr(income)
4 scalar c2 = critical(t,$df,.01)
5 scalar p2 = pvalue(t,$df,tratio2)
6 printf "\nHa: b2>5.5 \n t = %.2f, critical value = %.2f \n \
7 alpha = 0.01, p-value = %.3f\n", tratio2, c2, p2

The output printed to the screen is:

Ha: b2>5.5
t = 2.25, critical value = 2.43
alpha = 0.01, p-value = 0.015

Example 3.4 in POE5

In example 3.4 of POE5, the authors conduct a one-sided test where the rejection region lies
in the left tail of the t-distribution. The null hypothesis is β2 = 15 and the alternative is β2 < 15.
The test statistic and distribution under the null hypothesis is

t = (b2 − 15)/se(b2) ∼ t38

provided that β2 = 15. The computation is

t = (b2 − 15)/se(b2) = (10.21− 15)/2.09 = −2.29

Based on the desired level of significance, α = 0.05, we reject the null in favor of the one-sided
alternative since t < −1.686.

The hansl script to test this hypothesis is shown below:
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1 # Example 3.4
2 #One sided test (Ha: b2<15)
3 scalar tratio3 = ($coeff(income) - 15)/ $stderr(income)
4 scalar c3 = -1*critical(t,$df,.05)
5 scalar p3 = pvalue(t,$df,abs(tratio3))
6 printf "\nHa: b2<15 \n t = %.2f, critical value = %.2f \n \
7 alpha = 0.05, p-value = %.3f\n", tratio3, c3, p3

This yields:

Ha: b2<15
t = -2.29, critical value = -1.69
alpha = 0.05, p-value = 0.014

The p-value of 0.014 is less than 5% and we conclude that the coefficient is less than 15 at this
level of significance.

3.5.2 Two-sided Tests

Example 3.5 in POE5

Two-sided tests are explored in examples 3.5 and 3.6 of POE5. In the first example the economic
hypothesis that households will spend $7.50 of each additional $100 of income on food. So, H0:
β2 = 7.50 and the alternative is H1: β2 6= 7.50. The statistic is

t = (b2 − 7.5)/se(b2) ∼ t38

if H0 is true which is computed

t = (b2 − 7.5)/se(b2) = (10.21− 7.5)/2.09 = 1.29.

The two-sided, α = 0.05 critical value is 2.024. This means that you reject H0 if either t < −2.024
or if t > 2.024. The computed statistic is neither, and hence we do not reject the hypothesis that
β2 is $7.50. There simply isn’t enough information in the sample to convince us otherwise.

1 # Example 3.5
2 #Two sided test (Ha: b2 not equal 7.5)
3 scalar tratio4 = ($coeff(income) - 7.5)/ $stderr(income)
4 scalar c4 = critical(t,$df,.025)
5 scalar p4 = 2*pvalue(t,$df,tratio4)
6 printf "\nHa: b2 not equal 7.5 \n t = %.2f, critical value = %.2f \n \
7 alpha = 0.05, p-value = %.3f\n", tratio4, c4, p4
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8

9 #Confidence interval
10 t_interval($coeff(income),$stderr(income),$df,.95)

You can draw the same conclusions from using a confidence interval that you can from this two-sided
t-test.

b2 − tcse(b2) ≤ β2 ≤ b2 + tcse(b2)

The test results and confidence interval produced by the hansl script are:

Ha: b2 not equal 7.5
t = 1.29, critical value = 2.02
alpha = 0.05, p-value = 0.203

The 0.95 confidence interval centered at 10.21 is (5.97, 14.45)

From a hypothesis testing standpoint, 7.5 falls within this interval and you would not be able to
reject the hypothesis that β2 is different from 7.5 at the 5% level of significance.

Example 3.6 in POE5

In example 3.6 a test of the overall significance of β2 is conducted. As a matter of routine,
you always want to test to see if your slope parameter is different from zero. If not, then the
variable associated with it may not belong in your model. So, H0: β2 = 0 and the alternative
is H1: β2 6= 0. The statistic is t = (b2 − 0)/se(b2) ∼ t38, if H0 is true, and this is computed
t = (b2 − 0)/se(b2) = (10.21 − 0)/2.09 = 4.88. Once again, the two-sided, α = 0.05 critical value
is 2.024 and 4.88 falls squarely within the 5% rejection region of this test. These numbers should
look familiar since this is the test that is conducted by default whenever you run a regression in
gretl.

1 # Example 3.6
2 #Two sided test (Ha: b2 not equal zero)
3 scalar tratio5 = ($coeff(income) - 0)/ $stderr(income)
4 scalar c5 = critical(t,$df,.025)
5 scalar p5 = 2*pvalue(t,$df,tratio5)
6 printf "\nHa: b2 not equal 0 \n t = %.2f, critical value = %.2f \n \
7 alpha = 0.05, p-value = %.3f\n", tratio5, c5, p5

This produces:

Ha: b2 not equal 0
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t = 4.88, critical value = 2.02
alpha = 0.05, p-value = 0.000

which tells us that β2 is significantly different from zero at 5%.

3.6 Linear Combination of Parameters

Examples, 3.7, 3.8 and 3.9 in POE5

These examples use an estimate of expected food expenditures for a family with $2,000 per
week of income. In Example 3.7 the expected expenditure is obtained, in 3.8 a 95% confidence
interval for weekly food expenditure is obtained and in 3.9 a test is used to determine whether food
expenditure exceeds $250 per week.

Since gretl stores and gives access to the estimated values of the coefficients and the variance-
covariance matrix, testing hypotheses about linear combinations of parameters is very simple. The
average weekly food expenditure for a family earning $2000 per week based on the model is:

E(food exp|income) = β1 + β2income (3.2)

It can easily be shown that E(c1X + c2Y + c3) = c1E(X) + c2E(Y ) + c3 where c1, c2, and c3 are
constants. If least squares is unbiased for the intercept and slope then E(b1) = β1 and E(b2) = β2.
Hence, an estimate of the food expenditure for a family earning $2000 per week is

̂food exp = b1 + b220 = 83.416 + 10.2096× 20 = 287.6089

The hypothesis that the average is statistically greater than $250 can be formally tested as:

H0 : β1 + β2 ≤ 0 H1 : β1 + 20β2 > 250

The statistic

t =
b1 + 20b2 − 250

se(b1 + 20b2 − 250)
∼ tn−2 under H0 (3.3)

Taking the variance of a linear combination is only slightly more complicated than finding the
mean since in the variance calculation any covariance between X and Y needs to be accounted for.
In general, var(c1X + c2Y + c3) = c2

1var(X) + c2
2var(Y ) + 2c1c2cov(X,Y ). Notice that adding a

constant to a linear combination of random variables has no effect on its variance–only its mean.
For a regression model, the elements needed to make this computation are found in the variance-
covariance matrix.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept and the slope, and covari-
ance between the two. The variances of the least squares estimator fall on the diagonal of this
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square matrix and the covariance is on the off-diagonal.

cov(b1, b2) =

[
var(b1) cov(b1, b2)
cov(b1, b2) var(b2)

]
(3.4)

All of these elements have to be estimated from the data. To print an estimate of the variance-
covariance matrix following a regression use the --vcv option with the model estimation command
in gretl:

ols food_exp const income --vcv

In terms of the hypothesis, var(b1 + 20b2 − 250) = 12var(b1) + 202var(b2) + 2(1)(20)cov(b1, b2).
The covariance matrix printed by this option is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const

4.38175 income

The arithmetic for variance is var(b1 + 20b2 − 250) = 1884.44 + (400)(4.38175) + (40)(−85.9032) =
201.017. The square root of this is the standard error, i.e., 14.178.

Of course, once you know the estimated standard error, you could just as well estimate an
interval for the average food expenditure. The script to do just that is found below. Using hansl
to do the arithmetic makes things a lot easier.

1 ols food_exp const income
2 scalar avg_food_20 = $coeff(const)+20*$coeff(income)
3 scalar vc = $vcv[1,1]+20ˆ2*$vcv[2,2]+2*20*$vcv[2,1]
4 scalar se = sqrt(vc)
5 scalar tval = ($coeff(const)+20*$coeff(income)-250)/se
6 scalar p = pvalue(t,$df,tval)
7 scalar crit = critical(t,$df,.025)
8

9 t_interval(avg_food_20,se,$df,.95)
10 printf "\nHa: Average weekly Foodexp|Income=2000 > 250 \n \
11 Average Expenditure = %3.2f, Standard Error = %.3f \n \
12 t = %.2f, critical value = %.2f \n \
13 alpha = 0.05, p-value = %.3f\n", avg_food_20, se, tval, crit, p

In the first line, the model is estimated. In line 2 average food expenditure when income is equal
to $2000 is computed (income is measured in $100). In line 3 the accessor $vcv is used. In
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it is the variance-covariance from the previously estimated model. (The square brackets contain
the row and column location of the desired element. That is, the estimated variance of b1 is the
element located in the first row and first column, hence $vcv[1,1]. The covariance between b1
and b2 can be found either in the first row, second column or the second row, first column. So,
$vcv[1,2]=$vcv[2,1]. The script also produces the p-value associated with a 5% one sided
test.

The lower and upper 95% confidence intervals are computed in line 9 using the t_interval
function that we defined earlier. Lines 10-13 generate the output for printing to the screen using
the printf function.

The 0.95 confidence interval centered at 287.61 is (258.91, 316.31)

Ha: Average weekly Foodexp|Income=2000 > 250
Average Expenditure = 287.61, Standard Error = 14.178
t = 2.65, critical value = 2.02
alpha = 0.05, p-value = 0.006

The 95% confidence interval for the average is ($258.91, $316.31). You can see that the manual
calculations and those from the hansl script are the same. The p-value is less than 0.05 and we
would reject H0 in favor of the alternative in this case. The average food expenditure for a family
earning $2000/week exceeds $250.

3.7 Monte Carlo Simulations

3.7.1 Fixed Regressors

Appendix C3.3 of POE5

This simulation uses the experimental design from section 2.8.3. Hence, the same values of the
regressors are used in each of the 10000 samples drawn. Several scalars are computed to measure
the properties of the confidence intervals and tests. The scalars p1 and p2 take the value 1 when
the compound statement in parentheses is true. That means, for instance, p1=1 if 100 falls within
the computed interval. The print p1 statement at the end of the loop (with a --progressive
option) averages the values of p1 over the 10000 replications. So, it produces the proportion of
times that 100 lies within the computed interval. The scalar p2 does the same for the slope.

The other scalars, p3, p4, p5, and p6 compute statistics associated with tests of hypotheses.
The Ha: for the intercept and slope are β1 > 100 and β2 > 10, respectively. If α = 0.05 then these
proportions should be close to 0.05 when Ho is true.

The scalars p5 and p6 measure the rejection of false hypotheses. Thus, p5 measures the
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number of rejections of the hypothesis when β2 = 9 and p6 measures the number of rejections of
the hypothesis when β2 = 8. This is related to the statistical power of the one-sided test and larger
rejection proportions are better than smaller ones.

1 # Appendix 3.C
2 # Monte Carlo to measure coverage probabilities of confidence intervals
3 # and test size and power
4 nulldata 40
5 # Generate X
6 series x = (index>20) ? 20 : 10
7

8 # Generate systematic portion of model
9 series ys = 100 + 10*x

10

11 loop 10000 --progressive --quiet
12 series y = ys + randgen(z,0,50)
13 ols y const x
14 # 2.024 is the .025 critical value from the t(38) distribution
15 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)
16 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)
17 scalar c2L = $coeff(x) - critical(t,$df,.025)*$stderr(x)
18 scalar c2R = $coeff(x) + critical(t,$df,.025)*$stderr(x)
19

20 # Compute the coverage probabilities of the Confidence Intervals
21 scalar p1 = (100>c1L && 100<c1R)
22 scalar p2 = (10>c2L && 10<c2R)
23 scalar p3 = (($coeff(const)-100)/$stderr(const))>critical(t,$df,.05)
24 scalar p4 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
25 scalar p5 = (($coeff(x)-9)/$stderr(x))>critical(t,$df,.05)
26 scalar p6 = (($coeff(x)-8)/$stderr(x))>critical(t,$df,.05)
27 print p1 p2 p3 p4 p5 p6
28 endloop

The result from this script is shown below:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 99.6975 25.4357 24.7987 2.85096
x 10.0176 1.61134 1.56841 0.180311

Statistics for 10000 repetitions
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mean std. dev
p1 0.948800 0.220405
p2 0.947300 0.223434
p3 0.0502000 0.218357
p4 0.0552000 0.228370
p5 0.157500 0.364272
p6 0.345700 0.475596

The averages of p1 and p2 are expected to be close to 0.95, and they are. For instance for p2,
9473 of 10000 confidence intervals contained β2 = 10. For p4 the true hypothesis Ho: β2 = 10 was
rejected in favor of β2 > 10 in 5.52% of the samples (552 out of 10000).

When the null is false, as in Ho: β2 = 9 vs β2 > 9, then when β2 = 10 as in the experiment,
rejection is warranted. The mean of p5 measures the proportion of times the correct decision
(rejection of Ho:) is made. In this case, for a 5% test, we rejected Ho: 1575/10000 times. The
rejection rate increased to 3457/10000 when Ho: β2 = 8.

3.7.2 Random Regressors

Appendix C3.4 of POE5

This simulation uses the same experimental design as used in section 2.8.4. Hence, new values
of the regressors are generated at each of the 10000 samples. As in the preceding section scalars are
computed to measure the properties of the confidence intervals and tests. The scalars p1 and p2
take the value 1 when the compound statement in parentheses is true. That means, for instance,
p1=1 if 100 falls within the computed interval. The print p1 statement at the end of the loop
(with a --progressive option) averages the values of p1 over the 10000 replications. So, it
produces the proportion of samples that 100 lies within the computed interval. The scalar p2 does
the same for the slope.

The other scalars, p3, p4, p5, and p6 compute statistics associated with tests of hypotheses.
The Ha for the intercept and slope are β1 > 100 and β2 > 10, respectively. If α = 0.05 then these
proportions should be close to 0.05 when Ho is true.

The scalars p5 and p6 measure the rejection of false hypotheses. Thus, p5 measures the
number of rejections of the hypothesis when β2 = 9 and p6 measures the number of rejections of
the hypothesis when β2 = 8. This is related to the statistical power of the one-sided test and larger
rejection proportions are better than smaller ones.

1 # Appendix 3.C
2 # Monte Carlo to measure coverage probabilities of confidence intervals
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3 # and test size and power
4 nulldata 40
5 loop 10000 --progressive --quiet
6 series x = randgen(z,15,1.6)
7 series y = 100+10*x + randgen(z,0,50)
8 ols y const x
9 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)

10 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)
11 scalar c2L = $coeff(x) - critical(t,$df,.025)*$stderr(x)
12 scalar c2R = $coeff(x) + critical(t,$df,.025)*$stderr(x)
13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar p1 = (100>c1L && 100<c1R)
16 scalar p2 = (10>c2L && 10<c2R)
17 scalar p3 = (($coeff(const)-100)/$stderr(const))>critical(t,$df,.05)
18 scalar p4 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
19 scalar p5 = (($coeff(x)-9)/$stderr(x))>critical(t,$df,.05)
20 scalar p6 = (($coeff(x)-8)/$stderr(x))>critical(t,$df,.05)
21 print p1 p2 p3 p4 p5 p6
22 endloop

The result from this script is shown below:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const 100.708 78.1931 76.6330 12.6580
x 9.95236 5.17435 5.08156 0.839727

Statistics for 10000 repetitions

mean std. dev
p1 0.947300 0.223434
p2 0.948000 0.222027
p3 0.0533000 0.224631
p4 0.0479000 0.213555
p5 0.0693000 0.253964
p6 0.102200 0.302911

Again, the averages of p1 and p2 are close to 0.95. For instance for p2, 9480 of 10000 confidence
intervals contained β2 = 10. For p4 the true hypothesis Ho: β2 = 10 was rejected in favor of
β2 > 10 in 4.79% of the samples (479 out of 10000).
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When the null is false, as in Ho: β2 = 9 vs β2 > 9, then when β2 = 10 as in the experiment,
rejection is warranted. The mean of p5 measures the proportion of times the correct decision
(rejection of Ho:) is made. In this case, for a 5% test, we rejected Ho: 693/10000 times. The
rejection rate increased to 1022/10000 when Ho: β2 = 8. The size of the test was not affected by
the presence of random regressors, but the power was diminished considerably.

3.8 Script

1 set echo off
2 set messages off
3 # Example 3.1
4 open "@workdir\data\food.gdt"
5 ols food_exp const income
6 scalar lb = $coeff(income) - 2.024 * $stderr(income)
7 scalar ub = $coeff(income) + 2.024 * $stderr(income)
8 print lb ub
9

10 #Using the critical function to get critical values
11 scalar lb = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
12 scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
13 print lb ub
14

15 function void t\_interval(scalar b, scalar se, scalar df, scalar p)
16 scalar alpha = (1-p)
17 scalar lb = b - critical(t,df,alpha/2)*se
18 scalar ub = b + critical(t,df,alpha/2)*se
19 printf "\nThe %.2f confidence interval centered at %.2f is"\
20 "(%.2f,\%.2f)\n", g, b, lb, ub
21 end function
22

23 ols food_exp const income
24 t_interval($coeff(income),$stderr(income),$df,.95)
25

26 open "@workdir\data\food.gdt"
27 ols food_exp const income
28 scalar tratio1 = ($coeff(income) - 0)/ $stderr(income)
29

30 # Example 3.2
31 #One sided test (Ha: b2 > zero)
32 scalar c2 = critical(t,$df,.05)
33 scalar p2 = pvalue(t,$df,tratio1)
34 printf "\nHa: b2>0 \n t = %.2f, critical value = %.2f \n \
35 alpha = 0.05, p-value = %.3f\n", tratio1, c2, p2
36

37 # Example 3.3
38 #One sided test (Ha: b2>5.5)
39 scalar tratio2 = ($coeff(income) - 5.5)/ $stderr(income)
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40 scalar c2 = critical(t,$df,.01)
41 scalar p2 = pvalue(t,$df,tratio2)
42 printf "\nHa: b2>5.5 \n t = %.2f, critical value = %.2f \n \
43 alpha = 0.01, p-value = %.3f\n", tratio2, c2, p2
44

45 # Example 3.4
46 #One sided test (Ha: b2<15)
47 scalar tratio3 = ($coeff(income) - 15)/ $stderr(income)
48 scalar c3 = -1*critical(t,$df,.05)
49 scalar p3 = pvalue(t,$df,abs(tratio3))
50 printf "\nHa: b2<15 \n t = %.2f, critical value = %.2f \n \
51 alpha = 0.05, p-value = %.3f\n", tratio3, c3, p3
52

53 # Example 3.5
54 #Two sided test (Ha: b2 not equal 7.5)
55 scalar tratio4 = ($coeff(income) - 7.5)/ $stderr(income)
56 scalar c4 = critical(t,$df,.025)
57 scalar p4 = 2*pvalue(t,$df,tratio4)
58 printf "\nHa: b2 not equal 7.5 \n t = %.2f, critical value = %.2f \n \
59 alpha = 0.05, p-value = %.3f\n", tratio4, c4, p4
60

61 #Confidence interval
62 t_interval($coeff(income),$stderr(income),$df,.95)
63

64 # Example 3.6
65 #Two sided test (Ha: b2 not equal zero)
66 scalar tratio5 = ($coeff(income) - 0)/ $stderr(income)
67 scalar c5 = critical(t,$df,.025)
68 scalar p5 = 2*pvalue(t,$df,tratio5)
69 printf "\nHa: b2 not equal 0 \n t = %.2f, critical value = %.2f \n \
70 alpha = 0.05, p-value = %.3f\n", tratio5, c5, p5
71

72 # Example 3.7
73 #Linear Combinations of coefficients
74 open "@workdir\data\food.gdt"
75 ols food_exp const income --vcv
76

77 scalar vc = $vcv[1,1]+20ˆ2*$vcv[2,2]+2*20*$vcv[2,1]
78 scalar se = sqrt(vc)
79 scalar tval = ($coeff(const)+20*$coeff(income)-250)/se
80 scalar p = pvalue(t,$df,tval)
81 scalar crit = critical(t,$df,.025)
82 scalar avg_food_20 = $coeff(const)+20*$coeff(income)
83

84 t_interval(avg_food_20,se,$df,.95)
85 printf "\nHa: Average weekly Foodexp|Income=2000 > 250 \n \
86 Average Expenditure = %3.2f, Standard Error = %.3f \n \
87 t = %.2f, critical value = %.2f \n \
88 alpha = 0.05, p-value = %.3f\n", avg_food_20, se, tval, crit, p
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And for the repeated sampling exercise, the script is:

1 # Table 3.1
2 # repeated sampling exercise, the script is:
3 open "@workdir\data\table2_2.gdt"
4 list ylist = y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
5 loop foreach i ylist --progressive --quiet
6 ols ylist.$i const x
7 scalar b1 = $coeff(const)
8 scalar b2 = $coeff(x)
9 scalar s1 = $stderr(const)

10 scalar s2 = $stderr(x)
11

12 # 2.024 is the .025 critical value from the t(38) distribution
13 scalar b1_lb = b1 - critical(t,$df,.025)*s1
14 scalar b1_ub = b1 + critical(t,$df,.025)*s1
15 scalar b2_lb = b2 - critical(t,$df,.025)*s2
16 scalar b2_ub = b2 + critical(t,$df,.025)*s2
17

18 scalar sigma2 = $sigmaˆ2
19 store coeff.gdt b1 b2 s1 s2 b1_lb b1_ub b2_lb b2_ub sigma2
20 endloop
21

22 open @workdir\coeff.gdt
23 print b1_lb b1_ub b2_lb b2_ub --byobs

Monte Carlo to measure coverage probabilities of confidence intervals in section 3.4.

1 set echo off
2 open "@gretldir\data\poe\food.gdt"
3 set seed 3213798
4 loop 100 --progressive --quiet
5 series u = normal(0,88)
6 series y = 80 + 10*income + u
7 ols y const income
8 # 2.024 is the .025 critical value from the t(38) distribution
9 scalar c1L = $coeff(const) - critical(t,$df,.025)*$stderr(const)

10 scalar c1R = $coeff(const) + critical(t,$df,.025)*$stderr(const)
11 scalar c2L = $coeff(income) - critical(t,$df,.025)*$stderr(income)
12 scalar c2R = $coeff(income) + critical(t,$df,.025)*$stderr(income)
13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar p1 = (80>c1L && 80<c1R)
16 scalar p2 = (10>c2L && 10<c2R)
17

18 print p1 p2
19 store @workdir\cicoeff.gdt c1L c1R c2L c2R
20 endloop
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Chapter 4

Prediction, Goodness-of-Fit, and
Modeling Issues

Several extensions of the simple linear regression model are considered in this chapter. First,
conditional predictions are generated using computations stored in memory after gretl estimates a
model. Then, a commonly used measure of the quality of the linear fit provided by the regression
is discussed. We then take a brief look at facilities within gretl for producing professional looking
output to be used in reports and research.

Choosing a suitable functional form for a linear regression is important. Several choices are
explored in this chapter. These include polynomial, linear-log, log-linear, and log-log specifications.
We test residuals for normality. Normality of the model’s errors is a useful property in that, when
it exists, it improves the performance of least squares, tests and confidence intervals when sample
sizes are small (finite).

Measures of the influence each observation has on your results are developed as well. The
chapter ends with a couple of sections about conducting simulations and bootstrapping.

4.1 Prediction in the Food Expenditure Model

Example 4.1 in POE5

Generating predicted values of food expenditure for a person with a given income is very simple
in gretl. After estimating the model with least squares, you can use the genr or series to store
predicted values for all the observations or use scalar to save a computed prediction at a specific
point. In the example, a household having incomeo = $2000 of weekly income is predicted to spend
approximately $287.61 on food. Recalling that income is measured in hundreds of dollars in the
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data, the gretl commands to compute this from the console are:

1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3 scalar yhat0 = $coeff(const) + $coeff(income)*20

This yields ̂food exp0 = 287.609. We could have used genr rather than scalar (or nothing at
all before yhat0) and the correct result would be computed. However, specifying the result as a
scalar makes it clear to someone else reading the program that you intend this to compute a
single number, not a series.

Obtaining the 95% prediction interval is slightly harder in that there are no internal commands
in gretl that will do this. The information needed is readily available, however. The formula is:

v̂ar(f) = σ̂2 +
σ̂2

T
+ (incomeo − income)2v̂ar(b2) (4.1)

In section 2.4 we estimated σ̂2 = 8013.29 and v̂ar(b2) = 4.3818. The mean value of income is found
by highlighting the variable income in the main gretl window and the selecting View>Summary
Statistics from the pull-down menu. This yields income = 19.6047.1 The t38 5% critical value is
2.0244 and the computation2

v̂ar(f) = 8013.2941 +
8013.2941

40
+ (20− 19.6047)2 ∗ 4.3818 = 8214.31 (4.2)

Then, the confidence interval for the prediction is:

̂food exp0 ± tcse(f) = 287.6069± 2.0244
√

8214.31 = [104.132, 471.086] (4.3)

The complete script to produce the computed results in gretl is:

1 ols food_exp const income
2 scalar yhat0 = $coeff(const) + $coeff(income)*20
3 scalar f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)ˆ2
4 t_interval(yhat0,sqrt(f),$df,0.95))

This produces:

The 0.95 confidence interval centered at 287.609 is (104.132, 471.085)
1Your result may vary a little depending on how many digits are carried out to the right of the decimal.
2You can compute this easily using the gretl console by typing in: scalar f = 8013.2941 +

(8013.2941/40) + 4.3818*(20-19.6047)**2
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Example 4.1 revisited, using accessors

You may be wondering if accessors can be used to populate the inputs required for the com-
putation of the forecast variance. For instance, the sum of squared errors from the least squares
regression can be accessed using $ess. The degrees of freedom and number of observations are
saved as $df and $nobs, respectively. Also, you can use an internal gretl function to compute
income, mean(income), and the critical function discussed in the preceding chapter to get
the desired critical value. Hence, the prediction interval can be automated and made more precise
by using the following script.

1 ols food_exp const income
2 scalar yhat0=$coeff(const)+20*$coeff(income)
3 scalar sig2 = $ess/$df
4 scalar f = sig2 + sig2/$nobs + ((20-mean(income))ˆ2)*($stderr(income)ˆ2)
5 t_interval(yhat0,sqrt(f),$df,0.95))

This produces the same result as when some of the inputs used in the computation were hard
coded:

The 0.95 confidence interval centered at 287.609 is (104.132, 471.085)

4.2 Coefficient of Determination

Example 4.2 in POE5

Some use regression analysis to “explain” variation in a dependent variable as a function of the
independent variable(s). A summary statistic used for this purpose is the coefficient of determina-
tion, also known as R2.

There are a number of ways to obtain R2 in gretl. The simplest is to read it directly from
gretl’s regression output. This is shown in Figure 4.3. After a regression, Gretl stores its R2

computation in memory, which can be recalled using the accessor $rsq.

The most difficult way, is to compute it manually using the analysis of variance (ANOVA)
table. The ANOVA table can be produced after a regression by choosing Analysis>ANOVA
from the model window’s pull-down menu as shown in Figure 4.1. Or, one can simply use the
--anova option to ols to produce the table from the console of as part of a script.

ols income const income --anova
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The result appears in Figure 4.2.

Figure 4.1: After estimating the regression, select Analysis>ANOVA from the model window’s
pull-down menu.

Analysis of Variance:

Sum of squares df Mean square

Regression 190627 1 190627
Residual 304505 38 8013.29
Total 495132 39 12695.7

Rˆ2 = 190627 / 495132 = 0.385002
F(1, 38) = 190627 / 8013.29 = 23.7888 [p-value 1.95e-005]

Figure 4.2: The ANOVA table

In the ANOVA table featured in Figure 4.2 the SSR, SSE, and SST can be found. Gretl also
does the R2 computation for you as shown at the bottom of the output. If you want to verify
gretl’s computation, then

SST = SSR + SSE = 190627 + 304505 = 495132 (4.4)

and
SSR

SST
= 1− SSE

SST
=

190627

495132
= .385 (4.5)

Different authors refer to regression sum of squares, residual sum of squares and total sum of squares
by different acronyms. So, it pays to be careful when computing R2 manually. POE5 refers to the
regression sum of squares as SSR and the residual sum of squares as SSE (sum of squared errors).

Finally, you can think of R2 is as the squared correlation between your observations on your
dependent variable, food exp, and the predicted values based on your estimated model, ̂food exp. A
gretl script to compute this version of the statistic is is found below in section 4.7.3.
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Figure 4.3: In addition to some other summary statistics, Gretl computes the unadjusted R2 from
the linear regression.

To use the GUI you can follow the steps listed here. Estimate the model (equation 2.1) using

least squares and add the predicted values from the estimated model, ̂food exp, to your data set.
Then use the gretl correlation matrix to obtain the correlation between food exp and ̂food exp.

Adding the fitted values to the data set from the pull-down menu in the model window is
illustrated in Figure 4.4 below. Highlight the variables food_exp, income, and yhat1 by holding

Figure 4.4: Using the pull-down menu in the Model window to add fitted values to your data set.

the control key down and mouse-clicking on each variable in the main gretl window as seen in Figure
4.5 below. Then, View>Correlation Matrix will produce all the pairwise correlations between
each variable chosen. These are arranged in a matrix as shown in Figure 4.6. Notice that the
correlation between food exp and income is the same as that between food exp and ̂food exp (i.e.,
0.6205). As shown in your text, this is no coincidence in the simple linear regression model. Also,
squaring this number equals R2 from your regression, 0.62052 = .385.

You can generate pairwise correlations from the console using

c1 = corr(food_exp,$yhat)
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Again, it is not strictly necessary to use scalar or genr before c1. Gretl correectly identifies
the variable type as a scalar and one can safely omit the scalar declaration command. In longer
scripts, however, it’s good practice to declare variable types in gretl so that error messages are
thrown when the result doesn’t match what you expect. This won’t be discussed any further in
the remainder of this manual where we will always identify new computations by their expected
variable types.

4.3 Reporting Results

Example 4.3 in POE5

Gretl includes facilities to aid in the production of good looking output. For instance, results
from the models window can be copied and saved in several formats, including RTF(MS Word) and
LATEX.

LATEX, pronounced “Lay-tek”, is a typesetting program used by mathematicians and scientists to
produce professional looking technical documents. It is widely used by econometricians to prepare
manuscripts, reports, presentation slides and research papers. In fact, this book is produced using
LATEX.

Although LATEX is free and produces very professional looking documents, it is not widely used
by undergraduate and masters students because 1) most degree programs don’t require you to
write a lot of technical papers and 2) it’s a computer language which takes some time to learn its
intricacies and to appreciate its nuances. I’ve been using it for years and still scratch my head when
I try to put tables and Figures in the places I’d like them to be.

In any event, many of the output windows gretl provide the ability to copy, save, or print
properly formatted LATEX tables and equations. For users of LATEX, this makes generating regression

Figure 4.5: Hold the control key and click on food exp, income, and ̂food exp = yhat1 from the food
expenditure regression to select them.
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Figure 4.6: The correlation matrix for food exp, income, and ̂food exp = yhat2 is produced by
selecting View>Correlation matrix from the pull-down menu.

output in proper format a breeze. If you don’t already use LATEX, then this will not concern you.
On the other hand, if you already use it, or are looking for a reason to learn it, gretl can be very
handy in this respect.

In Figure 4.3 you will notice that on the far right-hand side of the menu bar is a pull-down
menu for LATEX. From here, you click LaTeX on the menu bar and a number of options are
revealed as shown in Figure 4.7. You can view, copy, or save the regression output in either tabular

Figure 4.7: Several options for defining the output of LATEX are available. Highlighted here, you
can either save an estimated model in equation or tabular form.

form or in equation form. You can choose to display standard errors or t-ratios in parentheses
below parameter estimates, and you can define the number of decimal places to be used of output.
Nice indeed. Examples of tabular and equation forms of output are found in Tables 4.1 and 4.2,
respectively.

Another useful trick allows one to change the number of digits shown in gretl model windows.
In a models window, right-click and a menu of options is revealed (Figure 4.8). At the end of the
list is Digits. Click on this and select the number of digits to display in the output. You can also
save, copy, or print in various formats.

Gnuplot (pronounced “new plot”) is widely used to produce professional publication quality
graphics. Gretl comes packaged with gnuplot and provides an interface that makes getting decent
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OLS, using observations 1–40
Dependent variable: food exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 23.78884 P-value(F ) 0.000019
Log-likelihood −235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan–Quinn 476.2389

Table 4.1: This is an example of LATEX output in tabular form.

̂food exp = 83.4160
(43.410)

+ 10.2096
(2.0933)

income

T = 40 R̄2 = 0.3688 F (1, 38) = 23.789 σ̂ = 89.517

(standard errors in parentheses)

Table 4.2: Example of LATEX output in equation form

looking graphs easy, certainly easier that doing them strictly in gnuplot. Some of this functionality
will be explored below.

4.4 Choosing a Functional Form

Example 4.4 in POE5

There is no reason to think that the relationship between food exp and income is linear. In fact,
it is likely to be nonlinear. A low wage earner might spend nearly all of an additional dollar on food
whereas a high income earner might spend very little. A linear model implies that rich and poor
spend the same amount of an additional dollar of income. As seen in Chapter 3, nonlinearities can
be modeled by transforming either the dependent or independent variable or both. This complicates
interpretation a bit, but some simple differential calculus can quickly sort things out.

Linear regression is considerably more flexible than its name implies. There are many relation-
ships in economics that are known to be nonlinear. The relationship between production inputs
and output is governed in the short-run by the law of diminishing returns, suggesting that a convex
curve is more appropriate. Fortunately, a simple transformation of the variables (x, y, or both)
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Figure 4.8: Right-click in the models window reveals this set of options.

yields a model that is linear in the parameters (but not necessarily in the variables).

The functional form you choose should be consistent with how the data are actually being
generated. If you choose a functional form that when properly parameterized cannot generate your
data, then your model is misspecified. The estimated model may, at best, not be useful and at
worst be downright misleading.

In gretl you are given some very useful commands for transforming variables. From the main
gretl window the Add pull-down menu gives you access to a number of transformations; selecting
one of these here will automatically add the transformed variable to your data set as well as its
description.

Figure 4.9 shows the available selections from this pull-down menu. In the upper part of the
panel two options appear in black, the others are greyed out because they are only available if

Figure 4.9: The Add pull-down menu is used to add new variables to gretl .
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the dataset structure has been defined as time series or panel observations. The available options
include being able to add the natural logarithm or the squared values of any highlighted variable
to the dataset.

The next to last option Define new variable can be selected to perform more complicated
transformations. This dialog uses the series command and which can use the large number
of built-in functions to transform variables. A few of the possibilities include taking a square
root (sqrt), sine (sin), cosine (cos), absolute value (abs), exponential (exp), minimum (min),
maximum (max), and so on. Later in the book, I’ll discuss changing the dataset’s structure to
enable time-series or panel transformations.

One can also create a matrix or scalar using the last option, Define matrix. This choice brings
up a useful dialog that allows you to build a matrix from a series, a formula, or numerically.

4.4.1 Linear-Log Specification

The linear-log specification of the food expenditure model uses the natural logarithm of income
as the independent variable:

food exp = β1 + β2 ln (income) + e (4.6)

Taking the logarithm of income and estimating the model

1 series l_income = ln(income)
2 ols food_exp const l_income

The logs command can be used to add the natural logs of several variables of selected variables
to the dataset. The logs function to create ln(income) is:

1 logs income

This command produces a new variable called l_income and adds it to the variables list.

Estimation of the model yields

̂food exp = −97.1864
(84.237)

+ 132.166
(28.805)

l income

n = 40 R̄2 = 0.3396 F (1, 38) = 21.053 σ̂ = 91.567

(standard errors in parentheses)
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In Figure 4.6 of POE5 the authors plot food exp and ̂food exp against income. A positive
(nonlinear) relationship between the two is expected since the the model was estimated using the
natural logarithm of income. To produce this plot, estimate the regression to open the models
window. Add the predicted values of from the regression to the dataset using Save>Fitted
values from the models window’s pull-down menu. Name the fitted value, yhat2 and click OK.

Return to the main window, use the mouse to highlight the three variables (food_exp, yhat2,
and income),3 then select View>Graph specified vars>X-Y scatter from the pull-down
menu.4 This opens the define graph dialog box. Choose yhat2 and food_exp as the Y-axis
variables and income as the X-axis variable and click OK. A graph appears that looks similar to
Figure 4.10

Figure 4.10: Graphing the linear-log model

A simpler approach is to open a console or a new script window and use the following commands:

1 ols food_exp const l_income
2 series yhat2 = $yhat
3 gnuplot yhat2 food_exp income

which adds a gnuplot command to plot the the two series against income. The first line estimates

3Click on each variable while holding down the CTRL key
4You can also right-click the mouse once the variables are selected to gain access to the scatter plot. If you choose

this method, gretl will prompt you to specify which of the selected variables is to be used for the X-axis.
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the regression. The predicted values are held in the accessor, $yhat, and are assigned to a new
variable called yhat2 using the series command. Then, call gnuplot with the predicted values,
yhat2, as the first variable and the actual values of food expenditure, food_exp, as the second.

When executed from the console, the graph summoned in line 3 is opened in a window on your
screen. However, when executing these commands using a script, the graph is written to a file
on your computer. To control where output is sent, use the --output= option in the gnuplot
command. The graph can be sent to the screen or saved in a file of a given name in the desired
format. You can also send the graph to a session by prefixing the command with a name and the
assignment operator <-. Examples of these choices are:

1 gnuplot yhat2 food_exp income --output=display # output to screen
2 gnuplot yhat2 food_exp income --output=graph.pdf # output to a pdf
3 g1 <- gnuplot yhat2 food_exp income # send graph to session

4.4.2 Residual Plots

Misspecifying the model’s functional form can lead to serious problems when making decisions
based on the results. There are a number of statistical tests one can use to diagnose specifica-
tion problems, but researchers often start by examining residual plots for evidence of any obvious
misspecification.

If the assumptions of the classical normal linear regression model hold (ensuring that least
squares is minimum variance unbiased) then residuals should look like those shown in Figure 4.11
below. If there is no apparent pattern, then chances are the assumptions required for the Gauss-
Markov theorem to hold may be satisfied and the least squares estimator will be efficient among
linear estimators and have the usual desirable properties.

Linear-Log Model

The plot in Figure 4.12 is of the least squares residuals from the linear-log food expenditure
model. These do not appear to be strictly random. Rather, they appear to be heteroskedastic,
which means that for some levels of income, food expenditure varies more than for others (more
variance for high incomes). The script to produce this is:

open "@workdir\data\food.gdt"
logs food_exp
ols food_exp const l_income
series uhat = $uhat
gnuplot uhat l_income --output=display
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Figure 4.11: Randomly distributed residuals

Least squares may be unbiased in this case, but it is not efficient. The validity of hypothesis tests
and intervals is affected and some care must be taken to ensure proper statistical inferences are
made. This is discussed at more length in Chapter 8.

Log-Linear Model

The next plot is of the least squares residuals from the log-linear food expenditure model
(Figure 4.13). These may be mildly heteroskedastic, less so than in the linear-log model. The
script to produce this is:

1 open "@workdir\data\food.gdt"
2 logs food_exp
3 ols l_food_exp const income
4 series uhat = $uhat
5 gnuplot uhat income --output=display

Notice that in line 4 the accessor $uhat has been used to store the residuals into a new variable.
Here they are assigned to the series ehat. Then, they can be plotted using gnuplot.

Now consider residuals of a misspecified model shown in Figure 4.14. The errors are supposed

92



Figure 4.12: Heteroskedastic residuals from the linear-log model of food expenditures.

to look like a random scatter around zero. There are clearly parabolic and the functional form of
the model is NOT correctly specified.

4.4.3 Testing for Normality

POE5 5 discusses the Jarque-Bera test for normality which is computed using the skewness and
kurtosis of the least squares residuals. To compute the Jarque-Bera statistic, you’ll first need to
estimate the model using least squares and save the residuals to the dataset.

From the gretl console

1 ols food_exp const income
2 series uhat1 = $uhat
3 summary uhat1

The first line is the regression. The next accesses the least squares redsiduals, $uhat, and places
them into a new series called uhat1.5 You could use the point-and-click method to add the residuals
to the data set. This is accomplished from the models window. Simply choose Save>Residuals

5You can’t use uhat instead of uhat1 because that name is reserved by gretl.
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Figure 4.13: After some editing, residuals from the log-linear food expenditure model.

from the model pull-down menu to add the estimated residuals to the dataset. The last line of the
script produces the summary statistics for the residuals and yields the output in Figure 4.15. One
thing to note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis is measured
relative to that of the normal distribution, which has kurtosis of three. Hence, the computation is

JB =
T

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(4.7)

JB =
40

6

(
−0.0972 +

−0.0112

4

)
= .063

Normally distributed random variables have no skewness nor excess kurtosis. The JB statistic is
zero in this case. It gets larger the higher the skewness and the greater the degree of excess kurtosis
displayed by the data. In section C.3 hansl is used to compute skewness and excess kurtosis and
could be used to compute your own JB test. Fortunately, there is no need to compute your own
because gretl will compute the Jarque-Bera test for you. After saving the residuals into $uhat1
issue the command

1 ols food_exp const income
2 series uhat1 = $uhat # save the residuals
3 normtest uhat1 --jbera # compute Jarque-Bera Test
4 normtest uhat1 --all # show all normality tests

This yields a value of Jarque-Bera test = 0.0633401, with p-value 0.968826, which is exactly what
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Figure 4.14: Correlated residuals from estimating a quadratic relationship using a line.

the manual calculation yields. Gretl performs other tests for the normality of residuals including
one by Doornik and Hansen (2008). Computationally, it is more complex than the Jarque-Bera
test. The Doornik-Hansen test has a χ2 distribution if the null hypothesis of normality is true. It
can be produced from normtest along with several others using the --all option. Output from
normtest --all is shown in Figure 4.16. Obviously, one of the advantages of using normtest
is that you can test for the normality of any series, not just residuals.

Another possibility is to use the modtest function after estimating a model using least squares.

1 ols food_exp const income
2 modtest --normality

The modtest command is a generic function that allows you to test a number of different hypothe-
ses regarding the specification of your model. This function operates on the residuals of the last
model estimated. Using it after a regression with the --normality option produces the following
output

Frequency distribution for uhat2, obs 1-40
number of bins = 7, mean = -2.45137e-014, sd = 89.517

interval midpt frequency rel. cum.
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Summary Statistics, using the observations 1 - 40
for the variable ’uhat1’ (40 valid observations)

Mean 0.00000
Median -6.3245
Minimum -223.03
Maximum 212.04
Standard deviation 88.362
C.V. 2.4147E+015
Skewness -0.097319
Ex. kurtosis -0.010966

Figure 4.15: The summary statistics for the least squares residuals.

Figure 4.16: Using normtest residual --all tests the variable residual for normality after running
a linear regression.

< -186.77 -223.03 1 2.50% 2.50%
-186.77 - -114.26 -150.51 3 7.50% 10.00% **
-114.26 - -41.747 -78.002 8 20.00% 30.00% *******
-41.747 - 30.765 -5.4907 14 35.00% 65.00% ************
30.765 - 103.28 67.021 8 20.00% 85.00% *******
103.28 - 175.79 139.53 5 12.50% 97.50% ****

>= 175.79 212.04 1 2.50% 100.00%

Test for null hypothesis of normal distribution:
Chi-square(2) = 0.694 with p-value 0.70684

The distribution of the residuals is collected and plotted in a basic graph and the results for the
DH test are given. If modtest is executed from GUI using Tests>Normality of residuals in
the model results window, a gnuplot histogram of the errors is generated with a normal density
overlaid. The results of the DH test are again printed on the graph as shown in Figure 4.17.
You can also reach this graph by highlighting the variable you wish to test in the main window,
right-clicking, and selecting frequency distribution from the pull-down menu. That opens the
frequency distribution dialog box that plots the series and has an option that performs the normality
test.
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Figure 4.17: From the models window, use Tests>Normality of residual from the pull-
down menu. This produces this histogram and reports the Doornik-Hansen test from modtest
--normality.

4.5 Influential Observations

Example 4.7 in POE5

There are a number of statistics used to help identify influential observations in the data. An
influential observation is one whose omission from the data has a large impact on the results. The
statistics considered include leverage, studentized residuals, sensitivity of a coefficient estimate to
omission of the tth observation (DFBETAs), and the sensitivity of predictions to the omission of
the tth observation (DFFITS).

Gretl includes a set of diagnostics that are available from either the GUI or as a hansl com-
mand. The gretl leverage command produces some, but not all of the measures considered here.
Consequently, we will be writing programs to compute the missing statistics.

To see what gretl can do easily, estimate a linear regression model and open its models window
(Figure 2.9). From the menu bar choose Analysis>Influential observations from the menu bar.
This produces two windows of output. The first window, leverage and influence, is shown in
Figure 4.18. It lists the estimated residual, leverage, influence, and DFFITS for each observation in
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the sample. Clicking on the plus sign on the menu bar enables you to save any of the last three to
the current dataset. A high leverage point is distant from x̄. It has the potential to be influential

Figure 4.18: From the models window, choose Analysis>Influential observations from the
menu bar to produce these statistics that can be added to your data.

if it is also distant from the regression line compared to similar points. An influential point exerts
a relatively large influence on the intercept and slope of the regression.

To be influential, an observation will generally have a large estimated residual and will also have
a high leverage. Thus, the first two columns contain these two components. The average value of
leverage is k/n. If a leverage statistic is significantly larger than this number, gretl places a star
* by it in the list.

Influence (see Exercise 2.26 in Davidson and MacKinnon (2004)) measures the change in the tth

residual when observation t is omitted from the model. If the residual changes by a large amount
when the observation is omitted then that is evidence that it is exerting a large influence on the
estimated slopes. The last column contains DFFits, which measures how much the predicted value
of the dependent variable changes when an observation is omitted. Below, we will discuss how each
of these is actually computed.

Missing from the possible statistics listed by gretl are the studentized residuals, DFBETAs,
and the delete one variance estimate that is used in the computation of these. In the next section,
some of the details on how these statistics can be computed are presented. Also, a short script is
given to produce each of these statistics.
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4.5.1 Leverage, Influence, and DFFits

In this section, we derive a handful of useful diagnostics for detecting the presence of influential
observations. The statistics we consider are based on a comparison of two regressions. One regres-
sion uses all of the observations and the other omits one observation. If the residual, prediction, or
slope changes substantially when an observation is excluded then we conclude that the observation
in question is influential.

Consider the following linear model.

yi = β1 + xiβ2 + ui (4.8)

When equation (4.8) is estimated using all observations, the least squares estimators are b1 and b2.
The estimated variance is σ̂2. When estimated using least squares with the tth observation omitted

from the sample the estimates are b
(t)
1 and b

(t)
2 and the estimated variance is σ̂2(t). We’ll refer to

σ̂2(t) as the delete-one variance. These must be obtained in order to compute some of the other
influence statistics of interest.

A trick that can be used to drop the tth observation is to create a variable that has a zero in
every observation except for the tth. We call this variable et.

Now the model can be written:

yi = β1 + xiβ2 + etα+ ui (4.9)

where i = 1, 2, · · · , n. Including this variable in the model and estimating the parameter by least

squares yields this produces b
(t)
1 and b

(t)
2 .

Useful measures of the influence the tth observation has on the estimation of the model’s pa-

rameters is b1− b(t)1 and b2− b(t)2 . Properly scaled by its standard deviation, this becomes the basis
of the DFBETA statistics.

There are a few other statistics that require the computation of these. The easiest way to do
this use matrix algebra. If that doesn’t thrill you, then feel free to skip this section.

4.5.2 The Hat and Residual Maker matrices

Linear regression using least squares is an exercise in geometry. Least squares finds the shortest
distance between the dependent variable and the space defined by the regressors. In Euclidean
geometry the shortest route is orthogonally from the point y to the space defined by x1, x2, · · · , xk.
Expressing the linear model in matrix form

y = Xβ + e (4.10)

where y is an n× 1 vector containing all n observations on the dependent variable, X is n× k and
each row contains a observation on each of the explanatory variables, the k×1 vector β contains the
intercept and slopes to be estimated, and e is n×1 containing the residuals. The rank(X) = k ≤ n.
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The least squares estimator is
b = (XTX)−1XT y.

Note,
Xb = ŷ = X((XTX)−1XT y = Hy

The matrix H is called the Hat matrix because it creates least squares predictions for any variable
that it multiples, in this case, y. H is the orthogonal projection onto the space defined by X.
Usually it is denoted Px and I’ll follow that convention going forward.

The residual maker creates the least squares residuals.

ê = y − ŷ = y −Xb = y − Pxy = (In − Px)y = Mxy

The diagonal elements of the Hat matrix, Px are hi, i = 1, 2, · · · , n. The hi is referred to
as leverage of observation i. It is 0 < hi < 1. The variance of the ith least squares residual,
êi = σ2(1− hi). This implies that the least squares residual is smaller than the actual variance of
ei. It also implies that the least squares residuals depend on i and are heteroskedastic.

The most straightforward way to compute the leverage measure in gretl is using these matrices.
Below is a simple function that produces these:

1 function series h_t (list xvars)
2 matrix X = { xvars }
3 matrix Px = X*inv(X’X)*X’
4 matrix h_t = diag(Px)
5 series hats = h_t
6 return hats
7 end function

This function is quite simple. It takes a list of variables as arguments. In line 2 these are
converted to a matrix, line 3 computes the hat matrix, line 4 takes the diagonal elements of Px,
line 5 puts those into a series and return sends the series out of the function when called.

To use the function, create a list for the independent variables and use:

list xlist = const income
series lev_t = h_t(xvars)

This puts a variable called lev_t into your dataset that contains the leverage statistics.
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Delete one variance computation

Another building block that must be computed is the delete-one variance, σ̂2(t). There are a
number of approaches one could take to compute these. I have chosen one that uses a few matrices
and that relies on internal gretl functions for the most part. Inevitably, some matrices are created
to facilitate variable collection and creation.

The function created to compute and collect the delete-one variances is:

1 function series delete_1_variance(series y, list xvars)
2 matrix sig = zeros($nobs,1)
3 loop i=1..$nobs
4 matrix e_t = zeros($nobs,1)
5 matrix e_t[i,1]=1
6 series et = e_t
7 ols y xvars et
8 matrix sig[i,1]=$sigmaˆ2
9 endloop

10 series sig_t = sig
11 return sig_t
12 end function

The function is called delete_1_variance and returns a series. It takes two arguments:
a series for the dependent variable and a list for the regression’s independent variables. In
line 2 a matrix of zeros is created that will hold the variances as they are computed within the
loop. It loops over the number of observations started in line 3. In line 4 another matrix of zeros
is created at each new iteration that becomes the variable that will be added to the model, i.e., et.
In the next line a 1 is placed in the ith row of the zero vector and then converted to a series in line
6. In line 7 a regression is estimated that augments the model with the created regressor that will
omit the ith observation. The accessor $sigma is used to compute the variance. The loop ends
and the matrix sig is converted to a series and returned.

To use the function, create a list for the independent variables and use:

list xlist = const income
series sig_t = delete_1_variance(food_exp, xlist)

This puts a variable called sig_t into your dataset that contains the delete-one variances.

These functions are used to compute studentized residuals and the DFFITS (See Table 4.3):
The ht are the diagonal elements of the hat matrix, σ̂(t) is the square root of the tth delete-one
variance, and êt is the tth least squares residual using the entire sample.
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Statistic Formula

Leverage ht=diag(Px)
Studentized Residual êstut = êt/(σ̂(t)

√
1− ht)

DFFITS êstut
√
ht/(1− ht)

Table 4.3: Influence Diagnostics

Once êt, ht, σ̂(t) are in the data, , êstut and DFFITS can be computed as series in turn. The
complete set of influence statistics are generated using:

1 list xvars = const income
2 ols food_exp xvars
3

4 series ehat = $uhat
5 series lev_t = h_t(xvars)
6 series sig_t = delete_1_variance(food_exp, xvars)
7 series stu_res = ehat/sqrt(sig_t*(1-lev_t))
8 series DFFits=stu_res*sqrt(lev_t/(1-lev_t))

and added to your dataset. The advantage of having these in the data is that they can be further
manipulated to identify minima, maxima, as plots, etc. Notice that these match the ones computed
using the leverage command shown in Figure 4.18 above.

4.5.3 DFBETA

The leverage, delete-one variance, and DFFITS computations are straightforward. The com-
putation of DFBETA is less so. This comes from the fact that there are several different ways to
express this measure of influence on the estimation of the parameters. In principle this is what you
want to estimate for each coefficient at each observation:

DFBETAj,t =
bj − b(t)j√
var(b

(t)
j )

One representation of this from POE5 is

DFBETAj,t =
bj − b(t)j

σ̂(t)/σ̂ × se(bj)

Stata use another calculation that uses the studentized residual and the outcomes of auxiliary
regressions:

DFBETAj,t =
êstut ûj,t/(1− ht)√∑n

t=1 û
2
j,t
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The statistic ûj is a least squares residual of xj regressed onto all of the other independent variables
in the model. So for instance, j = 2 and k = 4, the regression is

x2 = α1 + α3x3 + α4x4 + res.

Then û2t = α̂1 + α̂3x3t + α̂4x4t. The algebraic form is harder than the computation.

1 list x1 = const income
2 scalar k = nelem(x1)
3 matrix results = zeros(k,1)
4 loop i=1..k --quiet
5 list y1 = x1[1]
6 list y2 = x1[2:k]
7 ols y1 y2
8 series dfb$i=stu_res*$uhat/sqrt($ess*(1-lev_t))
9 list x1 = y2 y1

10 endloop

This script requires that you have the studentized residuals in the data as well as the leverages by
observation.6 The logic of the program deserves a defense (yes, it is ugly). The list of regressors
in the model is populated and the number of elements it contains counted using nelem(). A k×1
matrix of zeros is initialized before the loop starts in line 4. The loop iterates over each of the k
variables in the list. The variables in the list are divided into two sets. The first set, y1, contains
only the first variable from the list and the other set, y2, contains the remaining ones. The y1
variable is regressed onto the remaining ones contained in y2.

After the regression, use the accessors ($uhat) for the residuals, ûjt, and $ess for the sum of
their squares (

∑n
t=1 û

2
j,t). These are used to compute the series for dfb.

Finally, we rearrange the list by moving the first variable, y1, to the end of the list.

Iteration Dependent Independent

y1 y2
i=1 x1 x2 x3 x4

i=2 x2 x3 x4 x1

i=3 x3 x4 x1 x2

i=4 x4 x1 x2 x3

The loop increments, the first variable is now the second regressor and the first regressor has moved
to the end of the list. n the revised list will be the second variable in the original list and becomes
y1; y2 contains all of the others. Let’s just say it works. When the routine has finished you’ll
have two new variables in the data: dfb1 and dfb2. Some results for the DFBETA for income
are shown in Figure 4.19. Notice that for observations 38 and 39, the result matches those shown
in POE5 Example 4.7. This also matches the result from Stata 15.1.

6Putting all of this together in a gretl bundle would be a fine idea.
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Figure 4.19: Output from the DFBETA(income) in the food expenditure model.

4.6 Polynomial Models

Using polynomials to capture nonlinearity in regression is quite easy and often effective. Stu-
dents of economics are quite used to seeing U-shaped cost curves and S-Shaped production functions
and these shapes are simply expressed using quadratic and cubic polynomials, respectively. Since
the focus so far has been on simple regression, i.e., regression models with only one independent
variable, the discussion in POE5 is simplified to include only a single squared or cubed value of
the independent variable.

The general form of a quadratic equation y = a0 +a1x+a2x
2 includes a constant, the level of x

and its square. The latter two terms are multiplied times coefficients, a1 and a2 that determine the
actual shape of the parabola. A cubic equation adds a cubed term, y = a0 +a1x+a2x

2 +a3x
3. The

simple regressions considered in this section include only the constant, a0 and either the squared
term in a quadratic model or the cubed term in the cubic model.

The simple quadratic regression has already been considered. The regression and its slope are

y = β1 + β2x
2

dy/dx = 2β2x

From this you can see that the function’s slope depends on the parameter β as well as the value of
the variable x.

The cubic model and its slope are

y = β1 + β2x
3

dy/dx = 3β2x
2

Since x is squared in the slope, the algebraic sign of β2 determines whether the slope is positive or
negative. Both of these models are considered using examples below.
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4.6.1 Wheat Yield

Example 4.8 in POE5

Figure 4.23 contains a plot of the average wheat yield in Greenough Shire over time (in tonnes
per hectare–we’re in OZ!) using the data in wa wheat.gdt. The results from the example in section
4.4 of POE5 are easily produced in gretl. Start by loading the data and estimating the effect
of time, time on yield greenough using least squares. The following script loads the data file,
estimates the model using least squares, and generates a graph of the actual and fitted values of
yield (greenough) from the model.

1 open "@workdir\data\wa-wheat.gdt"
2 ols greenough const time
3 gnuplot greenough time --output=display

The resulting plot appears below in Figure 4.20. Right-clicking on the graph brings up a menu of

Figure 4.20: Plots wheat yield in Greenough Shire over time.

choices shown in Figure 4.21. Choose Edit and the plot controls dialog box appears as shown
in Figure 4.22. From the lines tab a few of the defaults; the legend for the series is changed to
Actual Yield and the line style was changed to line/points. The X-axis tab was used to change
the axis label to ‘Time.’ After a little editing, the new graph (Figure 4.23) looks even better.

The simple gnuplot command works well enough. Adding information from the console or a
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Figure 4.21: This fly-out menu is initiated by right-clicking on a gretl graph. To save it for further
manipulation, choose save to session as icon.

script is easy to do as well. I added a description and a label to be used in the graph using the
-d and -n switches for setinfo.7 The commands are

1 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
2 setinfo time -d "Time" -n "Time"
3 g1 <- gnuplot greenough time --fit=linear --output=display

The command in line 3 is the first use of the assignment feature that is can be used with some
gretl commands. The expression g1 <- gnuplot greenough time takes the graph produced
by gnuplot and places it into a session, which is discussed in section (1.3.3), as an icon labeled
g1. Once this is in your session, it can be displayed and edited in the usual way using gretl, or it
can be edited using gnuplot commands. It also enables the graphpg commands to be used in a
script or from the console.

Two options to gnuplot are used. The first option (--fit=linear) tells gnuplot to plot a
least squares regression line that is fitted using the data. This option also adds the the ability to
apply different types of fit from the graph controls (see Figure 4.22). The second option plots the
the output to the screen. Once the graph window is displayed, it can be added to a session as an
icon. A right-click on the icon in the session window allows you to edit the gnuplot commands
and to make professional looking publication quality graphics using gnuplot. The icons can be
dragged to the Graph page icon to combine several graphs onto a single page. This will be explored
further below.

To make the graph look like Figure 4.24 some further manipulation was done using the plot
controls.

7-d is an abbreviation of --description= and -n of --graph-name=.
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Figure 4.22: The graph dialog box can be used to change characteristics of your graphs. Use the
Main tab to give the graph a new name and colors; use the X- and Y-axes tabs to refine the behavior
of the axes and to provide better descriptions of the variables graphed. Note: the fitted line box
shown here only appears if you have used the --fit= option.

1 series t3=timeˆ3/1000000
2 ols greenough const t3
3 gnuplot greenough --with-lines --time-series

4.6.2 Combining graphs

As mentioned above, graphs (or plots) can be done from the session window or using a script.
To combine graphs from a session, save your graphs to a session as icons and then drag them to
the graph page icon. Opening this icon reveals the combined graph. The beauty of this method is
that each graph can be edited and saved before adding it to the graph page. This is a case where
the GUI is the preferred method of working in gretl. This is because manipulating graphs provides
immediate feedback and each one can be fine-tuned to suit your needs.

However, the graphpg commands can also be used. This is illustrated with the following
example. First, the setup. The wa wheat.gdt data are loaded and a new series, t3, is generated in
order to estimate a cubic polynomial model of wheat yield for Greenough. The rescaling of time
cubed merely changes the scale of the coefficient by a corresponding amount and has no effect on
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Figure 4.23: Plots wheat yield in Greenough Shire over time.

the shape or fit of the model. It is particularly useful for long timeseries since cubing large integers
may exceed your computer’s capacity to yield accurate results (i.e., numerical overflow). Then,
each of the series are relabeled using the setinfo command.

1 open "@workdir\data\wa_wheat.gdt"
2 series t3=timeˆ3/1000000
3

4 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
5 setinfo time -d "Time" -n "Time"
6 setinfo t3 -d "(Timeˆ3)/1,000,000" -n "(Timeˆ3)/1,000,000"

The first graph generated is simply the yield in Greenough against time. It is added to the
current session as g1 and the graphpg add command puts the graph into a graph page. The
residuals from the regression are save as a series called ehat and setinfo is again used to provide
a meaningful label.

1 ols greenough const time
2 g1 <- gnuplot greenough time --fit=linear --output=display
3 graphpg add
4

5 series ehat = $uhat
6 setinfo ehat -d "Residual, linear model" -n "Linear Residual"
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Figure 4.24: Plots wheat yield in Greenough Shire over time. The --fit=linear option is used
and the graph controls were employed to change colors and observation markers.

The next graph plots the residuals from this linear regression against time and adds that to the
session as g2. In the second line a title is added to the graph using a gnuplot command. The
syntax is fussy. gnuplot commands can be issued within a gretl script if they are syntactically
correct and if they are enclosed in braces { }. A gnuplot plot command ends with a semi-
colon. This graph contains two gnuplot commands; one adds a title and the other labels the
x-axis. Lines 7 and 8 both contain a continuation command, which means that lines 7-9 of the
script makeup a single gretl command. Lines 8 and 9 consist of two gnuplot commands, the
totality of which is enclosed in the braces.

The resulting graph is added to the graph page with the graphpg add command.

7 g2 <- gnuplot ehat time --output=display \
8 { set title "Plot of least squares residuals from linear model"; \
9 set xlabel ’Time’; }

10 graphpg add

Then, the Greenough yield against time is plotted again, but this time yield is fit using a cubic
function of time. This is put into the session as g3.
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11 g3 <- gnuplot greenough time --fit=cubic --output=display
12 graphpg add

Finally, a simple linear regression is estimated:

yieldt = β1 + β2t
3/1000000 + et

The residuals are saved, plotted against time, and added to the session as g4 and to the graph
page.

13 g4 <- gnuplot ehat_3 time --output=display \
14 { set title "Plot of least squares residuals from cubic model"; \
15 set xlabel ’Time’; }
16 graphpg add
17 graphpg show

The graphpg show command produces a pdf graph shown in Figure 4.25.

4.7 Log-Linear Models

4.7.1 Growth Model

Example 4.9 in POE5

Below you will find a script that reproduces the results from the growth model example in
section 4.5.1 of POE5. If yield grows at a constant rate of g, then yield at time t = 1 will be
yield1 = yield0(1 + g). For constant growth rates, repeated substitution produces

yieldt = yield0(1 + g)t (4.11)

Taking the natural log

ln(yieldt) = ln(yield0) + t ln(1 + g) = β1 + β2t (4.12)

add an error and you have a regression model. The parameter, β2 = ln(1 + g). This is an example
of a log-linear model where the independent variable is time. The slope coefficient in such a model
measures the approximate annual growth rate in the dependent variable.

1 open "@workdir\data\wa-wheat.gdt"
2 logs greenough
3 ols l_greenough const time
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This produces

̂l greenough = −0.343366
(0.058404)

+ 0.0178439
(0.0020751)

time

T = 48 R̄2 = 0.6082 F (1, 46) = 73.945 σ̂ = 0.19916

(standard errors in parentheses)

The estimated coefficient b2 = ln(1 + g) = 0.0178. This implies that the growth rate in wheat yield
is approximately 1.78% annually over the course of the sample.8

4.7.2 Wage Equation

Example 4.10 in POE5

Below you will find a script that reproduces the results from the wage equation example in
section 4.5.2 of POE5. In this example the log-linear model is used to measure the approximate
return to another year of education. The example uses a thousand observations from the CPS
monthly survey from 2008.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 ols l_wage const educ
4 t_interval($coeff(educ), $stderr(educ), $df, .95)

The regression results are: ̂l wage = 1.59684
(0.070180)

+ 0.0987534
(0.0048422)

educ

T = 1200 R̄2 = 0.2571 F (1, 1198) = 415.93 σ̂ = 0.48470

(standard errors in parentheses)

This suggests that another year of schooling is expected to increase average wage by 9.88%.

The output from our t_interval command is:

The 0.95 confidence interval centered at 0.099 is (0.0893, 0.1083)

which suggests that an additional year of education is worth between 8.9% and 10.8% wage increases
annually. Sign me up!

8For small g, ln(1 + g) ∼= g.
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4.7.3 Generalized R-square

A generalized version of the goodness-of-fit statistic R2 can be obtained by taking the squared
correlation between the actual values of the dependent variable and those predicted by the regres-
sion. The following script reproduces the results from section 4.5.2 of POE5.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 ols l_wage const educ
4 series y = exp($yhat)
5 scalar corr1 = corr(y, wage)
6 scalar Rsquare = corr1ˆ2
7 printf "\nThe correlation is %.3f and the Generalized R-square = %.3f\n", corr1, Rsquare

This yields an estimated correlation of 0.465 and a squared correlation of 0.216.

4.7.4 Predictions in the Log-Linear Model

Example 4.11 in POE5

In this example, you use the regression to make predictions about the log wage and the level
of the wage for a person having 12 years of schooling. The naive prediction of wage merely takes
the antilog of the predicted ln(wage). This can be improved upon by using properties of log-
normal random variables. It can be shown that if ln(w) ∼ N(µ, σ2) then E(w) = eµ+σ2/2 and
var(w) = e2µ+σ2

(eσ
2 − 1).

That means that the corrected prediction is ŷc = exp (b1 + b2x+ σ̂2/2) = e(b1+b2x)eσ̂
2/2. The

script to generate these is given below.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 ols l_wage const educ
4 scalar l_wage_12 = $coeff(const)+$coeff(educ)*12
5 scalar nat_pred = exp(l_wage_12)
6 scalar corrected_pred = nat_pred*exp($sigmaˆ2/2)
7 print l_wage_12 nat_pred corrected_pred

The results from the script are

l_wage_12 = 2.7818762
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nat_pred = 16.149292
corrected_pred = 18.162196

That means that for a worker with 12 years of schooling the predicted wage is $16.15/hour using the
natural predictor and $18.16/hour using the corrected one. In large samples we would expect the
corrected predictor to be a bit better. Among the 1200 individuals in the sample, 307 of them have
12 years of schooling. Among those, the average wage is $17.31. Hence the corrected prediction
overshoots by about 85 cents/hour. Still, it is closer than the uncorrected figure.

To get the average wage for those with 12 years of schooling, we can restrict the sample using
the script below:

smpl educ==12 --restrict
summary wage --simple
smpl full

The syntax is relatively straightforward. The smpl command instructs gretl that something is
being done to the sample. The second statement educ=12 is a condition that gretl looks for
within the sample. The --restrict option tells gretl what to do for those observations that
satisfy the condition. The summary wage statement produces

Summary statistics, using the observations 72 - 378
for the variable ’wage’ (307 valid observations)

Mean 17.305
Minimum 4.1700
Maximum 45.650
Standard deviation 7.9198
Missing obs. 0

which shows that the mean for the 307 observations is almost $17.30. The last line smpl full
restores the full sample.

4.8 Prediction Intervals

In this section, a function that computes in-sample prediction standard errors is proposed. It is
based on the formulation from section 4.1 above. This formulation is generalized based on results
found in Davidson and MacKinnon (2004, pp 103-104). They find the error variance for a given
observation, xt to be

Var(yt − xTt b) = σ2
0 + σ2

0xt(X
TX)−1xTt
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The entire set for a given sample is

diag(σ2
0 + σ2

0X(XTX)−1XT )

where the tth row of the n× k matrix X is xt.

The function to compute this is:

1 function series in_sample_fcast_error(series y, list xvars)
2 ols y xvars
3 scalar sig = $sigmaˆ2
4 matrix X = { xvars }
5 matrix f_e = sig*I($nobs)+sig*X*inv(X’X)*X’
6 series se = sqrt(diag(f_e))
7 return se
8 end function

The function, called in_sample_fcast_error, returns a series to the dataset and takes
two arguments. The first is a series that will serve as the dependent variable in a regression.
The second is a list of regressors.

The first step is to estimate the model and save the estimated variance (sig). Then, the
variable list is converted to a matrix and in line 5 the forecast error variance is computed. The
next line takes the square root of the diagonal elements as a series and the return sends these
out of the program.

To use the program, simply execute:

1 list xvars = const educ
2 series se_p = in_sample_fcast_error(l_wage, xvars)

4.8.1 The fcast Command

Gretl contains a forecast command, fcast, that returns the predictions and standard errors to
a series. After the regression simply issue the following commands:

1 ols l_wage xvars
2 fcast f --static
3 series pred = $fcast
4 series se = $fcse
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Since the last model estimated is a single equation, an optional variable name can be added as an
argument to 1) suppress printing forecasts to the screen and to 2) place them in the dataset under
the given name. In this case, a variable f is created to hold the forecasts in the dataset.

Example 4.11 using fcast

Another way to add the forecasts to the data is through the the $fcast accessor. It holds
the forecasts, which in this case is simply $yhat in a static linear regression model. The other
accessor, $fcse, returns the forecast standard error and reproduces the results from our program
exactly. To print predictions, standard errors, and 95% prediction intervals to the screen, omit the
optional variable name, f.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 list xvars = const educ
4 ols l_wage xvars
5 fcast f --static
6 series pred = $fcast
7 series se = $fcse
8

9 series corrected = exp(f)*exp($sigmaˆ2/2)
10 series nat = exp(f)
11 dataset sortby educ
12 g6 <- gnuplot wage nat lb_p ub_p educ --output=display

After a little editing the To find the predicted values, standard errors, and 95% bounds for only
those with 12 years of schooling use the smpl command to restrict the sample and use the simple
summary statistics.

1 smpl educ==12 --restrict
2 summary educ wage lb_p nat ub_p se_p se --simple
3 smpl full

This produces:

Mean Median S.D. Min Max
educ 12.00 12.00 0.0000 12.00 12.00
wage 17.31 15.00 7.920 4.170 45.65
lb_p 6.236 6.236 0.0000 6.236 6.236
nat 16.15 16.15 0.0000 16.15 16.15
ub_p 41.82 41.82 0.0000 41.82 41.82
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se_p 0.4850 0.4850 0.0000 0.4850 0.4850
se 0.4850 0.4850 0.0000 0.4850 0.4850

For individuals with 12 years of schooling, the average wage is $17.31/hour and the median is only
$15. The natural prediction lies within the interval ($6.24, $16.15) with 95% frequency. That is
not very informative, is it?

Another reasonable way to generate a complete confidence interval for every year of schooling
between 1 and 21 years, you can use the following script. The result looks very similar to Figure
4.15 in POE5.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 ols l_wage const educ
4 scalar sig2 = $ess/$df
5 matrix sem = zeros(21,5)
6 loop for i = 1..21 --quiet
7 scalar yh = ($coeff(const) + $coeff(educ)*i)
8 scalar f = sig2 + sig2/$nobs + ((i-mean(educ))ˆ2)*($stderr(educ)ˆ2)
9 sem[i,1]=i

10 sem[i,2]= yh
11 sem[i,3]=sqrt(f)
12 sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(f))
13 sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))
14 endloop
15 print sem
16

17 nulldata 21 --preserve
18 series ed = sem[,1]
19 series wage = exp(sem[,2])
20 series lb = sem[,4]
21 series ub = sem[,5]
22

23 g7 <- gnuplot wage lb ub ed --output=display --with-lines

Although there are probably more elegant ways to do this, the script works. It will take a bit
of explanation, however. In lines 1-4 the dataset is opened, log wage is created, the regression is
estimated, and the overall variance of the model is saved to a scalar, sig2.

In line 5 a matrix of zeros is created that will be used to store results created in a loop. The
loop starts at i=1 and iterates, by one, to 21. These are the possible years of schooling that
individuals have in our dataset. For each number of years the forecast and its forecast variance are
estimated (lines 7 and 8). Notice that these will have different values at each iteration of the loop
thanks to their dependence on the index, i. In line 9 the matrix sem gets the contents of i placed
on the ith row of the first column. The next line puts the prediction in the second column. The
forecast standard error is put into column three and in the next two columns the lower and upper
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boundaries for the interval. The loop ends at i=21, at which point the matrix sem is full; then it
is printed.

Although you can plot the columns of matrices, it is easier to put the columns into a dataset
and use regular gretl commands to make plots. First, create an empty dataset using nulldata
21. The 21 puts 21 observations into the dataset. The --preserve option is required because
without it the contents of the matrix sem would be emptied–definitely not what we want. In the
next lines the series command is used to put each column of the matrix into a data series. Once
this is done, the variables will show up in the data window and you can graph them as usual. Using
the --with-lines option prints out lines rather than dots to mark the observation. The graph
(with a little editing) is found in Figure 4.27.

4.9 Log-Log Model

Example 4.13 in POE5

Finally, a log-log model is estimated. This functional form is often used to estimate demand
equations as it implies a constant price elasticity for the commodity in question. This example uses
the newbroiler.gdt dataset which is adapted from Epple and McCallum (2006). The variable Q is
per capita consumption of chicken, in pounds and P is the real price in dollars. The sample is from
1950-2001. The estimated log-log model is

l̂ q = 3.71694
(0.022359)

− 1.12136
(0.048756)

l p

T = 52 R̄2 = 0.9119 F (1, 50) = 528.96 σ̂ = 0.11799

(standard errors in parentheses)

The coefficient on l p is 1.121 which means that a 1% increase in the real price of chicken will
decrease quantity demanded by 1.121%.

Once again, the predictor of quantity needs to be corrected since the model is estimated in

logarithms. Q̂c = exp (b1 + b2 ln(x) + σ̂2/2) = e
̂ln(Q)eσ̂

2/2. The R2 statistic can be computed as the
squared correlation between Q and Q̂. The script for this exercise is:

1 open "@workdir\data\newbroiler.gdt"
2 logs q p
3 ols l_q const l_p
4 series yht=$yhat
5 series pred = exp(yht)
6 series corrected_pred=pred*exp($sigmaˆ2/2)
7 scalar r2= corr(corrected_pred,q)ˆ2
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8 gnuplot corrected_pred q p
9

10 setobs 1 1 --cross-section
11 dataset sortby p
12 gnuplot corrected_pred q p --output=display

The results are

? scalar r2= corr(corrected_pred,q)ˆ2
Generated scalar r2 = 0.881776

and the corresponding graph is found in Figure 4.28.

Notice that the series structure was changed from time series to a cross-section. Ordinarily, this
is a terrible idea, but necessary in order to sort the data using the dataset sortby command.
Once data are declared to be time series gretl will wisely not sort them. Sorting by the variable
on the X-axis, however tends to make line graphs much more useful. Note, the default graph type
in gretl uses dots, making the sort unnecessary.

The plot was edited to add titles, legends, and to change the markers and colors. The figure
looks good. The nonlinear relationship between weight and price is quite evident and the fit is
reasonable good.

4.10 Script

1 set echo off
2 set messages off
3 # function computes prediction standard errors
4 function series in_sample_fcast_error(series y, list xvars)
5 ols y xvars
6 scalar sig = $sigmaˆ2
7 matrix X = { xvars }
8 matrix f_e = sig*I($nobs)+sig*X*inv(X’X)*X’
9 series se = sqrt(diag(f_e))

10 return se
11 end function
12

13 # function estimates confidence intervals based on the t-distribution
14 function void t_interval(scalar b, scalar se, scalar df, scalar p)
15 scalar alpha = (1-p)
16 scalar lb = b - critical(t,df,alpha/2)*se
17 scalar ub = b + critical(t,df,alpha/2)*se
18 printf "\nThe %.2f confidence interval centered at %.3f is\
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19 (%.4f, %.4f)\n", p, b, lb, ub
20 end function
21

22 # function to compute diagonals of hat matrix
23 function series h_t (list xvars)
24 matrix X = { xvars }
25 matrix Px = X*inv(X’X)*X’
26 matrix h_t = diag(Px)
27 series hats = h_t
28 return hats
29 end function
30

31 # delete-one variance function
32 function series delete_1_variance(series y, list xvars)
33 matrix sig = zeros($nobs,1)
34 loop for i=1..$nobs --quiet
35 matrix e_t = zeros($nobs,1)
36 matrix e_t[i,1]=1
37 series et = e_t
38 ols y xvars et --quiet
39 matrix sig[i,1]=$sigmaˆ2
40 endloop
41 series sig_t = sig
42 return sig_t
43 end function
44

45 # estimate model by LS and predict food_exp
46 open "@workdir\data\food.gdt"
47 ols food_exp const income
48 scalar yhat0 = $coeff(const) + $coeff(income)*20
49

50 # prediction interval
51 ols food_exp const income
52 scalar yhat0 = $coeff(const) + $coeff(income)*20
53 scalar f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047)ˆ2
54 t_interval(yhat0,sqrt(f),$df,0.95)
55

56 # prediction interval using accessors
57 ols food_exp const income
58 scalar yhat0=$coeff(const)+20*$coeff(income)
59 scalar sig2 = $ess/$df
60 scalar f = sig2 + sig2/$nobs + ((20-mean(income))ˆ2)*($stderr(income)ˆ2)
61 t_interval(yhat0,sqrt(f),$df,0.95)
62

63 # correlations
64 ols food_exp const income --anova
65 c1 = corr(food_exp,$yhat)
66

67 # log-linear model
68 logs food_exp income
69 ols l_food_exp const income
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70 series yhat2 = $yhat
71 gnuplot yhat2 food_exp income --output=display
72

73 # linear-log model
74 logs food_exp income
75 ols food_exp const l_income
76 series yhat2 = $yhat
77 gnuplot yhat2 food_exp income --output=display
78

79 # normality tests
80 open "@workdir\data\food.gdt"
81 ols food_exp const income
82 series uhat2 = $uhat
83 summary uhat2
84 normtest uhat2 --jbera
85 normtest uhat2 --all
86 modtest --normality
87

88 # Example 4.7 Influential Observations
89 open "@workdir\data\food.gdt"
90 genr index
91 set echo off
92 list xvars = const income
93 ols food_exp xvars
94 leverage --save
95

96 series uhat = $uhat
97 series lev_t = h_t(xvars)
98 series sig_t = delete_1_variance(food_exp, xvars)
99 series stu_res = uhat/sqrt(sig_t*(1-lev_t))

100 series DFFits=stu_res*sqrt(lev_t/(1-lev_t))
101

102 list x1 = const income
103 scalar k = nelem(x1)
104 matrix results = zeros(k,1)
105 loop i=1..k --quiet
106 list y1 = x1[1]
107 list y2 = x1[2:k]
108 ols y1 y2
109 series dfb$i=stu_res*$uhat/sqrt($ess*(1-lev_t))
110 list x1 = y2 y1
111 endloop
112

113 print sig_t lev_t stu_res DFFits dfb2 --byobs
114

115 # Example 4.8
116 # polynomial
117 open "@workdir\data\wa_wheat.gdt"
118 series t3=timeˆ3/1000000
119

120 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
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121 setinfo time -d "Time" -n "Time"
122 setinfo t3 -d "(Timeˆ3)/1,000,000" -n "(Timeˆ3)/1,000,000"
123

124 ols greenough const time
125 gnuplot greenough time --output=display
126

127 ols greenough const time
128 g1 <- gnuplot greenough time --fit=linear --output=display
129 graphpg add
130 series ehat = $uhat
131 setinfo ehat -d "Residual, linear model" -n "Linear Residual"
132

133 g2 <- gnuplot ehat time --output=display \
134 { set title "Plot of least squares residuals from linear model"; \
135 set xlabel ’Time’; }
136 graphpg add
137

138 g3 <- gnuplot greenough time --fit=cubic --output=display
139 graphpg add
140

141 ols greenough const t3
142 series ehat_3 = $uhat
143 setinfo ehat_3 -d "Residual, cubic model" -n "Cubic Residual"
144

145 g4 <- gnuplot ehat_3 time --output=display \
146 { set title "Plot of least squares residuals from cubic model"; \
147 set xlabel ’Time’; }
148 graphpg add
149 graphpg show
150

151 # Example 4.9
152 open "@workdir\data\wa_wheat.gdt"
153 logs greenough
154 ols l_greenough const time
155

156 # Example 4.10
157 # log-linear model
158 open "@workdir\data\cps5_small.gdt"
159 logs wage
160 ols l_wage const educ
161 t_interval($coeff(educ), $stderr(educ), $df, .95)
162

163 open "@workdir\data\cps5_small.gdt"
164 logs wage
165 ols l_wage const educ
166 series l_yhat = $yhat
167 series y = exp(l_yhat)
168 scalar corr1 = corr(y, wage)
169 scalar Rsquare = corr1ˆ2
170 printf "\nThe correlation is %.3f and the Generalized\
171 R-square = %.3f\n", corr1, Rsquare
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172

173 # Example 4.11
174 # simple prediction in log-linear model
175 open "@workdir\data\cps5_small.gdt"
176 logs wage
177 list xvars = const educ
178 ols l_wage xvars
179

180 scalar l_wage_12 = $coeff(const)+$coeff(educ)*12
181 scalar nat_pred = exp(l_wage_12)
182 scalar corrected_pred = nat_pred*exp($sigmaˆ2/2)
183 print l_wage_12 nat_pred corrected_pred
184

185 # Predictions using fcast
186 open "@workdir\data\cps5_small.gdt"
187 logs wage
188 list xvars = const educ
189 ols l_wage xvars
190 fcast f --static
191 series pred = $fcast
192 series se = $fcse
193

194 series corrected = exp(f)*exp($sigmaˆ2/2)
195 series nat = exp(f)
196

197 series se_p = in_sample_fcast_error(l_wage, xvars)
198 series lb_p = exp(f - critical(t,$df,0.025)*se)
199 series ub_p = exp(f + critical(t,$df,0.025)*se)
200

201 dataset sortby educ
202 g6 <- gnuplot wage nat lb_p ub_p educ --output=display
203

204 smpl educ==12 --restrict
205 summary wage --simple
206 summary educ wage lb_p nat ub_p se_p se --simple
207 smpl full
208

209 # prediction intervals using a loop
210 open "@workdir\data\cps5_small.gdt"
211 logs wage
212 ols l_wage const educ
213 scalar sig2 = $ess/$df
214 matrix sem = zeros(21,5)
215 loop for i = 1..21 --quiet
216 scalar yh = ($coeff(const) + $coeff(educ)*i)
217 scalar f = sig2 + sig2/$nobs + ((i-mean(educ))ˆ2)*($stderr(educ)ˆ2)
218 sem[i,1]=i
219 sem[i,2]= yh
220 sem[i,3]=sqrt(f)
221 sem[i,4]=exp(yh-critical(t,$df,0.025)*sqrt(f))
222 sem[i,5]=exp(yh+critical(t,$df,.025)*sqrt(f))
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223 endloop
224 print sem
225

226 nulldata 21 --preserve
227 series ed=sem[,1]
228 series wage=exp(sem[,2])
229 series lb=sem[,4]
230 series ub=sem[,5]
231

232 g7 <- gnuplot wage lb ub ed --output=display --with-lines
233

234 # Example 4.13
235 # corrected predictions in log-linear model
236 open "@workdir\data\newbroiler.gdt"
237 logs q p
238 ols l_q const l_p
239 series yht=$yhat
240 series pred = exp(yht)
241 series corrected_pred=pred*exp($sigmaˆ2/2)
242 scalar r2= corr(corrected_pred,q)ˆ2
243

244 setobs 1 1 --cross-section
245 dataset sortby p
246 gnuplot corrected_pred q p --output=display
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Figure 4.25: Plots of linear and cubic models of wheat yield in Greenough Shire over time.
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Figure 4.26: This is a plot generated using statistics from fcast.

Figure 4.27: This is a plot generated using a loop to estimate forecast standard errors.
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Figure 4.28: This is a plot generated from a log-log model of chicken demand.
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Chapter 5

Multiple Regression Model

The multiple regression model is an extension of the simple model discussed in Chapter 2. The
main difference is that the multiple linear regression model contains more than one explanatory
variable. This changes the interpretation of the coefficients slightly and imposes an additional
requirement upon the data. The general form of the model is shown in equation (5.1) below.

yi = β1 + β2xi2 + · · ·+ βkxik + ei i = 1, 2, . . . , n (5.1)

where yi is your dependent variable, xij is the ith observation on the jth independent variable,
j = 2, 3, . . . , k, ei is random error, and β1, β2, . . . , βk are the parameters you want to estimate. Just
as in the simple linear regression model, each error, ei|xij , has an average value of zero for each
value of the j independent variables; each has the same variance, σ2, and are uncorrelated with
any of the other errors.

To estimate each of the βs, none of the independent variables can be an exact linear combination
of the others. This serves the same purpose as the requirement that the independent variable of the
simple linear regression take on at least two different values in the sample. The error assumptions
can be summarized as ei|xi2, xi3, . . . xik iid (0, σ2). Recall from Chapter 2 that expression iid
means that the errors are statistically independent from one another (and therefore uncorrelated)
and each has the same probability distribution. Taking a random sample from a single population
accomplishes this.

The parameters β2, β3, . . . , βk are referred to as slopes and each slope measures the effect of a
1 unit change in xij on the average value of yi, holding all other variables in the equation constant.
The conditional interpretation of the coefficient is important to remember when using multiple
linear regression.

The first example used in this chapter is a sales model for Big Andy’s Burger Barn. The model
includes two explanatory variables and a constant.

salesi = β1 + β2pricei + β3adverti + ei i = 1, 2, . . . , n (5.2)
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where salesi is monthly sales in a given city and is measured in $1,000 increments, pricei is price
of a hamburger measured in dollars, and adverti is the advertising expenditure also measured in
thousands of dollars.

5.1 Preliminary Chores

Example 5.1 in POE5

Before estimating the model, relabel the data and find the summary statistics. Data labels are
used in much of the output produced by gretl. If the data you are working with are not labeled
satisfactorily, then this output will have to be further manipulated when assembling it for inclusion
for reports or papers.

1 setinfo sales --description="Monthly sales revenue ($1000)" \
2 --graph-name="Monthly Sales ($1000)"
3 setinfo price --description="Price in dollars" --graph-name="Price"
4 setinfo advert --description="Monthly Advertising Expenditure ($1000)" \
5 --graph-name="Monthly Advertising ($1000)"
6 # print the new labels to the screen
7 labels

The output from the labels command is:

Listing labels for variables:
sales: Monthly sales revenue ($1000)
price: Price in dollars
advert: Monthly Advertising Expenditure ($1000)

Editing variable attributes is also available via Variables>Edit attributes from the main menu or
as a right-click pop-up from the main gretl window. Simply highlight the desired series, right-click,
and choose Edit attributes from the fly-out menu.

Next, find the summary statistics using:

summary sales price advert

which produces:
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Mean Median S.D. Min Max
sales 77.37 76.50 6.489 62.40 91.20
price 5.687 5.690 0.5184 4.830 6.490
advert 1.844 1.800 0.8317 0.5000 3.100

Average sales, because they are measured in $1000, is $77,370. Average price is $5.69 and average
advertising expenditure is $1844. It is always wise to keep track of the actual units that you are
working with. This is critical to understanding the economic meaning of the coefficient magnitudes
from the regression.

5.2 Linear Regression

The parameters of the model are estimated by least squares using the pull-down menus and
dialog boxes (GUI) or gretl’s handy scripting language (hansl). Although this was discussed in
some depth in Chapter 2, both of these will be demonstrated again below.

There are two ways to open the dialog box. As in Chapter 2, one can use the pull-down menu.
Select Model>Ordinary Least Squares from the main gretl window as shown in Figure 2.6.

This brings up the dialog box shown in Figure 2.7. As in Chapter 2 you must put the dependent
variable, in this case sales, and the independent variables (const, price, and advert) in the
appropriate boxes. Click OK and the model is estimated. The results appear in Table 5.1 below.

There is also a shortcut on the toolbar that opens the specify model (Figure 2.7 dialog box.
Recall that the toolbar is located at the bottom of the main gretl window, There you will find a
button labeled β̂. Clicking on this button opens the OLS specify model dialog.

Figure 5.1: The OLS shortcut button on the toolbar.
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Model 1: OLS, using observations 1–75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value

const 118.914 6.35164 18.7217 0.0000
price −7.90785 1.09599 −7.2152 0.0000
advert 1.86258 0.683195 2.7263 0.0080

Mean dependent var 77.37467 S.D. dependent var 6.488537
Sum squared resid 1718.943 S.E. of regression 4.886124
R2 0.448258 Adjusted R2 0.432932
F (2, 72) 29.24786 P-value(F ) 5.04e–10
Log-likelihood −223.8695 Akaike criterion 453.7390
Schwarz criterion 460.6915 Hannan–Quinn 456.5151

Table 5.1: The regression results from Big Andy’s Burger Barn

5.3 Big Andy’s Burger Barn

Example 5.2 in POE5

Hansl is used to estimate the model for Big Andy’s. The following two lines are typed into a
script file, which is executed by clicking your mouse on the “gear” button of the script window.

1 open "@workdir\data\andy.gdt"
2 m1 <- ols sales const price advert

This assumes that the gretl data set andy.gdt has been installed in a data folder1 located in the
gretl working directory. The model is estimated and the result is saved to your current session as
m1. m1 contains the output of a models window, giving you full access to the GUI after running a
script. From the session window, you can click on m1 to revisit the results.

The results were copied using LATEX>Copy>Tabular from the models window, pasted into
the source code for this chapter, and appear in Table 5.1. This illustrates what these look like in
use. Keep in mind, once pasted into a text file for LATEX compilation, you can edit the format
and contents as you wish. Omit statistics, change titles, combine with other results. The output
appears in Table 5.1 and match those in POE5.

1Depending on your OS, a folder may be referred to as a directory.
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Example 5.3 in POE5

Next, a prediction of sales for meals priced at $5.50 and advertising expenditures of $1200 is
made. Again, the accessors for the estimated regression coefficients are used to create the scalar
prediction.

1 scalar S_hat = $coeff(const) + $coeff(price)*5.5 + $coeff(advert)*1.2
2 printf "\nPredicted sales when price=\
3 $5.50 and advertising=1200 is $%.3f\n", S_hat

This produces:

Predicted sales when price=$5.50 and advertising=$1200 is $77655.51

5.4 Goodness-of-Fit

Example 5.4 in POE5

Other important output is included in Table 5.1. For instance, you’ll find the sum of squared
errors (SSE ) which gretl refers to as “Sum squared resid.” In this model SSE = 1718.94. To obtain
the estimated variance, σ̂2, divide SSE by the available degrees of freedom to obtain

σ̂2 =
SSE

n− k
=

1718.94

75− 3
= 23.874 (5.3)

The square root of this number is referred to by gretl as the “S.E. of regression” and is reported
to be 4.88612. Gretl also reports R2 in this table. If you want to compute your own versions of
these statistics using the total sum of squares from the model, use Analysis>ANOVA from the
model’s pull-down menu to produce the ANOVA table. Refer to section 4.2 for details.

To compute R2 from the standard gretl output recall that

σ̂y =

√
SST

n− 1
(5.4)

The statistic σ̂y is printed by gretl and referred to as “S.D. of dependent variable” which is reported
to be 6.48854. A little algebra reveals

SST = (n− 1)σ̂2
y = 74 ∗ 6.48854 = 3115.485 (5.5)

Then,

R2 = 1− SSE

SST
= 1− 1718.94

3115.485
= 0.448 (5.6)
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Otherwise, the goodness-of-fit statistics printed in the gretl regression output or the ANOVA table
are perfectly acceptable.

Gretl also reports the adjusted R2 in the standard regression output. The adjusted R2 imposes
a small penalty to the usual R2 when a variable is added to the model. Adding a variable with
any correlation to y always reduces SSE and increases the size of the usual R2. With the adjusted
version, the improvement in fit may be outweighed by the penalty imposed from adding variables.
Thus, adjusted R2 may become smaller as variables are added. The formula is:

R̄2 = 1− SSE/(n− k)

SST/(n− 1)
(5.7)

This sometimes referred to as “R-bar squared,” (i.e., R̄2 ) although in gretl it is called “adjusted
R-squared.” For Big Andy’s Burger Barn the adjusted R-squared is equal to 0.4329.

5.4.1 Variances and Covariances of Least Squares

Example 5.5 in POE5

The variances and covariances of the least squares estimator give us information about how
precise our knowledge of the parameters is from estimating them. Smaller standard errors mean
that our knowledge is more precise.

The precision of least squares (LS) depends on a number of factors.

1. Smaller variation in the dependent variable about its mean, σ2, makes LS more precise.

2. Larger samples, n, improve LS precision.

3. More variation in the independent variables about their respective means makes LS more
precise.

4. Less collinearity among the independent variables also improves LS precision.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept, each slope, and covariance
between each pair. The variances of the least squares estimator fall on the diagonal of this square
matrix and the covariances in the off-diagonal elements.

cov(b1, b2, b3) =

 var(b1) cov(b1, b2) cov(b1, b3)
cov(b1, b2) var(b2) cov(b2, b3)
cov(b1, b3) cov(b2, b3) var(b2)

 (5.8)

All of these have to be estimated from the data, and generally depends on your estimate of the
overall variance of the model, σ̂2 and correlations among the independent variables. To print an

132



estimate of the variance-covariance matrix following a regression use the --vcv option with the
regression in gretl :

1 ols sales const price advert --vcv

The result is

Coefficient covariance matrix

const price advert
40.343 −6.7951 −0.74842 const

1.2012 −0.01974 price
0.46676 advert

For instance, the estimated variance of b1–the intercept–is 40.343 and the estimated covariance
between the LS estimated slopes b2 and b3 is −0.01974.

A (estimated) standard error of a coefficient is the square root of its (estimated) variance,
ŝe(b2) =

√
v̂ar(b2). Assign the contents of the variance-covariance accessor to a matrix. Take the

square roots of the diagonal elements to obtain the estimated standard errors.

2 matrix covmat = $vcv
3 matrix se = sqrt(diag(covmat))
4 printf "Least squares standard errors:\n%.3f\n", se

These are printed:

Least Squares standard errors:
6.352
1.096
0.683

These match those found in the output table (Table 5.1) in-between the least squares estimates
and t-ratios.

5.4.2 Confidence Intervals
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Example 5.6 in POE5

Confidence intervals can be obtained using the scalar command in the same way as in Chapter
3. In this section we reuse our t_interval function. A 95% confidence interval for β2, the
coefficient of the price variable is generated:

1 ols sales const price advert --vcv
2 scalar bL = $coeff(price) - critical(t,$df,0.025) * $stderr(price)
3 scalar bU = $coeff(price) + critical(t,$df,0.025) * $stderr(price)
4 printf "\nThe lower = %.2f and upper = %.2f confidence limits\n", bL, bU

or using the function:

5 t_interval($coeff(price), $stderr(price), $df, 0.95)

The output produced by the t_interval function is:

The 0.95 confidence interval centered at -7.908 is (-10.0927, -5.7230)

Remember, you can also summon the 95% confidence intervals from the model window using the
pull-down menu by choosing Analysis>Confidence intervals for coefficients. The confidence
interval for β2 is shown below in Figure 5.2.

Figure 5.2: The confidence intervals produced from the GUI through the model window. In the
model window, choose Analysis>Confidence intervals for coefficients
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Example 5.7 in POE5

You can also estimate intervals for linear combinations of parameters as we did in Chapter
4. Suppose Big Andy wants to increase sales next week by lowering price and spending more on
advertising. If he increases advertising by $800 and lowers price by 40 cents the change in expected
sales would be

λ = E(sales1)− E(sales0) = −0.4β2 + 0.8β3 (5.9)

The estimate of λ is obtained by replacing the unknown parameters with the least squares estimates.
The standard error of this linear combination can be calculated in the same fashion as discussed in
section 3.6. A 90% interval is constructed using the script:

6 scalar chg = -0.4*$coeff(price)+0.8*$coeff(advert)
7 scalar se_chg=sqrt((-0.4)ˆ2*$vcv[2,2]+(0.8ˆ2)*$vcv[3,3]+\
8 2*(-0.4)*(0.8)*$vcv[2,3])
9 t_interval(chg,se_chg,$df,.95)

This produces the expected result:

The 95% confidence interval centered at 4.653 is (3.2386, 6.0678)

5.4.3 t-Tests, Critical Values, and p-values

In section 3.5 the GUI was used to obtain test statistics, critical values and p-values. However,
it is often much easier to use the the genr or scalar commands from either the console or as a
script to compute these. In this section, the scripts will be used to test various hypotheses about
the sales model for Big Andy.

Significance Tests

Examples 5.8 and 5.9

Multiple regression models include several independent variables because one believes that each
as an independent effect on the mean of the dependent variable. To confirm this belief it is
customary to perform tests of individual parameter significance. If the parameter is zero, then the
variable does not belong in the model. In gretl the t-ratio associated with the null hypothesis that
βj = 0 against the alternative βj 6= 0 is printed in the regression results along side the associated
p-value. For the sake of completeness, these can be computed manually using a script as found
below. For t-ratios and one- and two-sided hypothesis tests the appropriate commands are:
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1 ols sales const price advert
2 scalar t1 = ($coeff(price)-0)/$stderr(price)
3 scalar t2 = ($coeff(advert)-0)/$stderr(advert)
4 printf "\n The t-ratio for H0: b2=0 is = %.3f.\n\
5 The t-ratio for H0: b3=0 is = %.3f.\n", t1, t2

The results shown in Figure 5.3 As you can see, the automatic results and the manually generated

Figure 5.3: Notice that the usual model estimation results produced by gretl prints the t-ratios
needed for parameter significance by default. These match the manual computation.

ones match perfectly.

One of the advantages of doing t-tests manually is that you can test hypotheses other than
parameter significance. You can test hypothesis that the parameter is different from values other
than zero, test a one-sided hypotheses, or test a hypotheses involving a linear combinations of
parameters.

Rather than comparing the statistic to a critical value one could compare the p-value to the
desired level of significance. If p > α then do not reject H0. If p < α, reject H0. Gretl includes
a pvalue function that computes p-values from various probability distributions. The syntax is
very similar to that of critical. The difference is that instead of using α/2 as the third argument,
use the computed statistic.

pvalue computes the area to the right of stat in the specified distribution (z for Gaussian,
t for Student’s t, X for chi-square, F for F, G for gamma, B for binomial, P for Poisson, exp for
Exponential, W for Weibull). So, to compute a p-value for a t-statistic use:
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pvalue(t,$df,stat) # prints to the screen
scalar pval = pvalue(t,$df,stat) # saves Prob(stat>p) to scalar pval

The argument(s) in the middle is (are) the shape parameter(s). In our case it should be n − k,
which is the residual degrees of freedom from the Big Andy regression. Some distributions like
the FJ,n−k have two parameters. Refer to the gretl help for details on how to use pvalue in those
situations.

For the examples we have

1 scalar t2 = ($coeff(advert)-0)/$stderr(advert)
2 scalar t3 = ($coeff(advert)-1)/$stderr(advert)
3 pvalue t $df t1
4 pvalue t $df t3

which produces:

t(72): area to the right of -7.21524 =˜ 1
(to the left: 2.212e-010)
(two-tailed value = 4.424e-010; complement = 1)

t(72): area to the right of 1.26257 = 0.105408
(two-tailed value = 0.210817; complement = 0.789183)

You can see that the function computes and prints areas to the right, left and the two-tailed p-
values for the computed values of t2 and t3, respectively. Advertising is significantly different
from zero at the 5% level. It is not significantly different from 1 at 5%.

When used as a function, pvalue returns the area to the right of the statistic as a scalar.

1 scalar t3 = ($coeff(advert)-1)/$stderr(advert)
2 scalar pval=pvalue(t, $df, t3)

which produces:

print pval

p = 0.10540831
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One-tail Alternatives

Example 5.10 in POE5

If a decrease in price increases sales revenue then we can conclude that demand is elastic. So,
if β2 ≥ 0 demand is elastic and if β2 < 0 it is inelastic. To test H0: β2 ≥ 0 versus H1: β2 < 0, the
test statistic is the usual t-ratio.

1 ols sales const price advert
2 scalar t = ($coeff(price)-0)/$stderr(price)
3 scalar crit = -critical(t,$df,0.05)
4 scalar pval = 1-pvalue(t,$df,t)
5 printf "\n Ho: b2=0 vs Ha: b2<0 \n \
6 the t-ratio is = %.3f. \n \
7 the critical value = %.3f \n \
8 and the p-value = %.3f\n", t, crit, pval

The rejection region for this test lies to the left of −tc, which is the α level critical value from the
distribution of t. This is a perfect opportunity to use the pvalue function. The result is:

Ho: b2=0 vs Ha: b2<0
the t-ratio is = -7.215.
the critical value = -1.666
and the p-value = 0.000

You can see that the t-ratio −7.21524 lies to the left of the critical value −1.666. The p-value is
close to zero. That is less than 5% nominal level of the test and therefore we reject that β2 is
non-negative.

Example 5.11 in POE5

A test of whether a dollar of additional advertising will generate at least a dollar’s worth of
sales is expressed parametrically as H0: β3 ≤ 1 versus H1: β3 > 1. This requires a new t-ratio and
again we use the pvalue function to conduct the test.

1 ols sales const price advert
2 scalar t = ($coeff(advert)-1)/$stderr(advert)
3 scalar crit = critical(t,$df,0.05)
4 scalar pval = pvalue(t,$df,t)
5 printf "\n Ho: b3=1 vs Ha: b3>1 \n \
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6 the t-ratio is = %.3f \n \
7 the critical value = %.3f \n \
8 and the p-value = %.3f\n", t, crit, pval

The results are

Ho: b3=1 vs Ha: b3>1
the t-ratio is = 1.263
the critical value = 1.666
and the p-value = 0.105

The rejection region for this alternative hypothesis lies to the right of the computed t-ratio. That
implies that the p-value is 0.105. At 5% level of significance, this null hypothesis cannot be rejected.

Linear Combinations of Parameters

Example 5.12 in POE5

Big Andy’s advertiser claims that dropping the price by 20 cents will increase sales more than
spending an extra $500 on advertising. This can be translated into a parametric hypothesis that
can be tested using the sample. If the advertiser is correct then −0.2β2 > 0.5β3. The hypothesis
to be tested is:

H0:− 0.2β2 − 0.5β3 ≤ 0

H1:− 0.2β2 − 0.5β3 > 0

The test statistic is

t =
−0.2b2 − 0.5b3

se(−0.2b2 − 0.5b3)
∼ t72 (5.10)

provided the null hypothesis is true. The script is

1 ols sales const price advert --vcv
2 scalar chg = -0.2*$coeff(price)-0.5*$coeff(advert)
3 scalar se_chg=sqrt( \
4 (-0.2)ˆ2*$vcv[2,2]+((-0.5)ˆ2)*$vcv[3,3]\
5 +2*(-0.2)*(-0.5)*$vcv[2,3])
6

7 printf "\n Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0 \n \
8 the t-ratio is = %.3f \n \
9 the critical value = %.3f \n \

10 and the p-value = %.3f\n", \
11 chg/se_chg, critical(t,$df,0.05), pvalue(t,$df,t_ratio)
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which generates the needed information to perform the test. Notice that the computations for the
t-ratio, critical value and p-value were carried out within the printf statement.

Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0
the t-ratio is = 1.622
the critical value = 1.666
and the p-value = 0.055

The results matches the ones in POE5 5. The hypothesis is not rejected at the 5% level. We
conclude that the proposed changes will not increase sales.

An alternate way to obtain the variance of the linear combination is to use matrix algebra. The
main advantage of this is that it reduces the opportunity to make a coding error in the computation.
The linear combination of parameters,

−0.2b2 − 0.5b3 =
[
0 −0.2 −0.5

] b1b2
b3

 = dTb

where d and b are 3 × 1 vectors. As the least squares estimator b ∼ (β,Cov(b)). Estimating

Cov(b) with ̂Cov(b), the estimated Cov(dTb) is

dT ̂Cov(b)d

In gretl

1 ols sales const price advert
2 matrix covmat = $vcv
3 matrix d = { 0; -0.2; -0.5 }
4 matrix covest = d’*covmat*d
5 scalar se = sqrt(covest)
6 printf "\nThe estimated standard error of the\
7 linear combination is %.3f\n", se

This yields the same result as previously obtained:

The estimated standard error of the linear combination is 0.4010

The benefits of using this method increase exponentially as the number of coefficients in the linear
combination increases. It takes 3 lines of code no matter how many coefficients are used in the
linear combination. Just change coefficients in the vector d accordingly.
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5.5 Polynomials

One way to allow for nonlinear relationships between independent and dependent variables is
to introduce polynomials of the regressors into the model. In this example the marginal effect of
an additional dollar of advertising is expected to diminish as more advertising is used. The model
becomes:

salesi = β1 + β2pricei + β3adverti + β4advert2i + ei i = 1, 2, . . . , n (5.11)

To estimate the parameters of this model, one creates the new variable, advert2i , adds it to the
model, and uses least squares.

1 series a2 = advertˆ2
2 ols sales price advert a2

which produces

OLS, using observations 1–75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value

const 109.719 6.79905 16.1374 0.0000
price −7.64000 1.04594 −7.3044 0.0000
advert 12.1512 3.55616 3.4170 0.0011
a2 −2.76796 0.940624 −2.9427 0.0044

Mean dependent var 77.37467 S.D. dependent var 6.488537
Sum squared resid 1532.084 S.E. of regression 4.645283
R2 0.508235 Adjusted R2 0.487456
F (3, 71) 24.45932 P-value(F ) 5.60e–11
Log-likelihood −219.5540 Akaike criterion 447.1080
Schwarz criterion 456.3780 Hannan–Quinn 450.8094

The variable a2, which is created by squaring advert, is a simple example of what is sometimes
referred to as an interaction variable. The simplest way to think about an interaction variable
is that the magnitude of its effect on the dependent variable depends on another variable–the two
variables interact to determine the average value of the dependent variable. In this example, the
effect of advertising on average sales depends on the level of advertising itself.

Another way to square variables is to use the square command

1 square advert
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This creates a variable sq_advert and adds it to the variable list. Notice that gretl just adds
the sq_ prefix to the existing variable name. You can square multiple variables at a time by just
by adding them to the square command’s list.

1 square advert price

5.5.1 Marginal Effects

Example 5.14 in POE5

When variables interact, the marginal effect of one variable on the mean of another has to be
computed manually based on calculus. Taking the partial derivative of average sales with respect
to advertising yields produces the marginal effect on average sales of an increase in advertising;

∂E(sales)

∂advert
= β3 + 2β4advert (5.12)

The magnitude of the marginal effect depends on the parameters as well as on the level of adver-
tising. In the example marginal effect is evaluated at two points, advert=.5 and advert=2. The
code is:

1 series a2 = advertˆ2
2 ols sales price advert a2
3 scalar me1 = $coeff(advert)+2*(0.5)*$coeff(a2)
4 scalar me2 = $coeff(advert)+2*2*$coeff(a2)
5 printf "\n The marginal effect at \$500 (advert=.5) is %.3f\n\
6 and at \$2000 is %.3f\n", me1, me2

and the result is:

The marginal effect at $500 (advert=.5) is 9.383
and at $2000 (advert=2) is 1.079

5.5.2 Interaction in a Wage Equation

Example 5.15 in POE5

In this example experience and education are interacted. The idea is that the level of experience
affects the return to another year of schooling (or, another year of education affects the return to
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another year of experience). The model becomes:

wage = β1 + β2educ + β3exper + β4educ× exper + e

The marginal effects depend on levels of education and experience. These are measured for workers
having 8 and 16 years of schooling and for workers having 20 years experience.

∂E(wage|educ, exper)

∂exper
= β1 + β4educ

∂E(wage|educ, exper)

∂educ
= β1 + β4exper

This is estimated using the cps5 small.gdt data using the following script:

1 open "@workdir\data\cps5_small.gdt"
2 series educ_exper = educ*exper
3 ols wage const educ exper educ_exper
4

5 scalar me_8year = $coeff(exper)+$coeff(educ_exper)*8
6 scalar me_16year = $coeff(exper)+$coeff(educ_exper)*16
7 scalar me_20year = $coeff(exper)+$coeff(educ_exper)*20
8 scalar me_ed_20exper = $coeff(educ)+$coeff(educ_exper)*20
9

10 printf "\nMarginal effect of another year of schooling when:\n\
11 experience is 0 = %.3f\n\
12 experience is 20 = %.3f\n", $coeff(educ), me_ed_20exper
13 printf "\nMarginal effect of experience when:\n\
14 education is 8 = %.3f \n\
15 education is 16 = %.3f \n\
16 education is 20 = %.3f \n", me_8year, me_16year, me_20year

The results are:

Marginal effect of another year of schooling when:
experience is 0 = 2.656
experience is 20 = 2.601

Marginal effect of experience when:
education is 8 = 0.216
education is 16 = 0.194
education is 20 = 0.183

Example 5.16 in POE5

In this example a log-quadratic model is estimated and marginal effects computed. The model
becomes

ln(wage) = β1 + β2educ + β3exper + β4educ× exper + β5exper2 + e
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The marginal effects are:

∂E(ln(wage)|educ, exper)

∂exper
= β3 + β4educ + 2β5exper

∂E(ln(wage)|educ, exper)

∂educ
= β2 + β4exper

There are quite a few combination of 0 and 20 years of experience and 8 and 16 years of schooling
to consider. To facilitate this, I have written functions that allow me to consider these and other
combinations easily.

The function for the first marginal effect (the % change in avg wage from another year of
experience, given years of schooling) is:

1 function void me_1(list vars "all variables, including dep var first",
2 scalar ed "set years of schooling",
3 scalar expr "set years of experience")
4 ols vars --quiet
5 scalar me = $coeff(exper) + $coeff(educ_exper)*ed +\
6 2*$coeff(sq_exper)*expr
7 printf "\nMarginal effect of another year of experience:\n \
8 Education = %.3g years and Experience = %.3g years\n \
9 Marginal effect is %.3f percent \n", ed, expr, me*100

10 end function

The function saves a lot of typing since the equation for the marginal effect only depends on
two scalar inputs (educ, and exper). Hence the function will work for whatever combination
you choose to enter. It also economizes on the programming of the somewhat fussy to program
printf statement. The function returns nothing (void) and takes 3 inputs. The variables from the
regression, the desired number of years of education, and the desired years of experience. Including
the regression in the function is not a great idea since the marginal effect will change depends on
the presence of the education, experience, their interaction, and squared experience in the model.
Other variable could be added without trouble.2 That said, here is how we call it. First list the
variables for the model starting with the dependent variable, l_wage. Be sure to include a constant
and educ, exper, educ_exper, and sq_exper. The second argument is years of schooling and
the third is years of experience at which the marginal effect will be measured.

1 list regression = l_wage const educ exper educ_exper sq_exper
2

3 me_1(regression, 8, 0)
4 me_1(regression, 16, 0)
5 me_1(regression, 8, 20)
6 me_1(regression, 16, 20)

2However, this function is a not meant to be used generally, but only as a time saver in this specific context.
Don’t try to use this on another model without properly modifying the code.
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This yields:

Marginal effect of another year of experience:
Education = 8 years and Experience = 0 years
Marginal effect is 3.875 percent

Marginal effect of another year of experience:
Education = 16 years and Experience = 0 years
Marginal effect is 2.861 percent

Marginal effect of another year of experience:
Education = 8 years and Experience = 20 years
Marginal effect is 1.979 percent

Marginal effect of another year of experience:
Education = 16 years and Experience = 20 years
Marginal effect is 0.965 percent

A similar function can be written for the marginal effect of another year of schooling. Since its
marginal effect is simpler it is likely to be more trouble that its worth, however once the other
marginal effect is programmed modifying it for the second one is trivial. Here is the function:

1 function void me_2(list vars "all variables, including dep var first",
2 scalar ed "set years of schooling",
3 scalar expr "set years of experience")
4 ols vars --quiet
5 scalar mw = $coeff(educ) + $coeff(educ_exper)*expr
6 printf "\nMarginal effect of another year of schooling:\n \
7 Education = %.3g years and Experience = %.3g years\n \
8 Marginal effect is %.3f percent \n", ed, expr, mw*100
9 end function

Notice that only line 5 is different. It can be called similarly,

1 list regression = l_wage const educ exper educ_exper sq_exper
2

3 me_2(regression, 8, 0)
4 me_2(regression, 16, 0)
5 me_2(regression, 8, 20)
6 me_2(regression, 16, 20)

and the results:

Marginal effect of another year of schooling:
Education = 8 years and Experience = 0 years
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Marginal effect is 13.595 percent

Marginal effect of another year of schooling:
Education = 16 years and Experience = 0 years
Marginal effect is 13.595 percent

Marginal effect of another year of schooling:
Education = 8 years and Experience = 20 years
Marginal effect is 11.059 percent

Marginal effect of another year of schooling:
Education = 16 years and Experience = 20 years
Marginal effect is 11.059 percent

Obviously, the marginal effect no longer depends on the years of schooling, only on the years of
experience. Hence the repetition of results.

5.6 Nonlinear Combinations of Parameters

5.6.1 Optimal level of advertising

Example 5.17 in POE5

The optimal level of advertising, adverto, is defined in this example to be the amount that
maximizes net sales. Andy will advertise up to the point where another dollar of expenditure adds
at least one dollar of additional sales–and no more. At this point the marginal effect is equal to
one,

β3 + 2β4adverto = 1 (5.13)

Solving advert in terms of the parameters

adverto = g(β) =
1− β3

2β4
(5.14)

which is nonlinear in the parameters of the model. A consistent estimate of the optimal level of
advertising can be obtained by substituting the least squares estimates for the parameters on the
right-hand side. Estimating the standard error via the delta method requires some calculus, but it
is quite straightforward to do in gretl.

The delta method is based on a first-order Taylor’s series expansion of a function that depends
on the parameters of the model. Let β be a 2 × 1 vector of parameters; an intercept and slope.
Consider a possibly nonlinear function of a parameters g(β). Also, let’s say that we estimate a set
of parameters β using an estimator called b and that b

a∼ N(β, V ). So far, we’ve described the
least squares estimator of the simple regression. Then, by the delta theorem, the nonlinear function
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evaluated at the estimates has the following approximate distribution:

g(b)
a∼ N(g(β), G(β)V G(β)T ) (5.15)

where G(β) = ∂g(β)/∂βT . Hence, to use the delta method requires that you take the partial
derivatives of the function, which in our example is a hypothesis, with respect to each parameter
in the model. That is, you need the Jacobian.

In the example, g(β) = (1− β3)/2β4. Taking the derivatives with respect to each of the
parameters, β1, β2, β3, and β4 yields:

d1 =
∂g(β)

∂β1
= 0

d2 =
∂g(β)

∂β2
= 0

d3 =
∂g(β)

∂β3
= − 1

2β4
(5.16)

d4 =
∂g(β)

∂β4
= −1− β3

2β2
4

(5.17)

Note that the derivatives with respect to β1 and β2 are 0. To use the delta method, simply replace
the unknown parameters in equation (5.14) with least squares estimates. Then to get the estimated

standard error of ĝ(b), substituted estimates into the derivatives d3 and d4, and compute

V ar(ĝ(b)) =
(
0 0 d̂3 d̂4

)
[Ĉov(b1, b2, b3, b4)]


0
0

d̂3

d̂4

 (5.18)

This looks harder to do than it actually is. The gretl script to compute the variance and standard
error is:

1 ols sales const price advert sq_advert --vcv
2 matrix b = $coeff
3 matrix cov = $vcv
4 scalar g_beta = (1-b[3])/(2*b[4])
5 scalar d3 = -1/(2*b[4])
6 scalar d4 = -1*(1-b[3])/(2*b[4]ˆ2)
7 matrix d = { 0, 0, d3, d4}
8 scalar v = d*cov*d’
9 scalar se = sqrt(v)

10 scalar lb = g_beta - critical(t,$df,.025)*se
11 scalar ub = g_beta + critical(t,$df,.025)*se
12 printf "\nThe estimated optimal level of advertising is $%.2f.\n",\
13 1000*g_beta
14 printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",\
15 1000*lb, 1000*ub
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The first line estimates the model using least squares and the --vcv option is used to print the
covariance matrix. In line 2 the entire set of coefficients is saved into a vector (a one row matrix
in this case) called b. This will make the syntax that follows easier since each coefficient can
be referred to by its position in the vector, e.g., the third coefficient in b is b[3]. In line 3
the covariance matrix is saved as cov. In line 4 the least squares estimates are substituted for
the unknown parameters of g(β). In lines 5 and 6 the analytical derivatives are evaluated at the
estimates. The matrix d is 1×4 and contains the derivatives of the hypothesis with respect to each
of the parameters. The next line computes variance in equation (5.18). Finally, the square root is
taken to get the standard error and the confidence bounds are computed in lines 10 and 11 and
printed in 14 and 15.

The estimated optimal level of advertising is $2014.34.
The 95% confidence interval is ($1757.67, $2271.01).

According to this estimate the optimal level of advertising is $2014.34 and the 95% confidence
interval is ($1758, $2271).

5.6.2 How much experience maximizes wage?

Example 5.18 in POE5

Consider the log-wage equation estimated using the cps5 small.gdt dataset.

ln(wage) = β1 + β2educ + β3exper + β4educ× exper + β5exper2 + e

To determine the level of schooling that maximizes average log-wage (and hence, the wage) differ-
entiate the mean of the model with respect to education and set the result equal to zero. Then,
solving for experience you get:

expero = g(β) =
−β3 − β4educ

2β5

Estimating this point is simple. Estimate the linear model’s five parameters using least squares,
choose a value of eduction at which it will be evaluated (e.g., educ=16) and plug these into the
formula. This is nonlinear function of the least squares estimates and the delta method is used to
obtain its variance.

The partial derivatives of the function with respect to each of the parameters are:

∂expero
∂β3

= −1/2β5

∂expero
∂β4

= −16/2β5
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∂expero
∂β5

= (β3 + 16β4)/2β2
5

The estimated vector of partial derivatives becomes

d̂ =
(

0 0 −1/2b5 −16/2b5 (b3 + 16b4)/2b25
)

The estimated variance is
V̂ar(expero) = d̂

T
Ĉov(b)d̂

where Ĉov(b) is the estimated least squares covariance matrix from the linear model.

Numerical derivatives

The analytic derivatives in this example are not hard to obtain, but why bother when numerical
ones are available. This is the approach taken in commercial software that includes the ability to
estimate nonlinear combinations of parameters and their standard errors.

The fdjac function in gretl takes numeric derivatives. fdjac stands for first difference
Jacobian. The fdjac function requires two arguments: a function, g(β), for which a derivative
is desired and a vector of parameters, β, with which the derivatives will be taken. To illustrate its
use, consider the new matrix function for marginal effects below.

1 function matrix G(matrix *param, list x)
2 matrix X = { x }
3 matrix r1 = (-param[3].*ones($nobs,1)- param[4]*X)./(2*param[5])
4 return r1
5 end function

The * that prefixes the param argument is a pointer, the use of which is discussed below. Before
discusing its use, another function is written to evaluate g(·) at the least squares estimates for a
specific number of schooling years.

1 # Function computes the optimal experience for a given x=education
2 function matrix exper_0(matrix param, scalar x)
3 matrix exper = (-param[3]-param[4]*x)/(2*param[5])
4 return exper
5 end function

This looks very similar to the G function. Both evaluate the function g(b). The difference lies in
the fact that G evaluates the function at each observation and exper_0 only evaluates g(b) at a
specific point, x. Once the function is defined, fdjac operates on it to as prescribed by the delta
method.
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1 open "@workdir\data\cps5_small.gdt"
2 set echo off
3 logs wage
4 square exper
5 series educ_exper = educ * exper
6

7 ols l_wage const educ exper educ_exper sq_exper
8 matrix covmat = $vcv
9 matrix b = $coeff

10 list ed = educ
11

12 matrix jac = fdjac(b, G(&b, ed)) # Numerical derivatives at each obs
13 matrix d = meanc(jac) # The sum of the derivatives = d
14 matrix variance = qform(d,covmat) # Var = d’ COV d
15 matrix se = sqrt(variance) # Std Error = sqrt(Var)
16

17 printf "\nThe optimal experience given %2g years of schooling is =\
18 %.2f\n", 16, exper_0(b,16)
19 printf "\nThe estimated standard error of experience_0 = %.3f\n", se
20 t_interval(exper_0(b,16),se,$df,.95)

The main difference in this version of the example lies in lines 12-14. In line 12 fdjac is used
on the function G(&b, ed). &b points to the contents of the current parameter vector b, ed is
a list that contains all observations on education. This returns an n × 5 matrix of derivatives.
The next line takes the column sums and is the 1 × 5 vector d. The quadratic form is computed
using the qform(d,covmat) command. The vector d is the first argument and the center of the
quadratic form, covmat, is the second argument. From there the script looks like its manually
calculated predecessor.

A pointer is used to supply the parameter vector to the function (matrix *param). When
the function is called, the vector of parameters provided by the user in param are held in a specific
memory address. The * tells gretl to hold the contents of param in a memory address that can
later be recalled. To recall the current contents of that (sometimes referred to as dereferencing)
you must use the ampersand (&) in front of the param matrix being passed to the function, i.e.,
G(&param, x). Thus, pointers require a pair of markers, * and &, when used.

Using pointers avoids having to make copies of objects within the program, and whatever is
passed around by it can be modified in the process. That may sound like a bad idea, but it makes
programs more modular. In the fdjac function, pointers allow the numerical derivative to be
solved for recursively. See section 13.4 of the Gretl Users Guide (Cottrell and Lucchetti, 2018) for
more details.

The script is run and the interval computed using our t_interval function. Note that we
use the exper_0 function evaluated at the least squares coefficients and an education level of 16.
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t_interval(exper_0(b,16),se,$df,.95)

The result is:

The 95% confidence interval centered at 30.173 is (26.6721, 33.6738)

which is the same at shown in POE5. The delta method using numercial derivatives appears to
have worked as intended.

5.7 POE5 Appendix 5

5.7.1 Condence interval using the delta method

In this example the food expenditure model is estimated via least squares and a nonlinear
function of its parameters is computed. The standard errors are estimated via the delta method.

The function estimated is
g1 ≡ g(b2) = exp(b2)/10

Evaluated at the estimates g(b2) = exp(b2)/10 = exp(10.784/10) = 2.91. The derivative of g(b2) is
g(b2)/10. The script to estimate the 95% confidence interval that uses these is:

Example 5.19 in POE5

1 open "@workdir\data\mc20.gdt"
2 ols y const x
3 scalar g0 = exp($coeff(x)/10) # Function
4 scalar d0 = (g0/10) # Derivative
5 scalar se = d0*$stderr(x) # Delta method std error
6 t_interval(g0,se,$df,.95) # Confidence Interval

This produces:

The 95% confidence interval centered at 2.911 is (1.6006, 4.2212)

which matches the values in POE5.
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Example 5.20 in POE5

In this example the nonlinear function depends on two parameters. The function is

g2 ≡ g(b1, b2) = b1/b2

This requires two derivatives that we refer to as d1 and d2. The following script estimates the model
and estimates a 95% confidence interval centered at g(b1, b2) = b1/b2 and standard error computed
via the delta method.

1 open "@workdir\data\mc20.gdt"
2 ols y const x
3 matrix covmat = $vcv
4 scalar g = $coeff(const)/$coeff(x) # Function
5 scalar d1 = 1/$coeff(x) # Derivative b1
6 scalar d2 = -$coeff(const)/$coeff(x)ˆ2 # Derivative b2
7 matrix d = d1 ˜ d2 # Vector d
8 matrix variance = qform(d,covmat) # Delta method std error
9 scalar se = sqrt(variance) # Standard Error

10 t_interval(g,se,$df,.95) # Confidence Interval

The result is:

The 95% confidence interval centered at 8.184 is (-1.8077, 18.1758)

which matches POE5.

Monte Carlo: Simulation with χ2 errors

This simulation is designed to illustrate the repeated sampling properties of least squares. The
experimental design is the same at that used in section 3.7.1. In this case, errors are not normally
distributed, but generated by a χ2(4). The variates are centered at the mean (E[χ2(4)] = 4). These
are normalized by dividing by the stadard error,

√
8. The variance of the overall errors is set to

σ2 = 2500. This appears in line 11. The rest of the script should be familiar. Confidence bounds
are computed in lines 19 and 20. A scalar p1 is computed that takes the value 1 whenever the
statement in parenthesis is true, i.e., when β2 = 10 falls within the estimated interval; p2 will be
1 when the test statistic falls within the 0.05 rejection region of the test; and close is 1 when β2

is between 9 and 10.

The print statement has the progressive loop compute summary statistics for those scalars
and the store command writes the given scalars to a new dataset.
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1 matrix sizes = { 20, 40, 100, 200, 500, 1000}
2 scalar size = sizes[3]
3 print size
4 nulldata size --preserve
5 genr index # variable for obs number
6 series x = (index>size/2) ? 20 : 10 # Create X =10 and X=20
7 series ys = 100 + 10*x # Systematic part of model
8 scalar nu = 4 # Deg-of-freedom for chi-square
9 scalar s = 50 # Standard deviation of errors

10 loop 10000 --progressive --quiet
11 series e = s * (randgen(c,nu)-nu)/sqrt(2*nu) # Normed Chi-square
12 series y = ys + e # sample of y
13 ols y const x # Regression
14 scalar b1 = $coeff(const) # Save intercept
15 scalar b2 = $coeff(x) # Save slope
16 scalar s2 = $sigmaˆ2 # Save sigma-squared
17

18 #Interval bounds
19 scalar c2L = $coeff(x) - critical(t,$df,.025)*$stderr(x)
20 scalar c2R = $coeff(x) + critical(t,$df,.025)*$stderr(x)
21

22 # Compute coverage probabilities of the Confidence Intervals
23 scalar p1 = (10>c2L && 10<c2R)
24

25 # Compute Rejection of test
26 scalar p2 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
27

28 # Compute whether slope is between 9 and 11.
29 scalar close = (9>c2L && 11<c2R)
30

31 print b1 b2 s2 p1 p2 close
32 store mc_5.1.gdt b1 b2 s2 p1 p2 close
33 endloop

1 Dependent variable: y
2

3 mean of std. dev. of mean of std. dev. of
4 estimated estimated estimated estimated
5 Variable coefficients coefficients std. errors std. errors
6

7 const 99.7949 15.8964 15.7221 1.73307
8 x 10.0113 1.00646 0.994351 0.109609
9

10 Statistics for 10000 repetitions
11

12 mean std. dev
13 b1 99.7949 15.8964
14 b2 10.0113 1.00646
15 s2 2501.87 557.302
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16 p1 0.949400 0.219179
17 p2 0.0523000 0.222631
18 close 0.661500 0.473199

Based on the summary statistics, the average value of b̄1 = 99.79 and of b̄2 = 10.01. Estimated vari-
ance averages 2501.87. The confidence interval covers in 9494/10000 times and the true hypothesis
rejected in 523/10000 samples. These would be predicted in a linear model with homoscedastic,
linearly independent error terms.

Now load the results that were written to mc 5.1.gdt. In the top panel of Figure 5.4 you’ll find
the histogram of b2 plotted along with a normal distribution curve. The histogram appears to be
approximately normally distributed (n=100), implying that the asymptotic normal approximation
for the least squares coefficient starts at a very modest sample size. In a later example, we examine
whether this holds for the delta method approximations.

1 open "@workdir\mc_5.1.gdt"
2 grb2 <- freq b2 --normal --plot=display

Simulation of the delta method

In this example, we study the performance of the delta method. Using the same design as used
in the previous example we also compute functions g1 = exp(b2/10) and g2 = b1/b2. The histogram
for the function g1 = exp(b2/10) based on 10000 Monte Carlo samples is shown in the bottom of
Figure 5.4. The distribution of g1 is skewed to the left, and does not look normally distributed (the
Doornik-Hansen test confirms this).

In Figure 5.5 histograms based on 10000 Monte Carlo samples for estimates of g2 = b1/b2 are
shown for sample sizes of 40 and 200. At n = 40 the function is decidedly skewed. As the sample
size increases, the statistic is converging towards normality, though it is still badly skewed.

Monte Carlo: Simulation of the delta method

1 matrix sizes = { 20, 40, 100, 200, 500, 1000}
2 scalar size = sizes[2]
3 print size
4 nulldata size --preserve
5 genr index
6 series x = (index>size/2) ? 20 : 10
7 series ys = 100 + 10*x
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8 scalar s = 50
9 scalar nu = 4

10 loop 10000 --progressive --quiet
11 series e = s * (randgen(c,nu)-nu)/sqrt(2*nu)
12 series y = ys + e
13 ols y const x
14 scalar b1 = $coeff(const)
15 scalar b2 = $coeff(x)
16 scalar s2 = $sigmaˆ2
17 matrix covmat = $vcv
18 # first function
19 scalar g1 = exp(b2/10)
20 scalar d1 = (g1/10)
21 scalar se_g1 = d1*$stderr(x)
22 scalar p_g1 = abs((g1-2.71828)/se_g1)>critical(t,$df,.025)
23 # second function
24 scalar g2 = b1/b2
25 scalar d1 = 1/b1
26 scalar d2 = -b1/b2ˆ2
27 matrix d = d1 ˜ d2
28 matrix vmat = qform(d,covmat)
29 scalar se_g2 = sqrt(vmat)
30 scalar c2L = g2 - critical(t,$df,.025)*se_g2
31 scalar c2R = g2 + critical(t,$df,.025)*se_g2
32 # the coverage probabilities of the Confidence Intervals
33 scalar p1_g2 = (10>c2L && 10<c2R)
34 scalar p2_g2 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
35 scalar close = (9>c2L && 11<c2R)
36 print g1 se_g1 g2 se_g2 p_g1 p1_g2 p2_g2 close
37 store mc_5.2.gdt g1 se_g1 g2 se_g2 p_g1 p1_g2 p2_g2 close
38 endloop

A few other statistics that were computed in the previous example are computed as well. The
coverage of the confidence interval and the t-test rejection rate. The results for n = 40, n = 200,
and n = 1000 are shown below:

Statistics for 10000 repetitions
n=40

mean std. dev
g1 2.74238 0.428058

se_g1 0.426886 0.103466
g2 10.7440 4.50758

se_g2 4.34602 1.94085
p_g1 0.0479000 0.213555

p1_g2 0.949500 0.218974
p2_g2 0.0442000 0.205539
close 0.912700 0.282274

Statistics for 10000 repetitions
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n=200
mean std. dev

g1 2.72402 0.192129
se_g1 0.192045 0.0203195

g2 10.1357 1.84695
se_g2 1.82731 0.311876
p_g1 0.0499000 0.217738

p1_g2 0.949400 0.219179
p2_g2 0.0495000 0.216910
close 0.846100 0.360853

Statistics for 10000 repetitions
n=1000

mean std. dev
g1 2.72025 0.0848627

se_g1 0.0859604 0.00406127
g2 10.0210 0.798622

se_g2 0.807781 0.0592096
p_g1 0.0485000 0.214820

p1_g2 0.953200 0.211210
p2_g2 0.0482000 0.214189
close 0.536900 0.498637

In all samples the average values of the two functions are very close to their theoretical values,
2.71828 and 10, though things improve slightly as n increases. The rejection rate for a α = .05
t-ratio for g1 is p_g1= .0485. The rejection rate for the t-ratio associated with g2 is 0.0482. The
95% confidence interval for β1/β2 covers 95.43% of the time in repeated samples.

To view frequency plots of the simulated functions load the results that were written to mc 5.2.gdt.

1 open "@workdir\mc_5.2.gdt"
2 gr1 <- freq g1 --normal --plot=display
3 gr2 <- freq g2 --normal --plot=display

Bootstrap using the empirical distribution function

In this example, a t-statistic is bootstrapped based on the empirical distribution of the model
errors. This is achieved by resampling residuals. POE5 uses a different method for bootstrapping
that will be considered in the next section.

Resampling in gretl is done using the resample(x,blocksize) command. This resamples
from x (a series or a matrix) with replacement. In the case of a series argument, each value of the
returned series, xboot, is drawn from among all the values of xt with equal probability. When a
matrix argument is given, each row of the returned matrix is drawn from the rows of x with equal
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probability. The blocksize argument is optional and is used if you want to resample in data
chunks larger than 1 observation.

The first example the model is estimated and bootstrap samples are drawn, with replacement,
from the estimated residuals. This amounts to using the empirical distribution of the errors. This
happens in line 11. A t-ratio is bootstrapped (a pivotal statistic) and stored to an external dataset,
tsim.gdt, for further analysis. The results are based on 1999 bootstrap samples.

1 # Bootstrap using EDF (Residuals)
2 open "@workdir\data\mc20.gdt"
3 ols y const x
4 matrix b=$coeff
5 series u=$uhat
6 series yhat = $yhat
7 scalar replics=1999
8 scalar tcount=0
9 series ysim

10 loop replics --progressive
11 ysim = yhat + resample(u)
12 ols ysim const x --quiet
13 scalar tsim = abs(($coeff(x)-b[2])/$stderr(x))
14 tcount += (tsim>critical(n,.025))
15 print tsim
16 store tsim.gdt tsim
17 endloop
18 printf "Proportion of cases with |t|>2.5 = %g\n", tcount/replics

To find the t critical value from the empirical distribution, load tsim.gdt and find the desired
percentile ( 95th in this case).

1 open tsim.gdt
2 scalar critv=quantile(tsim,.95)
3 print critv

which is 2.0815 in this example.

Pairwise Boostrap

In this type of bootstrapping, rows of the entire data are resampled with replacement, so-called
(yi, xi) pairs. To resample more than 1 variable at a time by observation gretl requires conversion
of multiple series into a matrix. Resample from the matrix, then disassemble the matrix columns
back into series. A script for this example is:
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1 open "@workdir\data\mc20.gdt"
2 scalar n_bootsamples = 1999 # set number of boostrap samples
3

4 ols y const x
5 scalar beta1=$coeff(const) # save original coeff b1
6 scalar beta2=$coeff(x) # save original coeff b2
7 scalar g1_beta = exp(beta2/10) # g1 function at original est
8 scalar g2_beta = beta1/beta2 # g2 function at original est
9

10 list allvars = y const x # list of all variables
11 matrix X = { allvars } # data into matrix for resampling
12

13 # start bootstrap loop
14 loop i=1..n_bootsamples --progressive --quiet
15 matrix m1 = resample(X) # resample rows of variables
16 matrix y1 = m1[,1] # extract dependent var
17 matrix x1 = m1[,3] # extract independent var
18 series y = y1 # convert data back to series
19 series X1 = x1
20 ols y const X1 # run regression
21 scalar b2=$coeff(X1) # save slope & intercept estimates
22 scalar b1=$coeff(const)
23 matrix covmat = $vcv # save the covariance estimate
24 # first function
25 scalar g1 = exp(b2/10) # first function
26 scalar d1 = (g1/10) # derivative of function
27 scalar se_g1 = d1*$stderr(X1) # delta method se
28 scalar bias1 = g1-g1_beta # bias
29 scalar t1 = bias1/se_g1 # t-ratio, Ho true
30 # second function
31 scalar g2 = b1/b2 # second function
32 scalar d1 = 1/b2 # derivative dg/db1
33 scalar d2 = -b1/b2ˆ2 # derivative dg/db2
34 matrix G = d1 ˜ d2 # vector of derivatives
35 matrix vmat = G*covmat*G’ # Delta method variance
36 scalar se_g2 = sqrt(vmat) # std error
37 scalar bias2 = (g2-g2_beta) # bias
38 scalar t2 = (bias2)/se_g2 # t-ratio, Ho true
39 # print and store
40 print b1 b2 g1 se_g1 g2 se_g2 bias1 bias2 t1 t2
41 store bootsample40.gdt b1 b2 g1 se_g1 g2 se_g2 bias1 bias2 t1 t2
42 endloop

Within the loop we compute both functions (g1 and g2), their biases, delta method standard errors,
and t-ratios. These are stored to a dataset bootsample20.gdt.

To analyze results, open the bootsample40.gdt and construct the desired statistics as series. The
summary statistics reveal the quantities of interest.
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1 open bootsample20.gdt
2 summary
3 # freq b2 --normal --plot=display
4 summary bias1 bias2 --simple
5 summary g1 g2 --simple
6 scalar q_025 = quantile(g1,.025)
7 scalar q_975 = quantile(g1,.975)
8 scalar c_t1_05 = quantile(abs(t1),.95)
9 print q_025 q_975 c_t1_05

Here we take summary statistics for the bias and the functions. The 0.025 and 0.975 quantiles are
taken of g1 to obtain a percentile bootstrap confidence interval. Finally, the 0.95 quantile of the
t-ratio is taken to reveal the bootstrap critical value for the t-test based on the sample size.

The results are:

Mean Median S.D. Min Max
bias1 0.05813 -0.04279 0.6544 -1.382 7.135
bias2 0.8788 0.2036 4.489 -10.18 34.22

Mean Median S.D. Min Max
g1 2.969 2.868 0.6544 1.529 10.05
g2 9.063 8.388 4.489 -1.995 42.41

q_025 = 1.9977185
q_975 = 4.4955391

c_t1_05 = 3.1386137

The mc20.gdt dataset is based on samples of size 20. So, the first rows of Tables 5D.4b and 5D.5 are
the ones we use for comparison. In fact, the biases are quite close. Our bootstrap bias measure for
g1 measured 0.058 and POE5 ’s measured 0.068. For g2 ours measures 0.88 and POE5 ’s measured
0.79. The 95% confidence interval is (1.998, 4.496) and the 5% t critical value for sample size 20 is
3.14. The bootstrap standard error is 4.489 for g2 which is slightly larger than that in POE5, which
is 4.442. This accounts for the slightly larger t critical value and confidence intervals produced
from our script.

5.8 waldTest

Finally,3 since the delta method received quite a bit of attention in this chapter, it is worth
mentioning the user written package, waldTest.gfn that is available on the gretl function package

3This section is optional and uses a gretl add-on from its function package server. The server and its use is
discussed later is used extensively in Chapter 16 below and is discussed in section 16.3.3.
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server (see section 16.3.3 for some details on what this contains and how to use it). This function
package was written by Oleh Komashko and is able to test nonlinear hypotheses in just about any
gretl estimated model. It also can be used to estimate confidence intervals for nonlinear functions
as well. For the preceding example we could use:

1 include waldTest # grab this package from the server
2 open "@workdir\data\andy.gdt"
3 square advert
4 ols sales const price advert sq_advert
5

6 nlwaldtest("(1-b[3])/(2*b[4])",$coeff,$vcv)
7 nlconfint("(1-b[3])/(2*b[4])",$coeff,$vcv,null,.95,$df)

The first step is to download and install the waldTest function package from the gretl function
package server. This process is described in section 16.3.3. Then, open the data, create the square
of advertising and estimate the linear regression as in line 4. Two of the functions from waldTest are
shown in lines 6 and 7. The syntax is realtively forgiving, but consult the help that comes with the
function package for guidance if the function returns something unexpected. In the first instance,
nlwaldtest computes a nonlinear wald test using the delta method. The first argument, which is
enclosed in double quotes, is the expression for the nonlinear combination of parameters you want
to test. In this case, (1 − β3)/2β4 = 0. The next arguments are the coefficient vector from the
estimated model, and the estimated variance-covariance matrix. Additional options can be added
to the argument list. For instance, you can specify either the chi-square or F form of the Wald test
(see section 6.1.3).

The second command estimates a confidence interval centered at the nonlinear combination,
again using the delta method to obtain a standard error. This command uses five inputs. As in
nlwaldtest, the first two are the coefficient vector and the variance-covariance matrix. The next
argument is for the variable list (normally $xlist) which in this case is set to null, meaning that
we give no value for it. Next is the desired coverage probability of the confidence interval, and the
last is the relevant degrees of freedom to use for the t-distribution.

The output produced by these nifty functions is:

Wald test of a (non)linear restriction:

(1-b[3])/(2*b[4]) = 0

Chi(1) = 244.88, with p-value = 3.39431e-055

Confidence interval for function of model parameters:
(1-b[3])/(2*b[4])

t(71, 0.025) = 1.994
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value std. err 95% conf. interval

2.01434 0.128723 1.75767 2.27101

The confidence interval matches the results obtained manually in Example 5.17 above.
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5.9 Script

1 set verbose off
2

3 # function estimates confidence intervals based on the t-distribution
4 function void t_interval(scalar b, scalar se, scalar df, scalar p)
5 scalar alpha = (1-p)
6 scalar lb = b - critical(t,df,alpha/2)*se
7 scalar ub = b + critical(t,df,alpha/2)*se
8 printf "\nThe %2g%% confidence interval centered at %.3f is\
9 (%.4f, %.4f)\n", p*100, b, lb, ub

10 end function
11

12 # Example 5.1
13 open "@workdir\data\andy.gdt"
14 #Change the descriptive labels and graph labels
15 setinfo sales --description="Monthly sales revenue ($1000)" \
16 --graph-name="Monthly Sales ($1000)"
17 setinfo price --description="Price in dollars" --graph-name="Price"
18 setinfo advert --description="Monthly Advertising Expenditure ($1000)" \
19 --graph-name="Monthly Advertising ($1000)"
20 # print the new labels to the screen
21 labels
22

23 # summary statistics
24 summary sales price advert --simple
25

26 # Example 5.2
27 # regression, prediction, variable rescaling
28 m1<-ols sales const price advert
29

30 # Example 5.2
31 # Predict sales when price is 5.50 and adv is 1200
32 scalar yhat = $coeff(const) + $coeff(price)*5.50 + $coeff(advert)*1.2
33 printf "\nPredicted sales when price=$5.50 and advertising=$1200 is $%.2f\n", yhat*1000
34

35 # Rescale variables
36 series sales_star = sales * 1000
37 series price_star = price * 100
38 ols sales_star const price_star advert
39

40 # Example 5.3
41 # Calculate sigma-hat square
42 open "@workdir\data\andy.gdt"
43 list xvars = const price advert
44 ols sales xvars
45 scalar sighat2 = $ess/$df
46 scalar sig2 = $sigmaˆ2
47 print sighat2 sig2
48
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49 # eval function
50 eval($sigmaˆ2)
51

52 # Example 5.4
53 # Goodness-of-fit
54 printf "\nR-square = %.3f\n", $rsq
55

56 # FWL
57 open "@workdir\data\andy.gdt"
58 list xvars = const price advert
59 ols sales xvars
60 series ehat=$uhat
61 printf "\nSum-of-Squared Errors from full regression: %.3f\n", $ess
62

63 ols sales const price --quiet
64 series sales_resid=$uhat
65 ols advert const price --quiet
66 series advert_resid=$uhat
67 ols sales_resid advert_resid
68 series ehat_fwl=$uhat
69

70 smpl 1 5
71 print ehat_fwl ehat
72 printf "\nSum-of-Squared Errors from FWL: %.3f\n", $ess
73 smpl full
74

75 # Example 5.5
76 ols sales const price advert --vcv
77 matrix covmat = $vcv
78 matrix se = sqrt(diag(covmat))
79 printf "Least Squares standard errors:\n%.3f\n", se
80 /*---POE5 Example 5.6---*/
81 open "@workdir\data\andy.gdt"
82 m1 <- ols sales const price advert
83 t_interval($coeff(price),$stderr(price),$df,.95)
84 t_interval($coeff(advert),$stderr(advert),$df,.95)
85

86 /*---POE5 Example 5.7---*/
87 # linear combination of parameters
88 ols sales const price advert --vcv
89 scalar chg = -0.4*$coeff(price)+0.8*$coeff(advert)
90 scalar se_chg=sqrt((-0.4)ˆ2*$vcv[2,2]+(0.8ˆ2)*$vcv[3,3]\
91 +2*(-0.4)*(0.8)*$vcv[2,3])
92 t_interval(chg,se_chg,$df,.95)
93

94 # Examples 5.8 and 5.9
95 # significance tests
96 ols sales const price advert
97 scalar t1 = ($coeff(price)-0)/$stderr(price)
98 scalar t2 = ($coeff(advert)-0)/$stderr(advert)
99 printf "\n The t-ratio for H0: b2=0 is = %.3f.\n\
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100 The t-ratio for H0: b3=0 is = %.3f.\n", t1, t2
101

102 scalar t3 = ($coeff(advert)-1)/$stderr(advert)
103 pvalue t $df t1
104 scalar p=pvalue( t, $df, t3)
105 print p
106

107 /*---POE5 Example 5.10---*/
108 scalar t = ($coeff(price)-0)/$stderr(price)
109 scalar crit = -critical(t,$df,0.05)
110 scalar pval = 1-pvalue(t,$df,t)
111 printf "\n Ho: b2=0 vs Ha: b2<0 \n \
112 the t-ratio is = %.3f. \n \
113 the critical value = %.3f \n \
114 and the p-value = %.3f\n", t, crit, pval
115

116 /*---POE5 Example 5.11---*/
117 scalar t = ($coeff(advert)-1)/$stderr(advert)
118 scalar crit = critical(t,$df,0.05)
119 scalar pval = pvalue(t,$df,t)
120 printf "\n Ho: b3=1 vs Ha: b3>1 \n \
121 the t-ratio is = %.3f \n \
122 the critical value = %.3f \n \
123 and the p-value = %.3f\n", t, crit, pval
124

125 # Example 5.12
126 # t-test of linear combination
127 ols sales const price advert --vcv
128 scalar chg = -0.2*$coeff(price)-0.5*$coeff(advert)
129 scalar se_chg=sqrt( \
130 (-0.2)ˆ2*$vcv[2,2]+((-0.5)ˆ2)*$vcv[3,3]\
131 +2*(-0.2)*(-0.5)*$vcv[2,3])
132

133 printf "\n Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0 \n \
134 the t-ratio is = %.3f \n \
135 the critical value = %.3f \n \
136 and the p-value = %.3f\n", \
137 chg/se_chg, critical(t,$df,0.05), pvalue(t,$df,chg/se_chg)
138

139 # Using matrices to compute linear combination variance
140 ols sales const price advert
141 covmat = $vcv
142 d = { 0; -0.2; -0.5 }
143 covest = d’*covmat*d
144 se = sqrt(covest)
145 printf "\nThe estimated standard error of the linear combination is %.4f\n", se
146

147 # Example 5.14
148 # interaction creates nonlinearity
149 open "@workdir\data\andy.gdt"
150 series a2 = advert*advert
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151 square a2
152 ols sales const price advert a2 --vcv
153 scalar me1 = $coeff(advert)+2*(0.5)*$coeff(a2)
154 scalar me2 = $coeff(advert)+2*2*$coeff(a2)
155 printf "\n The marginal effect at \$500 (advert=.5) is %.3f\n\
156 and at \$2000 is %.3f\n",me1,me2
157

158 # Example 5.15
159 open "@workdir\data\cps5_small.gdt"
160 series educ_exper = educ*exper
161 ols wage const educ exper educ_exper
162

163 scalar me_8year = $coeff(exper)+$coeff(educ_exper)*8
164 scalar me_16year = $coeff(exper)+$coeff(educ_exper)*16
165 scalar me_20year = $coeff(exper)+$coeff(educ_exper)*20
166 scalar me_ed_20exper = $coeff(educ)+$coeff(educ_exper)*20
167

168 set echo off
169 printf "\nMarginal effect of another year of schooling when:\n\
170 experience is 0 = %.3f\n\
171 experience is 20 = %.3f\n", $coeff(educ), me_ed_20exper
172 printf "\nMarginal effect of experience when:\n\
173 education is 8 = %.3f \n\
174 education is 16 = %.3f \n\
175 education is 20 = %.3f \n", me_8year, me_16year, me_20year
176

177 # Example 5.16
178 open "@workdir\data\cps5_small.gdt"
179 logs wage
180 square exper
181 series educ_exper = educ * exper
182

183 ols l_wage const educ exper educ_exper sq_exper
184

185 function void me_1(list vars "all variables, including dep var first",
186 scalar ed "set years of schooling",
187 scalar expr "set years of experience")
188 ols vars --quiet
189 scalar me = $coeff(exper) + $coeff(educ_exper)*ed +\
190 2*$coeff(sq_exper)*expr
191 printf "\nMarginal effect of another year of experience:\n \
192 Education = %.3f years and Experience = %.3f years\n \
193 Marginal effect is %.3f percent \n", ed, expr, me*100
194 end function
195 list regression = l_wage const educ exper educ_exper sq_exper
196

197 me_1(regression, 8, 0)
198 me_1(regression, 16, 0)
199 me_1(regression, 8, 20)
200 me_1(regression, 16, 20)
201
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202 function void me_2(list vars "all variables, including dep var first",
203 scalar ed "set years of schooling",
204 scalar expr "set years of experience")
205 ols vars --quiet
206 scalar mw = $coeff(educ) + $coeff(educ_exper)*expr
207 printf "\nMarginal effect of another year of schooling:\n \
208 Education = %.3g years and Experience = %.3g years\n \
209 Marginal effect is %.3f percent \n", ed, expr, mw*100
210 end function
211

212 list regression = l_wage const educ exper educ_exper sq_exper
213

214 me_2(regression, 8, 0)
215 me_2(regression, 16, 0)
216 me_2(regression, 8, 20)
217 me_2(regression, 16, 20)
218

219 # Example 5.17
220 # delta method for nonlinear hypotheses
221 open "@workdir\data\andy.gdt"
222 square advert
223

224 ols sales const price advert sq_advert --vcv
225 matrix b = $coeff
226 matrix cov = $vcv
227 scalar g_beta = (1-b[3])/(2*b[4])
228 scalar d3 = -1/(2*b[4])
229 scalar d4 = -1*(1-b[3])/(2*b[4]ˆ2)
230 matrix d = { 0, 0, d3, d4}
231 scalar v = d*cov*d’
232 scalar se = sqrt(v)
233

234 scalar lb = g_beta - critical(t,$df,.025)*se
235 scalar ub = g_beta + critical(t,$df,.025)*se
236 printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000*g_beta
237 printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",1000*lb,1000*ub
238

239 t_interval(g_beta,se,$df,.95)
240

241 # Bonus: waldTest.gfn # first, install package from the funct server
242 include waldTest # once installed, this will work
243 open "@workdir\data\andy.gdt"
244 square advert
245 ols sales const price advert sq_advert
246

247 nlwaldtest("(1-b[3])/(2*b[4])",$coeff,$vcv)
248 nlconfint("(1-b[3])/(2*b[4])",$coeff,$vcv,null,.95,$df)
249

250 # Example 5.18 Optimal Experience--the delta method
251 # Function computes the optimal experience for a given x=education
252 function matrix exper_0(matrix param, scalar x)
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253 matrix exper = (-param[3]-param[4]*x)/(2*param[5])
254 return exper
255 end function
256

257 # This function computes experience for all observations in sample
258 function matrix G(matrix *param, list x)
259 matrix X = { x }
260 matrix r1 = (-param[3].*ones($nobs,1)- param[4]*X)./(2*param[5])
261 return r1
262 end function
263

264 open "@workdir\data\cps5_small.gdt"
265 set echo off
266 logs wage
267 square exper
268 series educ_exper = educ * exper
269

270 ols l_wage const educ exper educ_exper sq_exper
271 matrix covmat = $vcv
272 matrix b = $coeff
273 list ed = educ
274

275 matrix jac = fdjac(b, G(&b, ed)) # Numerical derivatives at each obs
276 matrix d = meanc(jac) # The sum of the derivatives = d
277 matrix variance = qform(d,covmat) # Var = d’ COV d
278 matrix se = sqrt(variance) # Std Error = sqrt(Var)
279

280 printf "\nThe optimal experience given %2g years of schooling is = %.2f\n", 16, exper_0(b,16)
281 printf "\nThe estimated standard error of experience_0 = %.3f\n", se
282 t_interval(exper_0(b,16),se,$df,.95)
283

284 # Example 5.19
285 open "@workdir\data\mc20.gdt"
286 ols y const x
287 scalar g0 = exp($coeff(x)/10) # Function
288 scalar d0 = (g0/10) # Derivative
289 scalar se = d0*$stderr(x) # Delta method std error
290 t_interval(g0,se,$df,.95) # Confidence Interval
291

292 # Example 5.20
293 open "@workdir\data\mc20.gdt"
294 ols y const x
295 matrix covmat = $vcv
296 scalar g = $coeff(const)/$coeff(x) # Function
297 scalar d1 = 1/$coeff(x) # Derivative b1
298 scalar d2 = -$coeff(const)/$coeff(x)ˆ2 # Derivative b2
299 matrix d = d1 ˜ d2 # Vector d
300 matrix variance = qform(d,covmat) # Delta method std error
301 scalar se = sqrt(variance) # Standard Error
302 t_interval(g,se,$df,.95) # Confidence Interval
303
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304 # Monte Carlo simulation of linear model with chi-square errors
305 matrix sizes = { 20, 40, 100, 200, 500, 1000}
306 scalar size = sizes[3]
307 print size
308 nulldata size --preserve
309 genr index # Generate index for obs numbers
310 series x = (index>size/2) ? 20 : 10 # Create X =10 and X=20
311 series ys = 100 + 10*x # Systematic part of model
312 scalar nu = 4 # Degrees of freedom for chi-square
313 scalar s = 50 # Standard deviation of errors
314 loop 10000 --progressive --quiet
315 series e = s * (randgen(c,nu)-nu)/sqrt(2*nu) # Normalized Chi-square rv
316 series y = ys + e # sample of y
317 ols y const x # Regression
318 scalar b1 = $coeff(const) # Save intercept
319 scalar b2 = $coeff(x) # Save slope
320 scalar s2 = $sigmaˆ2 # Save sigma-squared
321 #Interval bounds
322 scalar c2L = $coeff(x) - critical(t,$df,.025)*$stderr(x)
323 scalar c2R = $coeff(x) + critical(t,$df,.025)*$stderr(x)
324 # Compute the coverage probabilities of the Confidence Intervals
325 scalar p1 = (10>c2L && 10<c2R)
326 # Compute Rejection of test
327 scalar p2 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
328 # Compute whether slope is between 9 and 11.
329 scalar close = (9>c2L && 11<c2R)
330 print b1 b2 s2 p1 p2 close
331 store mc_5.1.gdt b1 b2 s2 p1 p2 close
332 endloop
333

334 open "@workdir\mc_5.1.gdt"
335 grb2 <- freq b2 --normal --plot=display
336

337 # Monte Carlo simulation of delta method
338 matrix sizes = { 20, 40, 100, 200, 500, 1000}
339 scalar size = sizes[4]
340 print size
341 nulldata size --preserve
342 genr index
343 series x = (index>size/2) ? 20 : 10
344 series ys = 100 + 10*x
345 scalar s = 50
346 scalar nu = 4
347 loop 10000 --progressive --quiet
348 series e = s * (randgen(c,nu)-nu)/sqrt(2*nu)
349 series y = ys + e
350 ols y const x
351 scalar b1 = $coeff(const)
352 scalar b2 = $coeff(x)
353 scalar s2 = $sigmaˆ2
354 matrix covmat = $vcv
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355 # first function
356 scalar g1 = exp(b2/10)
357 scalar d1 = (g1/10)
358 scalar se_g1 = d1*$stderr(x)
359 scalar p_g1 = abs((g1-2.71828)/se_g1)>critical(t,$df,.025)
360 # second function
361 scalar g2 = b1/b2
362 scalar d1 = 1/b2
363 scalar d2 = -b1/b2ˆ2
364 matrix d = d1 ˜ d2
365 matrix vmat = qform(d,covmat)
366 scalar se_g2 = sqrt(vmat)
367 scalar c2L = g2 - critical(t,$df,.025)*se_g2
368 scalar c2R = g2 + critical(t,$df,.025)*se_g2
369 # the coverage probabilities of the Confidence Intervals
370 scalar p1_g2 = (10>c2L && 10<c2R)
371 scalar p2_g2 = (($coeff(x)-10)/$stderr(x))>critical(t,$df,.05)
372 scalar close = (9>c2L && 11<c2R)
373 print g1 se_g1 g2 se_g2 p_g1 p1_g2 p2_g2 close
374 store mc_5.2.gdt g1 se_g1 g2 se_g2 p_g1 p1_g2 p2_g2 close
375 endloop
376

377 open "@workdir\mc_5.2.gdt"
378 gr1 <- freq g1 --normal --plot=display
379 gr2 <- freq g2 --normal --plot=display
380

381 # Use large df to approximate N(0,1) intervals
382 open "@workdir\data\mc20.gdt"
383 ols y const x
384 scalar g0 = exp($coeff(x)/10)
385 scalar d0 = (g0/10)
386 scalar se = d0*$stderr(x)
387 printf "\nco is %.3f, and se is %.3f\n", g0, se
388 t_interval(g0,se,120000,.95)
389

390 # Bootstrap using EDF (Residuals)
391 open "@workdir\data\mc20.gdt"
392 ols y const x
393 matrix b=$coeff
394 series u=$uhat
395 series yhat = $yhat
396 scalar replics=1999
397 scalar tcount=0
398 series ysim
399 loop replics --progressive
400 ysim = yhat + resample(u)
401 ols ysim const x --quiet
402 scalar tsim = abs(($coeff(x)-b[2])/$stderr(x))
403 tcount += (tsim>critical(n,.025))
404 print tsim
405 store tsim.gdt tsim
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406 endloop
407 printf "Proportion of cases with |t|>2.5 = %g\n", tcount/replics
408

409 open tsim.gdt
410 scalar critv=quantile(tsim,.95)
411 print critv
412

413 # Pairwise Bootstrap
414 open "@workdir\data\mc20.gdt"
415 scalar n_bootsamples = 1999 # set number of boostrap samples
416

417 ols y const x
418 scalar beta1=$coeff(const) # save original coeff b1
419 scalar beta2=$coeff(x) # save original coeff b2
420 scalar g1_beta = exp(beta2/10) # g1 function at original est
421 scalar g2_beta = beta1/beta2 # g2 function at original est
422

423 list allvars = y const x # list of all variables
424 matrix X = { allvars } # put data into matrix for obs resampling
425

426 # start bootstrap loop
427 loop i=1..n_bootsamples --progressive --quiet
428 matrix m1 = resample(X) # resample rows of variables
429 matrix y1 = m1[,1] # extract dependent var
430 matrix x1 = m1[,3] # extract independent var
431 series y = y1 # convert data back to series
432 series X1 = x1
433 ols y const X1 # run regression
434 scalar b2=$coeff(X1) # save slope and intercept estimates
435 scalar b1=$coeff(const)
436 matrix covmat = $vcv # save the covariance estimate
437 # first function
438 scalar g1 = exp(b2/10) # first function
439 scalar d1 = (g1/10) # derivative of function
440 scalar se_g1 = d1*$stderr(X1) # delta method se
441 scalar bias1 = g1-g1_beta # bias
442 scalar t1 = bias1/se_g1 # t-ratio, Ho true
443 # second function
444 scalar g2 = b1/b2 # second function
445 scalar d1 = 1/b1 # derivative dg/db1
446 scalar d2 = -b1/b2ˆ2 # derivative dg/db2
447 matrix G = d1 ˜ d2 # vector of derivatives
448 matrix vmat = G*covmat*G’ # Delta method variance
449 scalar se_g2 = sqrt(vmat) # std error
450 scalar bias2 = (g2-g2_beta) # bias
451 scalar t2 = (bias2)/se_g2 # t-ratio, Ho true
452 # print and store
453 print b1 b2 g1 se_g1 g2 se_g2 bias1 bias2 t1 t2
454 store bootsample40.gdt b1 b2 g1 se_g1 g2 se_g2 bias1 bias2 t1 t2
455 endloop
456
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457 open bootsample40.gdt
458 summary
459 # freq b2 --normal --plot=display
460 summary bias1 bias2 --simple
461 summary g1 g2 --simple
462 scalar q_025 = quantile(g1,.025)
463 scalar q_975 = quantile(g1,.975)
464 scalar c_t1_05 = quantile(abs(t1),.95)
465 print q_025 q_975 c_t1_05
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Figure 5.4: Histogram of estimates of b2 for n = 100 and g1 for n = 40. 10000 Monte Carlo samples.
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Figure 5.5: Histogram of estimates g2 for n = 40 and n = 200. 10000 Monte Carlo samples.
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Chapter 6

Further Inference in the Multiple
Regression Model

In this chapter several extensions of the multiple linear regression model are considered. First,
we test joint hypotheses about parameters in a model and then learn how to impose linear restric-
tions on the parameters. Model specification is considered using model selection rules, out-of-sample
forecasting, and a test for functional form. Collinearity and the detection of influential observations
are discussed and nonlinear least squares is introduced.

6.1 F -test

An F -statistic can be used to test multiple hypotheses in a linear regression model. In linear
regression there are several different ways to derive and compute this statistic, but each yields the
same result. The one used here compares the sum of squared errors (SSE ) in a regression model
estimated under the null hypothesis (H0) to the SSE of a model under the alternative (H1). If the
sum of squared errors from the two models are similar, then there is not enough evidence to reject
the restrictions. On the other hand, if imposing restrictions implied by H0 alter SSE substantially,
then the restrictions it implies don’t fit the data and we reject them.

In the Big Andy’s Burger Barn example we estimated the model

sales = β1 + β2price + β3advert + β4advert2 + e (6.1)

Suppose we wish to test the hypothesis that advertising has no effect on average sales against the
alternative that it does. Thus, H0: β3 = β4 = 0 and H1: β3 6= 0 or β4 6= 0. Another way to express
this is in terms of the models each hypothesis implies.

H0 E[sales|price] = β1 + β2price

H1 E[sales|price, advert] = β1 + β2price + β3advert + β4advert2
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The model under H0 is restricted compared to the model under H1 since in it β3 = 0 and β4 = 0.
The F -statistic used to test H0 versus H1 estimates each model by least squares and compares
their respective sum of squared errors using the statistic:

F =
(SSEr − SSEu)/J

SSEu/(n− k)
∼ FJ,n−k if H0 is true (6.2)

The sum of squared errors from the unrestricted model (H1) is denoted SSEu and that of the
restricted model (H0) is SSEr. The numerator is divided by the number of hypotheses being
tested, J . In this case that is 2 since there are two restrictions implied by H0. The denominator
is divided by the total number of degrees of freedom in the unrestricted regression, n − k. n is
the sample size and k is the number of parameters in the unrestricted regression. When the errors
of your model are (1) independently and identically distributed (iid) normals with zero mean and
constant variance (et iid N(0, σ2)) and (2) H0 is true, then this statistic has an F distribution with
J numerator and n− k denominator degrees of freedom. Choose a significance level and compute
this statistic. Then compare its value to the appropriate critical value from the F table or compare
its p-value to the chosen significance level.

Examples 6.1 and 6.2 in POE5

The script to estimate the models under H0 and H1 and to compute the test statistic is given
below.

1 open "@workdir\data\andy.gdt"
2 square advert
3 ols sales const price advert sq_advert
4 scalar sseu = $ess
5 scalar unrest_df = $df
6 ols sales const price
7 scalar sser = $ess
8 scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))
9 pvalue F 2 unrest_df Fstat

The square command is used to square any variable or variables that follow. The string sq is
appended as a prefix to the original variable name, so that squared advertising (advert2) becomes
sq advert.

Gretl refers to the sum of squared residuals (SSE ) as the “error sum of squares” and it is
retrieved from the regression results using the accessor $ess (i.e., in line 4 scalar sseu =
$ess). In line 5 the degrees of freedom in the unrestricted model are saved so that you can use
it in the computation of the p-value for the F -statistic. The F -statistic has 2 known parameters
(J = 1 and n− k =unrest_df) that are used as arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are available through
scripts, but it may be useful to demonstrate how to access them through the GUI. First, estimate
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the model using least squares. From the pull-down menu (see Figure 2.6) select Model>Ordinary
Least Squares, specify the unrestricted model (Figure 2.7), and run the regression. This opens
the models window (Figure 2.9).

Choose Tests from the menu bar of the models window, to open the fly-out menu shown in
Figure 6.1. The first four options in 6.1 are the most pertinent to the discussion here. These

Figure 6.1: Choosing Tests from the pull-down menu of the model window reveals several testing
options

allow one to test hypotheses by omitting variables from the model, adding variables to the model,
summing coefficients, or by imposing arbitrary linear restrictions on the parameters of the model.

Since the test in this example involves imposing a zero restrictions on the coefficients of adver-
tising and squared advertising, we can use the Omit variables option. This brings up the dialog
box shown in Figure 6.2.

Notice the two radio buttons at the bottom of the window. The first is labeled Estimate
reduced model; choose this one to compute equation 6.2. If you select the Wald, no harm is
done. Both are computed using a Wald statistic. The advantage of the Wald test is that a restricted
model does not have to be estimated in order to perform the test. Consequently, when you use the
--wald option, the restricted model is not printed and the unrestricted model remains in gretl’s
memory where its statistics can be accessed.

Select the variable advert and sq advert as shown. Click OK to reveal the result shown in
Figure 6.3.

From a script use

1 ols sales const price advert sq_advert
2 omit advert sq_advert --test-only

The --test-only option of the omit statement will produce the test statistic and p-value only,
suppressing the printed output from the restricted model to the screen.

The linear restrictions option can also be summoned from the pull-down menu as shown
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Figure 6.2: The model tests dialog box for using omit variables to test zero hypotheses using the
fly-out menu in the models window.

in Figure 6.1. This produces a large dialog box that deserves explanation. The box appears in
Figure 6.4.

Enter the hypotheses to test (or restrictions to impose) here. Each restriction in the set should
be expressed as an equation with a linear combination of parameters on the left and a numeric value
to the right of the equals sign. Parameters are referenced in the form b[variable number],
where variable number represents the position of the regressor in the independent variable list,
starting with 1. This means that β3 is equivalent to b[3]. Restricting β3 = 0 is done by issuing
b[3]=0 and setting β4 = 0 by b[4]=0 in this dialog. When a restriction involves a multiple of a
parameter e.g., 3β3 = 2, place the multiplier first, then the parameter, and use * to multiply. In
this case the restriction 3β3 = 2 is expressed as 3*b[3] = 2.

From the console or a script you must indicate where the restrictions start and end. The re-
strictions start with a restrict statement and end with end restrict. The restrict statement
usage is:

1 restrict --quiet
2 b[3] = 0
3 b[4] = 0
4 end restrict
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Figure 6.3: The results using the Omit variables dialog box to test zero restrictions on the
parameters of a linear model.

Put each restriction on its own line. The --quiet option suppresses the restricted regression from
the results window.

Another example of a set of restrictions from a gretl script is:

restrict
b[1] = 0
b[2] - b[3] = 0
b[4] + 2*b[5] = 1

end restrict

The restrict and end restrict statements can omitted when using the dialog box (Figure
6.4) to impose or test restrictions. The results from the restrict statements appear below.

m1 saved
Restriction set
1: b[advert] = 0
2: b[sq_advert] = 0

Test statistic: F(2, 71) = 8.44136, with p-value = 0.000514159

Restricted estimates:

coefficient std. error t-ratio p-value
-----------------------------------------------------------
const 121.900 6.52629 18.68 1.59e-029 ***
price 7.82907 1.14286 6.850 1.97e-09 ***
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Figure 6.4: The linear restriction dialog box obtained using the Linear restrictions option in
the Tests pull-down menu.

advert 0.000000 0.000000 NA NA
sq_advert 0.000000 0.000000 NA NA

Standard error of the regression = 5.09686

Notice that the restricted estimates are printed; the coefficients on advert and sq_advert are
zero. Use the --quiet option in the restrict line to suppress the restricted estimates. One
disadvantage of using restrict is that there is currently no way to assign the output from the
restricted model to a session icon. This is something that omit allows.

6.1.1 Regression Significance

Example 6.3 in POE5

The F -statistic is used to statistically determine whether the variables in a model have any
effect on the average value of the dependent variable. In this case, H0 is the proposition that y
does not depend on any of the independent variables, and H1 is that it does.

Ho : E[yi] = β1

H1 : E[yi|xi2, · · · , xik] = β1 + β2xi2 + . . .+ βkxik

The null hypothesis can alternately be expressed as β2, β3, . . . , βk = 0, a set of k − 1 linear restric-
tions. In Big Andy’s Burger Barn the script is
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1 open "@workdir\data\andy.gdt"
2 square advert
3 ols sales const price advert sq_advert
4 restrict --quiet
5 b[2] = 0
6 b[3] = 0
7 b[4] = 0
8 end restrict

In lines 3 the model is estimated and in 4-8 each of the slopes is restricted to be zero. The test
result is shown in Figure 6.5 below. You can see that the F -statistic for this test is equal to 24.4593.

Figure 6.5: The results obtained from using the restrict statements via the dialog box to conduct
the overall F -test of regression significance.

The same number appears in the regression results as F (3, 71). This is no coincidence. The test of
overall regression significance is important enough that it appears on the default output of every
linear regression estimated using gretl. The statistic and its p-value are highlighted in Figure 6.5.
Since the p-value is less than = 0.05, we reject the null hypothesis that the model is insignificant
at the five percent level.

The command reference for restrict is:

restrict

Options: --quiet (don’t print restricted estimates)
--silent (don’t print anything)
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--wald (system estimators only see below)
--bootstrap (bootstrap the test if possible)
--full (OLS and VECMs only, restricts to last model)

Imposes a set of (usually linear) restrictions on either (a)
the model last estimated or (b) a system of equations previously
defined and named. In all cases the set of restrictions should be
started with the keyword ‘‘restrict" and terminated with ‘‘end restrict".

Omit This is a good opportunity to use the omit statement and to show the effect of the
--test-only and --chi-square options. Consider the script

1 open "@workdir\data\andy.gdt"
2 square advert
3 list xvars = price advert sq_advert
4 ols sales const xvars --quiet
5 omit xvars
6 ols sales const xvars --quiet
7 omit xvars --chi-square
8 ols sales const xvars --quiet
9 omit xvars --test-only

The regressors that carry slopes are collected into the list called xvars. Then, the overall F -test
can be performed by simply omitting the xvars from the model. This tests the hypothesis that
each coefficient is zero against the alternative that at least one is not.

The unrestricted regression is estimated in lines 4, 6 and 8. The first instance of omit in line 5
returns the restricted model and uses the F version of the test statistic. The second omit xvars
statement repeats the test, imposing the restrictions on the model, but using the χ2 version of
the test statistic. By default, the omit command replaces the current model in memory with the
restricted one. To keep the unrestricted model in memory, and thus its statistics available using
accessors, use the --test-only option as in line 9. The output from the three forms is shown
below.

omit xvars
Null hypothesis: the regression parameters are zero for the variables

price, advert, sq_advert
Test statistic: F(3, 71) = 24.4593, p-value 5.59996e-011
Omitting variables improved 0 of 3 information criteria.

omit xvars --chi-square
Null hypothesis: the regression parameters are zero for the variables

price, advert, sq_advert
Wald test: Chi-square(3) = 73.3779, p-value 8.06688e-016
(LR test: Chi-square(3) = 53.2316, p-value 1.63633e-011)
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Omitting variables improved 0 of 3 information criteria.

omit xvars --test-only
Null hypothesis: the regression parameters are zero for the variables

price, advert, sq_advert
Test statistic: F(3, 71) = 24.4593, p-value 5.59996e-011

The three sets of results are nearly identical. The one difference is that the --test-only option
offers no information about whether omitting variables improves any of the information criteria
(AIC, or SC). The --test-only option produces no regression output since a restricted model is
not estimated. Finally, statistics from the unrestricted regression are available using the accessors.
The regression output was suppressed using the --quiet option with the ols command.

Without the --quiet option, the model is restricted and the estimate of the constant (the
series mean in this case) is given before printing the test result.

A summary of the omit syntax is given:

omit

Argument: varlist
Options: --test-only (don’t replace the current model)

--chi-square (give chi-square form of Wald test)
--quiet (print only the basic test result)
--silent (don’t print anything)
--vcv (print covariance matrix for reduced model)
--auto[=alpha] (sequential elimination, see below)

Examples: omit 5 7 9
omit seasonals --quiet
omit --auto
omit --auto=0.05

6.1.2 Relationship Between t- and F -tests

Example 6.4 in POE5

Using the model for Big Andy

sales = β1 + β2price + β3advert + β4advert2 + e (6.3)

and suppose we want to test whether price affects sales. Using the omit command produces the
F -test and saves the computed statistic to a scalar I call F_test using the $test accessor.
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1 ols sales const price advert sq_advert
2 omit price --test-only
3 scalar F_test = $test

The output is shown below:

Test on Model 2:

Null hypothesis: the regression parameter is zero for price
Test statistic: F(1, 71) = 53.3549, p-value 3.23648e-010

The F (1, 71) statistic is equal to 53.355 and has a p-value that is much smaller than 0.05; the
coefficient is significant at the 5% level. Compare these results to that of a t-test that have been
squared.

4 scalar t_2 = ($coeff(price)/$stderr(price))ˆ2
5 print t_2 F_test

This yields:

t_2 = 53.354875
F_test = 53.354875

This confirms that t2n−k = F1,n−k and therefore the t-ratio and the F -test must produce identical
answers. For two-sided tests, the p-values will be equivalent as well.

6.1.3 Optimal Level of Advertising

Example 6.5 in POE5

The optimal level of advertising is that amount where the last dollar spent on advertising results
in only 1 dollar of additional sales (we are assuming here that the marginal cost of producing and
selling another burger is zero!). Find the level of level of advertising, adverto, that solves:

∂E[sales]

∂advert
= β3 + 2β4adverto = $1 (6.4)

Plugging in the least squares estimates from the model and solving for adverto can be done in gretl.
A little algebra yields

adverto =
$1− β3

2β4
(6.5)

The script in gretl to compute this follows.
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open "@workdir\data\andy.gdt"
square advert
ols sales const price advert sq_advert
scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))
printf "\nThe optimal level of advertising is $%.2f\n", Ao*1000

which generates the result:

The optimal level of advertising is $2014.34

To test the hypothesis that $1900 is optimal (remember, advert is measured in $1000) based on
equation (6.4).

H0: β3 + 3.8β4 = 1

H1: β3 + 3.8β4 6= 1

you can use a t-test or an F -test. Following the regression, use

restrict --quiet
b[3]+3.8*b[4]=1

end restrict

Remember that b[3] refers to the coefficient of the third variable in the regression (advert) and
b[4] to the fourth (sq_advert). A coefficient can also be referred to by its variable name. So,
the following statement is equivalent:

restrict --quiet
b[advert]+3.8*b[sq_advert]=1

end restrict

This is an attractive option since one does not have to keep track of the variable number in the
variable list. The disadvantage is that it requires more typing.

The output from either version of the script is:

Restriction:
b[advert] + 3.8*b[sq_advert] = 1

Test statistic: F(1, 71) = 0.936195, with p-value = 0.336543

The F -statistic is =0.936 and has a p-value of 0.33. We cannot reject the hypothesis that $1900 is
optimal at the 5% level.
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Example 6.6 in POE5

A one-tailed test is a better option in this case. Andy decides he wants to test whether the
optimal amount is greater than $1900.

H0:β3 + 3.8β4 ≤ 1

H1:β3 + 3.8β4 > 1

A one-sided alternative has to be tested using a t-ratio rather than the F -test. The script below
computes such a test statistic much in the same way that we did in section 5.4.3.

1 ols sales const price advert sq_advert --vcv
2 scalar r = $coeff(advert)+3.8*$coeff(sq_advert)-1
3 scalar v = $vcv[3,3]+((3.8)ˆ2)*$vcv[4,4]+2*(3.8)*$vcv[3,4]
4

5 scalar tratio = r/sqrt(v)
6 scalar crit = critical(t,$df,.05)
7 scalar p = pvalue(t,$df,tratio)
8

9 printf "\n Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1 \n \
10 the t-ratio is = %.3f \n \
11 the critical value is = %.3f \n \
12 and the p-value = %.3f\n", tratio, crit, p

The hypothesis is in line 2 and the estimated variance in line 3. This was easily done in the script.
The results are:

Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1
the t-ratio is = 0.968
the critical value is = 1.667
and the p-value = 0.168

The t-ratio is .9676 and the area to the right is 0.168. Once again, this is larger than 5% and the
hypothesis cannot be rejected at that level.

Example 6.7 in POE5

Finally, Big Andy makes another conjecture about sales. He is considering a price of $6 and
buying $1900 in advertising; he expects sales to be $80,000. Combined with the estimated optimality
of $1900 in advertising leads to the following joint test:

H0: β3 + 3.8β4 = 1 and β1 + 6β2 + 1.9β3 + 1.92β4 = 80

H1: not H0

The model is estimated and the hypotheses tested:
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1 ols sales const price advert sq_advert
2 restrict
3 b[3]+3.8*b[4]=1
4 b[1]+6*b[2]+1.9*b[3]+3.61*b[4]=80
5 end restrict

The result is:

Restriction set
1: b[advert] + 3.8*b[sq_advert] = 1
2: b[const] + 6*b[price] + 1.9*b[advert] + 3.61*b[sq_advert] = 80

Test statistic: F(2, 71) = 5.74123, with p-value = 0.00488466

Andy is disappointed with this outcome. The null hypothesis is rejected since the p-value associated
with the test is 0.0049 < .05. Sorry Andy!

Examples 6.2 and 6.5 revisited

In these examples a comparison is made between the finite-sample size version of the hypotheses
tests in Examples 6.2 and 6.5 of POE5 and their asymptotic counterparts. The χ2 form used in
asymptotic tests is very similar to the F -form; divide the χ2(J) by its degrees of freedom, J ,
and you get the F. Their are slight differences in the χ2(J)/J and the FJ,n−k distributions, which
accounts for the small difference in the reported p-values.

The two versions are shown below. The F -statistic is:

F =
(SSEr − SSEu)/J

SSEu/(n− k)
∼ FJ,n−k if H0 is true (6.6)

and the χ2 is:

C =
(SSEr − SSEu)

SSEu/(n− k)
∼ χ2(J) if H0 is true (6.7)

It is easy to see that C/J = F .

To illustrate this we compare p-values of the F -statistic version of the test and the χ2 version.
First, the null hypothesis that β3 = β4 = 0 is tested against the two-sided alternative as in Example
6.2 (p. 175).

The script for the first hypothesis test uses the omit statement with the --test-only option.
The second omit command adds the --chi-square option that computes the χ2 version of the
test. This option is not available with the restrict version of the test.
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1 ols sales const price advert sq_advert
2

3 omit advert sq_advert --test-only
4 scalar F_2_nk = $test
5

6 omit advert sq_advert --test-only --chi-square
7 scalar Chi_2 = $test

This produces:

Test on Model 2: (--test-only)

Null hypothesis: the regression parameters are zero for the variables
advert, sq_advert

Test statistic: F(2, 71) = 8.44136, p-value 0.000514159

Test on Model 2: (--test-only --chi-square)

Null hypothesis: the regression parameters are zero for the variables
advert, sq_advert

Wald test: Chi-square(2) = 16.8827, p-value 0.000215757
(F-form: F(2, 71) = 8.44136, p-value 0.000514159)

The --chi-square option produces both versions of the statistic and both p-values. The F
version of the test has a larger p-value, but they are both well below a 5% threshold and are
significant.

The second example considers a single hypothesis and compares the F1,n−k to a χ2(1). The
null-hypothesis is β3 + 3.8β4 = 1 against the two-sided alternative (not equal one).

9 restrict --quiet
10 b[3]+3.8*b[4]=1
11 end restrict
12

13 scalar F_1_nk = $test
14 scalar Chi_1 = $test
15

16 pvalue F 1 $df F_1_nk
17 pvalue C 1 Chi_1

This produces:

F(1, 71): area to the right of 0.936195 = 0.336543
(to the left: 0.663457)
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Chi-square(1): area to the right of 0.936195 = 0.333258
(to the left: 0.666742)

As expected the F version of the test has a slightly larger p-value, but they are very similar in
magnitude and neither is significantly different from zero at 5%.

Example 6.8 in POE5

In section 5.6.1 a nonlinear function of the parameters was proposed as an estimate of the
optimal level of advertising. In this example we test to determine whether this optimal level of
advertising is equal to $1900. The optimal level was determined to be:

adverto =
1− β3

2β4
(6.8)

The null hypothesis is that adverto = 1.9 against the alternative adverto 6= 1.9.

Gretl’s restrict block can be used to test a nonlinear hypothesis after estimation of a single
equation linear model. The basic syntax is:

1 ols y const x2 x3 x4
2 restrict --quiet
3 rfunc = [some function of the estimates, b returned by ols]
4 end restrict

First, a linear regression is estimated by least squares. Then the restrict block is initiated (using
--quiet is optional). The next line uses rfunc as the name given to a user written function that
depends on the elements of the estimated coefficient matrix before closing the restrict block.

In this example the null hypothesis is (1 − β3)/(2β4) = 1.9. Rearranging it becomes v =
((1− β3)/(2β4))− 1.9 = 0. The function argument must be

const matrix b

which stands for constraint matrix b. This says the the function is a constraint (to test), and
that the argument b, i.e., the coefficient matrix from the previous estimation, is a matrix. The
only part of this that is user defined is the function name, restr. Leave the rest alone!1

Run the function and estimate the model using restrict.

1That is, unless the routine you are using calls the estimated parameters something other than b. ols refers to
it as b so it works here.
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1 function matrix restr (const matrix b)
2 matrix v = (1-b[3])/(2*b[4])-1.9
3 return v
4 end function
5

6 ols sales const price advert sq_advert
7 restrict --quiet
8 rfunc = restr
9 end restrict

The result displayed to the screen is:

Test statistic: chiˆ2(1) = 0.789008, with p-value = 0.3744

The hypothesis cannot be rejected at the 5% level.

6.2 Nonsample Information

Example 6.9 in POE5

In this section a log-log beer demand model is estimated. The data are in beer.gdt and are in
level form. The model is:

ln(q) = β1 + β2 ln(pb) + β3 ln(pl) + β4 ln(pr) + β5 ln(i) + e (6.9)

First, convert each of the variables into natural logs using the GUI or the logs command.

From the GUI use the cursor to highlight the variables you want transformed in the main
window. Right-click the mouse and choose Add Logs from the pop-up menu as shown in Figure
6.6. The natural log of each of the variables is obtained and the result stored in a new variable
with the prefix l_ (“el” underscore). As shown previously this can be done in a script or from the
console using the logs command logs q pb pl pr i.2

A no money illusion restriction can be parameterized in this model as β2 + β3 + β4 + β5 = 0.
This is easily estimated within gretl using the restrict dialog or a script as shown below.

1 open "@workdir\data\beer.gdt"
2 logs q pb pl pr i
3 ols l_q const l_pb l_pl l_pr l_i --quiet

2Recall that the there is also a menu item Add>Add logs of selected variables that does this too.
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Figure 6.6: Highlight the desired variables, right-click in the variables window, and choose Add
Logs.

4 restrict
5 b2+b3+b4+b5=0
6 end restrict

The syntax for the restrictions is undocumented. The command reference suggests referring to the
coefficients by their position number in the parameter vector as in:

restrict
b[2]+b[3]+b[4]+b[5]=0

end restrict

The abbreviated version remains undocumented in the gretl 2018a and whether it will continue
to work is unknown. It does for now and I’ve shown it here. Apparently gretl is able to correctly
parse the variable number from the variable name without relying on the brackets. The output
from the gretl script output window appear below.

Restriction:
b[l_pb] + b[l_pl] + b[l_pr] + b[l_i] = 0

Test statistic: F(1, 25) = 2.49693, with p-value = 0.126639
Restricted estimates:

Restricted estimates:
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coefficient std. error t-ratio p-value
--------------------------------------------------------
const -4.79780 3.71390 -1.292 0.2078
l_pb -1.29939 0.165738 -7.840 2.58e-08 ***
l_pl 0.186816 0.284383 0.6569 0.5170
l_pr 0.166742 0.0770752 2.163 0.0399 **
l_i 0.945829 0.427047 2.215 0.0357 **

Standard error of the regression = 0.0616756

6.3 Model Specification

Example 6.10, 6.11, and 6.12 in POE5

There are several issues of model specification explored here. First, it is possible to omit relevant
independent variables from your model. A relevant independent variable is one that affects the
mean of the dependent variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted variable bias.

The other possibility is to include irrelevant variables in the model. In this case, you include
extra regressors that either don’t affect y or, if they do, they are not correlated with any of the
other regressors. Including irrelevant variables in the model makes least squares less precise than
it otherwise would be–this increases standard errors, reduces the power of your hypothesis tests,
and increases the size of your confidence intervals.

The example used in the text uses the dataset edu inc.gdt. The first regression

l faminci = β1 + β2hei + β3we + ei (6.10)

where l faminc is the natural logarithm of family income, he is husband’s years of schooling, we is
woman’s years of schooling. Several variations of this model are estimated that include the number
of children in the household under age 6 (kl6 ) and two irrelevant variables, x5 and x6.

1 open "@workdir\data\edu_inc.gdt"
2 logs faminc
3 m1 <- ols l_faminc const he we
4 modeltab add
5 m2 <- omit we
6 modeltab add
7 modeltab show
8 modeltab --output=two_models.tex

The data are opened, log of family income is taken and the baseline regression is estimated. A
hypothesis test of the significance of woman’s schooling is conducted.
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This adds the models to the current session and adds the models to a model table. This also
populates the model table icon in gretl’s icon view (a.k.a. session window). The window is shown
below in Figure 6.7.

Figure 6.7: The modeltab commands can be used to construct a model table. This can be saved
as LATEX or RTF.

The LATEX output is shown below:

OLS estimates
Dependent variable: l faminc

(1) (2)

const 10.26∗∗ 10.54∗∗

(0.1220) (0.09209)

he 0.04385∗∗ 0.06132∗∗

(0.008723) (0.007100)

we 0.03903∗∗

(0.01158)

n 428 428
R̄2 0.1673 0.1470
` −254.4 −260
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Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

One interesting thing here is that the omit command accepts the assignment operator (<-)
that adds the restricted model to the current session.

In the above script, we have used the modeltab function after each estimated model to add
it to the model table. The next to last line tells gretl to display the model table in a window and
the last line writes the table to a LATEX file. You can also write it to an .rtf file for inclusion in a
MS Word document.

The models estimated from the GUI can be estimated and saved as icons (File>Save to session
as icon) within gretl. Once they’ve all been estimated and saved as icons, open a session window
(Figure 1.17) and drag each model onto the model table icon. Click on the model table icon to
reveal the output shown in Figure 6.7.

In Table 6.1 of POE5 five models of family income are estimated. I’ve created a variable list
for each model’s set of regressors:

1 list x1 = const he
2 list x2 = const he we
3 list x3 = const he we kl6
4 list x4 = const he we kl6 xtra_x5 xtra_x6
5 list x5 = const he kl6 xtra_x5 xtra_x6

Using these it is easy to assemble all five models into a model table.

1 modeltab free
2 m1 <- ols l_faminc x2 --quiet
3 modeltab add
4 m2 <- ols l_faminc x1 --quiet
5 modeltab add
6 m3 <- ols l_faminc x3 --quiet
7 modeltab add
8 m4 <- ols l_faminc x4 --quiet
9 modeltab add

10 m5 <- ols l_faminc x5 --quiet
11 modeltab add
12 modeltab show
13 modeltab --output=family_inc_modeltable.tex

The gretl script to estimate these models and test the implied hypothesis restrictions follows.
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OLS estimates
Dependent variable: l faminc

(1) (2) (3) (4) (5)

const 10.26∗∗ 10.54∗∗ 10.24∗∗ 10.24∗∗ 10.31∗∗

(0.1220) (0.09209) (0.1210) (0.1214) (0.1165)

he 0.04385∗∗ 0.06132∗∗ 0.04482∗∗ 0.04602∗∗ 0.05171∗∗

(0.008723) (0.007100) (0.008635) (0.01355) (0.01329)

we 0.03903∗∗ 0.04211∗∗ 0.04922∗∗

(0.01158) (0.01150) (0.02470)

kl6 −0.1733∗∗ −0.1724∗∗ −0.1690∗∗

(0.05423) (0.05468) (0.05484)

xtra x5 0.005388 −0.03214∗∗

(0.02431) (0.01543)

xtra x6 −0.006937 0.03093∗∗

(0.02148) (0.01007)

n 428 428 428 428 428
R̄2 0.1673 0.1470 0.1849 0.1813 0.1756
` −254.4 −260 −249.3 −249.2 −251.2

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Table 6.3: Model Table from LATEX
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Correlation matrix

0.4 0.8 0.8 0.2 0.9 1.0

0.3 0.8 0.5 0.1 1.0 0.9

-0.1 0.1 0.1 1.0 0.1 0.2

0.3 0.6 1.0 0.1 0.5 0.8

0.4 1.0 0.6 0.1 0.8 0.8

1.0 0.4 0.3 -0.1 0.3 0.4

xtra x6

xtra x5

kl6

we

he

l faminc

l fa
m

in
c he we

kl
6

xt
ra

x5

xt
ra

x6
−1

−0.5

0

0.5

1

Table 6.4: Heatmat of the correlation matrix produced in gretl .

Table 6.2 in POE5 contains the correlation matrix for variables used in the family income
example. This is easily produced using the corr function.

1 corr l_faminc he we kl6 xtra_x5 xtra_x6 --plot=heatmap.tex

which produces the a heatmap shown in Table 6.4. The LATEX code is written to the heatmap.tex 3

file in the gretl working directory. Darker shades indicate higher correlation and red (blue) indicates
positive (negative) correlation.

6.4 Model Selection

Choosing an appropriate model is part art and part science. Omitting relevant variables that are
correlated with regressors causes least squares to be biased and inconsistent. Including irrelevant
variables reduces the precision of least squares. So, from a purely technical point, it is important
to estimate a model that has all of the necessary relevant variables and none that are irrelevant.
It is also important to use a suitable functional form. There is no set of mechanical rules that one
can follow to ensure that the model is correctly specified, but there are a few things you can do to
increase your chances of having a suitable model to use for decision-making.

3This required a little editing because the variable names included the underline character. LATEX uses this symbol
in math mode to signify a subscript. That is not what we wanted so the LATEX code had to be modified slightly by
using \ in place of in the LATEX source code.
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Here are a few rules of thumb:

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then you
probably want to reevaluate either the functional form or whether relevant variables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can use model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give you some gretl commands to help with the last two: model selection
and RESET.

In this section we consider three model selection rules: R̄2, AIC, and SC. I’m not necessarily
recommending that these be used, since there are plenty of statistical problems caused by using
the sample to both specify, estimate, and then test hypotheses in a model, but sometimes you have
little other choice. Lag selection discussed later in this book is a reasonable application for these.

6.4.1 Adjusted R-square

The adjusted R2 was introduced in Chapter 5. The usual R2 is ‘adjusted’ to impose a small
penalty when a variable is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usual R2. With the adjusted version, the improvement
in fit may be outweighed by the penalty and it could become smaller as variables are added. The
formula is:

R̄2 = 1− SSE/(n− k)

SST/(n− 1)
(6.11)

This sometimes referred to as “R-bar squared,” (i.e., R̄2 ) although in gretl it is called “adjusted
R-squared.” The biggest drawback of using R̄2 as a model selection rule is that the penalty it
imposes for adding regressors is too small on average. It tends to lead to models that contain
irrelevant variables. There are other model selection rules that impose larger penalties for adding
regressors and two of these are considered below.
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6.4.2 Information Criteria

The two model selection rules considered here are the Akaike Information Criterion (AIC ) and
the Schwarz Criterion (SC ). The SC is sometimes called the Bayesian Information Criterion (BIC ).
Both are computed by default in gretl and included in the standard regression output. The values
that gretl reports are based on maximizing a log-likelihood function (normal errors). There are
other variants of these that have been suggested for use in linear regression and these are presented
in the equations below:

AIC = ln(SSE/n) + 2k/n (6.12)

BIC = SC = ln(SSE/n) + k ln(n)/n (6.13)

The rule is, compute AIC or SC for each model under consideration and choose the model that
minimizes the desired criterion. The models should be evaluated using the same number of obser-
vations, i.e., for the same value of n. You can convert the ones gretl reports to the ones in (6.12)
using a simple transformation; add (1 + ln(2π)) and then multiply everything by n. Since sample
size should be held constant when using model selection rules, you can see that the two different
computations will lead to exactly the same model choice.

Since the functions have to be evaluated for each model estimated, it is worth writing a function
in gretl that can be reused. The use of functions to perform repetitive computations makes
programs shorter and reduced errors (unless your function is wrong, in which case every computation
is incorrect!) In the next section, I will introduce you to gretl functions and offer one that will
compute the three model selection rules discussed above.

6.4.3 A gretl Function to Produce Model Selection Rules

As discussed in section 3.2 gretl offers a mechanism for defining functions, which may be called
via the command line, in the context of a script, or (if packaged appropriately) via the programs
graphical interface.

The model selection function is designed to do two things. First, it prints values of the model
selection rules for R̄2, R̄2, AIC and SC. It also prints the sample size, number of regressors, and
their names. It also sends the computed statistics to a matrix. This allows us to collect results
from several candidates into a single table.

The basic structure of the model selection function is

function matrix modelsel (series y, list xvars)
[some computations]
[print results]
[return results]

end function
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As required, it starts with the keyword function. The next word, matrix, tells the function
that a matrix will be returned as output. The next word is modelsel, which is the name given the
function. The modelsel function has two inputs. The first is a data series that will be referred
to inside the body of the function as y. The second is a variable list that will be referred to as
xvars. The inputs are separated by a comma and there are spaces between the list of inputs. Feed
the function a dependent variable and a list of the independent variables as inputs. The function
estimates a model using ols, computes the criteria based on it, the statistics are printed to the
screen, and collected into a matrix that will be returned. The resulting matrix is then available for
further manipulation outside of the function.

1 function matrix modelsel (series y, list xvars)
2 ols y xvars --quiet
3 scalar sse = $ess
4 scalar n = $nobs
5 scalar k = nelem(xvars)
6 scalar aic = ln(sse/n)+2*k/n
7 scalar bic = ln(sse/n)+k*ln(n)/n
8 scalar rbar2 = 1-((1-$rsq)*(n-1)/$df)
9 matrix A = { k, n, $rsq, rbar2, aic, bic}

10 printf "\nRegressors: %s\n",varname(xvars)
11 printf " k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f,\n\
12 AIC = %.4f, and SC = %.4f\n", k, n, $rsq, rbar2, aic, bic
13 return A

In line 2 the function inputs y and the list xvars are used to estimate a linear model by least
squares using the --quiet option to suppress the least squares output. In lines 3-5 the sum of
squared errors, SSE, the number of observations, n, and the number of regressors, k, are put into
scalars. In lines 6-8 the three criteria are computed. Line 9 puts various scalars into a matrix called
A. Lines 10 sends the names of the regressors to the screen. Lines 11 and 12 send formatted output
to the screen. Line 13 sends the matrix A as a return from the function. The last line closes the
function.4

At this point, the function can be highlighted and run.

To use the function create a list that will include the desired independent variables (called
x in this case). Then to use the function you will create a matrix called a that will include the
output from modelsel.

1 list all_x = const he we xtra_x5 xtra_x6
2 matrix a = modelsel(l_faminc,all_x)

The output is:

4To get the gretl value of AIC: scalar aic g = (1+ln(2*$pi)+aic)*n.
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Regressors: const,he,we,kl6,xtra_x5,xtra_x6
k = 6, n = 428, R2 = 0.1909, Adjusted R2 = 0.1813,
AIC = -1.6452, and SC = -1.5883

You can see that each of the regressor names is printed out on the first line of output. This is
followed by the values of k, n, R2, R̄2, AIC, and SC.

To put the function to use, consider the following script where we create four sets of variables
and use the model selection rules to pick the desired model.

1 list x1 = const he
2 list x2 = const he we
3 list x3 = const he we kl6
4 list x4 = const he we kl6 xtra_x5 xtra_x6
5 list x5 = const he kl6 xtra_x5 xtra_x6
6 matrix a = modelsel(l_faminc,x1)
7 matrix b = modelsel(l_faminc,x2)
8 matrix c = modelsel(l_faminc,x3)
9 matrix d = modelsel(l_faminc,x4)

10 matrix e = modelsel(l_faminc,x5)
11

12 matrix MS = a|b|c|d|e
13 cnameset(MS,"k n R2 Adj_R2 AIC SC" )
14 printf "%10.5g", MS

In this example the model selection rules will be computed for five different models. Lines 1-5
construct the variable list for each of these. The next five lines run the model selection function
for each set of variables. Each set of results is saved in a separate matrix (a, b, c, d, e).
The cnameset function is used to give each column of the matrix a meaningful name. Then, the
printf statement prints the matrix.

The biggest problem with function proliferation is that you may inadvertently try to give a
variable the same name as one of your functions that is already in memory. If that occurs, clear
the function using function modelsel clear or rename the variable.

The first part of the output prints the results from the individual calls to modelsel.

Regressors: const,he
K = 2, N = 428, R2 = 0.1490, Adjusted R2 = 0.1470,
AIC = -1.6135, and SC = -1.5945

Regressors: const,he,we
K = 3, N = 428, R2 = 0.1712, Adjusted R2 = 0.1673,
AIC = -1.6352, and SC = -1.6067
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Regressors: const,he,we,kl6
K = 4, N = 428, R2 = 0.1907, Adjusted R2 = 0.1849,
AIC = -1.6543, and SC = -1.6164

Regressors: const,he,we,kl6,xtra_x5,xtra_x6
K = 6, N = 428, R2 = 0.1909, Adjusted R2 = 0.1813,
AIC = -1.6452, and SC = -1.5883

Regressors: const,he,kl6,xtra_x5,xtra_x6
K = 5, N = 428, R2 = 0.1833, Adjusted R2 = 0.1756,
AIC = -1.6405, and SC = -1.5931

The last part prints the matrix MS.

k n R2 Adj_R2 AIC SC
2 428 0.14903 0.14704 -1.6135 -1.5945
3 428 0.17117 0.16727 -1.6352 -1.6067
4 428 0.19067 0.18494 -1.6543 -1.6164
6 428 0.19091 0.18132 -1.6452 -1.5883
5 428 0.18329 0.17557 -1.6405 -1.5931

In this example all three criteria select the same model: k = 4 and the regressors are const, he,
we, kl6. This model minimized AIC and SC and maximizes the adjusted R2.

6.4.4 RESET

Example 6.14 in POE5

The RESET test is used to assess the adequacy of your functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F -statistic.

Consider the model
yi = β1 + β2xi2 + β3xi3 + ei (6.14)

and the hypothesis

H0: E[y|xi2, xi3] = β1 + β2xi2 + β3xi3

H1: not H0

Rejection of H0 implies that the functional form is not supported by the data. To test this, first
estimate (6.14) using least squares and save the predicted values, ŷi. Then square and cube ŷ and
add them back to the model as shown below:

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + ei

yi = β1 + β2xi2 + β3xi3 + γ1ŷ
2
i + γ2ŷ

3
i + ei
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The null hypotheses to test (against alternative, ‘not H0’) are:

H0: γ1 = 0

H0: γ1 = γ2 = 0

Estimate the auxiliary models using least squares and test the significance of the parameters of ŷ2

and/or ŷ3. This is accomplished through the following script. Note, the reset command issued
after the first regression computes the test associated with H0: γ1 = γ2 = 0. It is included here so
that you can compare the ‘canned’ result with the one you compute using the two step procedure
suggested above. The two results should match.

1 ols l_faminc x3 --quiet
2 reset --quiet
3 reset --quiet --squares-only

The results of the RESET for the family income equation is

RESET test for specification (squares only)
Test statistic: F = 1.738326,
with p-value = P(F(1,423) > 1.73833) = 0.188

RESET test for specification (squares and cubes)
Test statistic: F = 1.278259,
with p-value = P(F(2,422) > 1.27826) = 0.28

The adequacy of the functional form is not rejected at the 5% level for both tests.

6.5 Prediction

Example 6.15 in POE5

In this example we compute a prediction interval for sales at Andy’s Burger Barn. The pre-
diction is for a price of $6 and advertising expenditures of $1900. This type of problem was first
encountered in section 4.1 and refined using matrices in section 4.8. That latter approach is taken
here.

The computation is based on the in_sample_fcast_error function which computes forecast
errors for every observation in a sample. In this example, I only want to evaluate the prediction at
one specific point and to compute its standard deviation to use in a prediction interval.

In the script below, the data are loaded, advertising squared added to the data, and a regression
estimated. The coefficients are saved in a vector, b, and the variance-covariance saved in covmat.
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Line 6 is the point at which the prediction will be computed. When price is $6 and advert ising
is 1.9 ($100). Advertising squared is added as well. This requires the variables to be ordered in the
same way that they are in the variable list used in the regression (sales const price advert
sq_advert). Line 7 computes the prediction and the quadratic form for the variance computation
is done in line 8 using the qform command. The variance is computed and the square root taken
to produce the standard error.

1 open "@workdir\data\andy.gdt"
2 square advert
3 ols sales const price advert sq_advert
4 matrix b = $coeff
5 matrix covmat = $vcv
6 matrix x_0 = { 1, 6, 1.9, 1.9ˆ2 }
7 matrix pred = x_0*b
8 matrix v = (qform(x_0,covmat))+$sigmaˆ2
9 matrix se = sqrt(v)

10 t_interval(pred, se, $df, .95)

Finally, our t_interval program (see page 59) is used to compute the interval and to print the
output to the screen. This produces:

The 95% confidence interval centered at 76.974 is (67.5326, 86.4155)

These are measured in $100 and match the results in POE5 exactly.

Example 6.16 POE5

Table 6.4 in POE5 contains model selection criteria for housing data. The data are found
in br5.gdt. Load them, square age, and take the natural logarithm of price. A list of regressors
is created and two scalars are added. The first will make the last observation in a n1 = 800
observation subsample and the second will mark the last observation in the data. These will be
used in a moment.

The model under study is of housing prices in Baton Rouge. The model is

ln(price) = β1 + β2age + β3sqft + β4age2 + β5sqft2 + β6(age× sqft) + e (6.15)

1 open "@workdir\data\br5.gdt"
2 square age
3 logs price
4 list xvars = const sqft age sq_age
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5 scalar t1 = 800
6 scalar t2 = 900

The model will be estimated using the first 800 observations. Based on these estimates, the 100
remaining observations, referred to as a hold-out sample, will be predicted using the estimated
model. Gretl produces a number of statistics that are useful in evaluating the quality of forecasts.
Among them is the Root-Mean-Square-Error:

RMSE =

√√√√ 1

n2

n∑
n1+1

(yi − ŷi)2

n2 is the number of observations in the hold-sample, n1 the number in the estimation sample.

Fortunately, the fcast function will compute what we need for this example.

1 smpl 1 t1
2 ols l_price xvars
3 smpl 1 t2
4 fcast 801 900 --static --stats-only

The smpl command restricts the sample to observations 1-800. The model is estimated, the sample
restored, and the fcast command used to produce --static forecast of observations 901-900.
The --stats-only option limits the output to the forecast quality measures shown below:

Forecast evaluation statistics

Mean Error -0.029709
Root Mean Squared Error 0.27136
Mean Absolute Error 0.19242
Mean Percentage Error -1.104
Mean Absolute Percentage Error 4.1927
Theil’s U 0.30121
Bias proportion, UM 0.011986
Regression proportion, UR 0.043132
Disturbance proportion, UD 0.94488

The RMSE for this model and sample is 0.27136, which matches POE5.

Table 6.4 in POE5 contains model selection criteria and RMSE for eight different models. To
facilitate the computation of RMSE multiple times, I wrote a crude RMSE program to compute
the statistics for the table.
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1 # Function to compute RMSE for t1, t2
2 function matrix rmse (series yvar, list xvars, scalar t1, scalar t2)
3 matrix y = yvar # yvar into matrix
4 matrix X_all = { xvars } # xvars into matrix
5 matrix y1 = y[1:t1,] # Estimation subset y
6 matrix X = X_all[1:t2,] # Sample restricted to 1-t2
7 matrix X1 = X_all[1:t1,] # Estimation subset regressors
8 matrix Px1 = X*inv(X1’X1)*X1’y1 # Yhat for entire 1:t2 sample
9 matrix ehat = y[1:t2,]-Px1 # Y-Yhat for entire 1:t2 sample

10 matrix ehatp = ehat[t1+1:t2,] # Residuals for pred. sub-period
11 matrix RMSE = sqrt(ehatp’ehatp/(t2-t1))# MSEP residuals
12 return RMSE
13 end function

All of the computations are in matrix form and this won’t work if your data contain missing values.
However, ours does not and this works fine for what we want it to do. The function returns a
matrix (a scalar equal to RMSE) and uses four inputs. The dependent variable for a regression, a
list of independent variables to use in the regression, and two scalars to mark the last observation
in the estimation sample and the last observation in the hold-out sample.

To confirm that it works, it is used on the preceding model:

1 scalar r1 = rmse(l_price, xvars, 800, 900)
2 printf "RMSE for observations %g to %g = %.4f\n", 800, 900, r1

This produces:

RMSE for observations 800 to 900 = 0.2714

which matches the result from fcast.

To reproduce what is in the table you can try this rudimentary script.

1 series age_sqft = age*sqft
2 list x1 = const sqft age
3 list x2 = x1 sq_age
4 list x3 = x1 sq_sqft
5 list x4 = x1 age_sqft
6 list x5 = x1 sq_age sq_sqft
7 list x6 = x1 sq_age age_sqft
8 list x7 = x1 sq_sqft age_sqft
9 list x8 = x1 sq_sqft sq_age age_sqft

10
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11 matrix a = modelsel(l_price,x1)
12 matrix b = modelsel(l_price,x2)
13 matrix c = modelsel(l_price,x3)
14 matrix d = modelsel(l_price,x4)
15 matrix e = modelsel(l_price,x5)
16 matrix f = modelsel(l_price,x6)
17 matrix g = modelsel(l_price,x7)
18 matrix h = modelsel(l_price,x8)
19

20 matrix ra = rmse(l_price,x1,t1,t2)
21 matrix rb = rmse(l_price,x2,t1,t2)
22 matrix rc = rmse(l_price,x3,t1,t2)
23 matrix rd = rmse(l_price,x4,t1,t2)
24 matrix re = rmse(l_price,x5,t1,t2)
25 matrix rf = rmse(l_price,x6,t1,t2)
26 matrix rg = rmse(l_price,x7,t1,t2)
27 matrix rh = rmse(l_price,x8,t1,t2)
28

29 matrix MS = a|b|c|d|e|f|g|h
30 matrix RMS = ra|rb|rc|rd|re|rf|rg|rh
31 matrix all_crit = MS˜RMS
32 cnameset(all_crit,"k n R2 Adj_R2 AIC SC RMSE" )
33 printf "%10.5g", all_crit

The resulting matrix matches Table 6.4 quite well.

k n R2 Adj_R2 AIC SC RMSE
3 900 0.6985 0.6978 -2.534 -2.518 0.2791
4 900 0.7207 0.7198 -2.609 -2.587 0.2714
4 900 0.6992 0.6982 -2.535 -2.513 0.2841
4 900 0.6996 0.6986 -2.536 -2.515 0.279
5 900 0.7208 0.7196 -2.607 -2.58 0.2754
5 900 0.721 0.7197 -2.608 -2.581 0.2712
5 900 0.7006 0.6993 -2.537 -2.51 0.284
6 900 0.7212 0.7197 -2.606 -2.574 0.2754

We could clearly improve upon this by adding the actual model variables in a row, but I’ll leave
that as an exercise. Also, keep in mind that the column labeled n pertains to the estimation sample
for the model selection rules, not the RMSE calculation.

6.6 Collinearity in Rice Production

The data set rice5.gdt is included in package of datasets that are distributed with this manual.
In most cases it is a good idea to print summary statistics of any new dataset that you work
with. This serves several purposes. First, if there is some problem with the dataset, the summary
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statistics may give you some indication. Is the sample size as expected? Are the means, minimums
and maximums reasonable? If not, you’ll need to do some investigative work. The other reason is
important as well. By looking at the summary statistics you’ll gain an idea of how the variables
have been scaled. This is vitally important when it comes to making economic sense out of the
results. Do the magnitudes of the coefficients make sense? It also puts you on the lookout for
discrete variables, which also require some care in interpreting.

The summary command is used to get summary statistics. These include mean, minimum,
maximum, standard deviation, the coefficient of variation, skewness and excess kurtosis. The corr
command computes the simple correlations among your variables. These can be helpful in gaining
an initial understanding of whether variables are highly collinear or not. Other measures are more
useful, but it never hurts to look at the correlations. Either of these commands can be used with
a variable list afterwards to limit the list of variables summarized of correlated.

Consider the rice production example from POE5. This is log-log model of production (tonnes
of rice) that is a depends on area under cultivation (hectares), labor input (person-days), and
fertilizer (kilograms).

ln(prod) = β1 + β2 ln(area) + β3 ln(labor) + β4 ln(fert) + e

The script is

1 open "@workdir\data\rice5.gdt"
2 summary --simple
3 corr area fert labor prod
4 logs area fert labor prod
5 corr l_area l_fert l_labor l_prod

The summary statistics in levels are:

Mean Median S.D. Min Max
firm 22.50 22.50 12.77 1.000 44.00
area 2.120 1.750 1.420 0.2000 5.500
fert 176.4 128.7 154.3 10.00 595.7
labor 107.4 90.50 71.12 11.00 381.0
prod 6.169 4.995 4.849 0.6000 21.07
year 1994 1994 0.5029 1993 1994

The correlation matrix of the levels is:

Correlation coefficients, using the observations 1:1–44:2
5% critical value (two-tailed) = 0.2096 for n = 88
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area fert labor prod year
1.0000 0.8531 0.9093 0.8347 −0.0056 area

1.0000 0.8656 0.8584 0.0461 fert
1.0000 0.8865 −0.0002 labor

1.0000 −0.0439 prod
1.0000 year

The variables are quite highly correlated in the sample. For instance the correlation between
area and labor input is 0.9093. Large farms use more labor. What a surprise!

Taking logarithms won’t change much. The correlations among the log variables are:

Correlation coefficients, using the observations 1:1–44:2
5% critical value (two-tailed) = 0.2096 for n = 88

l area l fert l labor l prod year
1.0000 0.8387 0.9320 0.8856 −0.0048 l area

1.0000 0.8790 0.8981 0.0343 l fert
1.0000 0.9130 −0.0409 l labor

1.0000 −0.0784 l prod
1.0000 year

The correlation between ln(area) and ln(labor) actually increases slightly to 0.932.

The production model is estimated for 1994.

1 smpl (year==1994) --restrict
2 m_1994 <- ols l_prod const l_area l_labor l_fert
3 omit l_area l_labor --test-only

The regression result is:

m 1994: OLS, using observations 1–44
Dependent variable: l prod

Coefficient Std. Error t-ratio p-value

const −1.94729 0.738487 −2.637 0.0119
l area 0.210607 0.182074 1.157 0.2543
l labor 0.377584 0.255058 1.480 0.1466
l fert 0.343335 0.127998 2.682 0.0106
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Mean dependent var 1.457871 S.D. dependent var 0.852785
Sum squared resid 3.924527 S.E. of regression 0.313230
R2 0.874501 Adjusted R2 0.865089
F (3, 40) 92.90939 P-value(F ) 4.53e–18
Log-likelihood −9.260529 Akaike criterion 26.52106
Schwarz criterion 33.65782 Hannan–Quinn 29.16771

The test of the individual significance of the coefficients can be read from the table of regression
results. Only the coefficient of l_fert is significant at 5%. The overall F -statistic is 92.9 and its
p-value is well below 5%. The R2 = 0.875, which seems fairly large. The joint significance of β2

and β3 is tested using omit. The coefficients are jointly different from zero, since the p-value for
this test is 0.0021 < 0.05.

Null hypothesis: the regression parameters are zero for the variables
l_area, l_labor

Test statistic: F(2, 40) = 7.1918, p-value 0.00214705

Finally, collinearity is examined using the vif function after the regression. vif stands for variance
inflation factor and it is used as a collinearity diagnostic by many programs, including gretl. The
vif is closely related to the recommendation provided by (Hill et al., 2018, p. 291) who suggest
using the R2 from auxiliary regressions to determine the extent to which each explanatory variable
can be explained as linear functions of the others. They regress xj on all of the other independent
variables and compare the R2

j from the auxiliary regression to 10. If the R2
j exceeds 10, then there

is evidence of a collinearity problem.

The vifj reports the same information, but in a less straightforward way. The vif associated

with the jth regressor is computed

vifj =
1

1−R2
j

(6.16)

which is, as you can see, simply a function of the R2
j from the jth auxiliary regression. Notice that

when R2
j > .80, the vifj > 10. Thus, the rule-of-thumb for the two rules is actually the same. A

vifj greater than 10 is equivalent to an R2 greater than .8 from the auxiliary regression. The vifs
for the log-log rice production model estimated for 1994 are:

Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

l_area 9.149
l_labor 17.734
l_fert 7.684

VIF(j) = 1/(1 - R(j)ˆ2), where R(j) is the multiple correlation
coefficient between variable j and the other independent variables
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Once again, the gretl output is very informative. It gives you the threshold for high collinearity
(vifj) > 10) and the relationship between vifj and R2

j . Clearly, these data are highly collinear. Two
variance inflation factors above the threshold and the one associated with wgt is fairly large as
well.

The variance inflation factors can be produced from the dialogs as well. Estimate your model
then, in the model window, select Tests>Collinearity and the results will appear in gretl’s
output.

Interval estimates for each of the slopes can be obtained using the t_interval function after
estimation. However, since the model results were sent to the session window, it is easier to use the
GUI. Navigate to the session window and double-click on the m_1994 icon to bring up its models
window. From its menu bar choose Analysis>Confidence intervals for coefficients to reveal

t(40, 0.025) = 2.021

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const -1.94729 -3.43982 -0.454749
l_area 0.210607 -0.157378 0.578592
l_labor 0.377584 -0.137907 0.893075
l_fert 0.343335 0.0846404 0.602029

One suggestion for mitigating the effects of collinearity is to impose restrictions on the param-
eters of the model. Suppose one knows that returns to rice production are constant. This implies
that β2 + β3 + β4 = 1. Using this as a restriction

1 restrict m_1994 --full
2 b[2]+b[3]+b[4]=1
3 end restrict

This particular script includes two new options for restrict. The first allows the restrict state-
ment to be applied to a model that you have stored. In this case it is the model m_1994 that was
saved to a session as an icon. The second is the --full option. This option when used in most
contexts replaces the current contents of most accessors with the ones from the restricted model.
So in this example we want to form confidence intervals for the restricted coefficients, we would
need the restricted least squares results. Those become available from the accessors if the --full
option is used with restrict. leads to:

Restriction:
b[l_area] + b[l_labor] + b[l_fert] = 1

Test statistic: F(1, 40) = 1.04387, with p-value = 0.313062
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Restricted estimates:

coefficient std. error t-ratio p-value
-------------------------------------------------------
const -2.16830 0.706472 -3.069 0.0038 ***
l_area 0.226228 0.181528 1.246 0.2197
l_labor 0.483419 0.233200 2.073 0.0445 **
l_fert 0.290353 0.117086 2.480 0.0173 **

The restriction as a hypothesis is not rejected at 5%. Its p-value is 0.31. From the restricted model,
l_labor is now statistically significant at 5%.

To find the confidence intervals use the t_interval program:

1 t_interval($coeff(l_area),$stderr(l_area),$df,.95)
2 t_interval($coeff(l_labor),$stderr(l_labor),$df,.95)
3 t_interval($coeff(l_fert),$stderr(l_fert),$df,.95)

which produces:

The 95% confidence interval centered at 0.226 is (-0.1404, 0.5928)

The 95% confidence interval centered at 0.483 is (0.0125, 0.9544)

The 95% confidence interval centered at 0.290 is (0.0539, 0.5268)

Finally, we’ll repeat the estimation of the rice production model using the full sample, computing
vifs, and computing 95% confidence intervals.

1 smpl full
2 m_full <- ols l_prod const l_area l_labor l_fert
3 vif
4 t_interval($coeff(l_area),$stderr(l_area),$df,.95)
5 t_interval($coeff(l_labor),$stderr(l_labor),$df,.95)
6 t_interval($coeff(l_fert),$stderr(l_fert),$df,.95)

The results are:

m full: Pooled OLS, using 88 observations
Included 44 cross-sectional units
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Time-series length = 2
Dependent variable: l prod

Coefficient Std. Error t-ratio p-value

const −1.86940 0.456543 −4.095 0.0001
l area 0.210789 0.108286 1.947 0.0549
l labor 0.399672 0.130650 3.059 0.0030
l fert 0.319456 0.0635063 5.030 0.0000

Mean dependent var 1.520993 S.D. dependent var 0.809932
Sum squared resid 6.898693 S.E. of regression 0.286579
R2 0.879121 Adjusted R2 0.874804
F (3, 84) 203.6369 P-value(F ) 1.99e–38
Log-likelihood −12.84238 Akaike criterion 33.68476
Schwarz criterion 43.59411 Hannan–Quinn 37.67699

The confidence intervals can either be obtained using our function or from the GUI in the models
window. Recall that this is available even using a script if you assign the output to a name (as we
have here with m_full).

t(84, 0.025) = 1.989

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL

const -1.86940 -2.77728 -0.961510
l_area 0.210789 -0.00454921 0.426127
l_labor 0.399672 0.139861 0.659483
l_fert 0.319456 0.193166 0.445745

The vif output is

Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

l_area 7.705
l_labor 10.051
l_fert 4.455

VIF(j) = 1/(1 - R(j)ˆ2), where R(j) is the multiple correlation
coefficient between variable j and the other independent variables

The largest vif is now down to around 10, which is a bit better that in the unrestricted model
(where it was 17.7).
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6.7 Influential Observations

Example 6.18 in POE5

In section 4.5 we developed programs for computing diagnostics that can be used to detect the
influence of an observation on the regression output. In this example, we use those to analyze the
housing model estimated using the br5.gdt data.

ln(price) = β1 + β2age + β3sqft + β4age2 + β5sqft2 + β6(age× price) + e

The script to estimate the model and to collect the desired statistics is:

1 open "@workdir\data\br5.gdt"
2 genr index
3 logs price
4 square age sqft
5

6 list xvars = const sqft age sq_age
7 ols l_price xvars
8 leverage --save --quiet
9

10 series uhat = $uhat
11 series lev_t = h_t(xvars)
12 series sig_t = delete_1_variance(l_price, xvars)
13 series stu_res = uhat/sqrt(sig_t*(1-lev_t))
14 series DFFits=stu_res*sqrt(lev_t/(1-lev_t))
15

16 list x1 = xvars
17 scalar k = nelem(xvars)
18 matrix results = zeros(k,1)
19 loop i=1..k --quiet
20 list y1 = x1[1]
21 list y2 = x1[2:k]
22 ols y1 y2
23 series dfb$i=stu_res*$uhat/sqrt($ess*(1-lev_t))
24 list x1 = y2 y1
25 endloop
26

27 store influential.gdt index sig_t lev_t stu_res DFFits\
28 dfb1 dfb2 dfb3 dfb4
29 series ab_dfb2 = abs(dfb2)
30 series ab_stu_res = abs(stu_res)
31 series ab_DFFits = abs(DFFits)

There is not much new here. In lines 10-14 we collect residuals, use our user written programs from
section 4.5 h_t to compute leverage and sig_t to compute the delete-one variances. Studentized
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residuals and DFFits follow. The loop in lines 18-25 collect the DFBETAs for all of the regressors.
Everything is stored to an external datset infuential.gdt that will be located in the working directory.

Lines 29-31 create series that contain the absolute values of DFBETA(2), studentized residuals,
and DFFits. We want to find the observations that are most influential and these statistics can be
large negative or positive numbers.

Then, to reduce the amount of output to a manageable level we sort by each series and print
only the largest five values of the statistic, along with its original observation number.

1 dataset sortby ab_dfb2
2 smpl $nobs-5 $nobs
3 print index dfb2 --byobs
4

5 smpl full
6 dataset sortby lev_t
7 smpl $nobs-5 $nobs
8 print index lev_t --byobs
9

10 smpl full
11 dataset sortby ab_stu_res
12 smpl $nobs-5 $nobs
13 print index stu_res --byobs
14

15 smpl full
16 dataset sortby ab_DFFits
17 smpl $nobs-5 $nobs
18 print index DFFits --byobs

The sorting is done based on the full sample using the dataset sortby command. Then the
sample is reduced to the last five in the data using smpl $nobs-5 $nobs, and printed using the
--byobs option in line 8. Here is some output for the DFBETA for the sqrt coefficient:

index dfb2

895 836 -0.2055396
896 472 -0.2403838
897 356 -0.2441436
898 859 0.2570806
899 787 -0.2708825
900 411 -0.6577355

The most influential observation on the second coefficient is 411 followed by observation 787.

For leverage, ht
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index lev_t

895 420 0.04012
896 148 0.06205
897 392 0.06232
898 605 0.06244
899 150 0.06369
900 497 0.06395

Observation 797 has the highest leverage.

For studentized residuals we have

index stu_res

895 283 -3.853597
896 51 -3.885458
897 503 -4.258513
898 524 -4.313883
899 898 -4.744688
900 411 -4.980408

which shows observation 411 being influential by this measure.

Finally, DFFits

index DFFits

895 160 0.4602006
896 831 -0.4619299
897 94 -0.4685957
898 150 0.5114895
899 524 -0.5600395
900 411 -0.9036011

Predictions are influenced most by observation 411 with observation 524 a close runner-up.

6.8 Nonlinear Least Squares

Example 6.19

Models that are nonlinear in the parameters and an additive error term are candidates for
nonlinear least squares estimation. In this example we estimate a one parameter model using
nonlinear least squares.
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The model is
yt = βxt1 + β2xt2 + et

Since the parameter is squared and the error is additive, this model is a candidate for nonlinear
least squares estimation. The minimum of the sum of squared errors function cannot be solved
analytically for β in terms of the data. So, a numerical solution to the least squares normal
equations must be found.

The biggest reason is that nonlinear least squares requires more computational power than
linear estimation, though this is not much of a constraint these days. Also, gretl requires an extra
step on your part. You have to type in an equation that contains parameters and variables for gretl
to estimate. This is the way one works in EViews and other software by default, so the relative
burden here is low.

Nonlinear least squares (and other nonlinear estimators) use numerical methods rather than
analytical ones to minimize the sum of squared errors objective function. The routines that do this
iterative until the user is satisfied that no more improvements in the sum-of-squares function can
be had.

The routines require you to provide a good first guess as to the value of the parameters and
it evaluates the sum of squares function at this guess. The program looks at the slope of sum
of squares function at the guess, points you in a direction that leads closer to smaller values of
the objective function, and computes a step in the parameter space that takes you toward the
minimum (further down the hill). If an improvement in the sum of squared errors function is
found, the new parameter values are used as the basis for another step. Iterations continue until
no further significant reduction in the sum of squared errors function can be found.

The routine in gretl that does this is nls. To use nls the user must specify a regression
function. The function will contain variables as named in the dataset and a set of user named
parameters. The parameters must be “declared” and given initial values. Optionally, one may
supply analytical derivatives of the regression function with respect to each of the parameters that
determine the direction of the next step. If derivatives are not given, you must give a list of the
parameters to be estimated (separated by spaces or commas), preceded by the keyword params.
The tolerance (criterion for terminating the iterative estimation procedure) can be adjusted using
the set command. The syntax for specifying the function to be estimated is the same as for the
genr command.

For the single parameter model we have:

1 open "@workdir\data\nlls.gdt"
2 scalar b=1
3 nls y=b*x1+bˆ2*x2
4 params b
5 end nls
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The dataset is nlls.gdt and the starting value for the parameter b is set to 1. The third line is the
model, and the params statement b follows (since we are not supplying analytical derivatives of
the function in line 3). Run the routine to obtain:

Using numerical derivatives
Tolerance = 1.81899e-012
Convergence achieved after 11 iterations

Model 1: NLS, using observations 1-20
y = b*x1+bˆ2*x2

estimate std. error t-ratio p-value
-----------------------------------------------------
b 1.16121 0.130666 8.887 3.40e-08 ***

Mean dependent var 1.184900 S.D. dependent var 1.047650
Sum squared resid 16.30797 S.E. of regression 0.926452
Uncentered R-squared 0.217987 Centered R-squared -0.000618
Log-likelihood 26.33799 Akaike criterion 54.67597
Schwarz criterion 55.67171 Hannan-Quinn 54.87035

GNR: R-squared = 0, max |t| = 1.45037e-009
Convergence seems to be reasonably complete

The nonlinear least squares estimate of β is 1.612. The estimated standard error is 0.131. Notice
other common regression statistics are reported as well (though a few a missing). Notice that the
centered R2 is negative. Obviously this statistic is not bounded between 1 and 0 in a nonlinear
model.

Example 6.20

In this example another simple nonlinear model is estimated. This one is a logistic growth curve
and is estimated using data on the share of total U.S. crude steel production that is produced by
electric arc furnaces. The output is a function of time, t.

yt =
α

1 + exp(−β − δt)
+ et

This is interesting. There is one variable, t=time period, and three parameters (α, β, and δ).

The script is:

1 open "@workdir\data\steel.gdt"
2 # Starting Values
3 scalar alpha = 1 # Starting Values
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4 scalar delta = .1
5 scalar beta = -1
6

7 nls eaf = alpha/(1 + exp(-beta-delta*t)) # Regression function
8 params alpha delta beta # Parameters: remember the order
9 end nls

The starting values are given in lines 3-5. Here you have to use your judgement (or in my case,
luck). The logistic growth curve is in line 7, where eaf is the dependent variable.

Run the routine to obtain:

Using numerical derivatives
Tolerance = 1.81899e-012
Convergence achieved after 29 iterations

Model 1: NLS, using observations 1970-2015 (T = 46)
eaf = alpha/(1 + exp(-beta-delta*t))

estimate std. error t-ratio p-value
--------------------------------------------------------
alpha 0.814375 0.0510501 15.95 1.14e-019 ***
delta 0.0572226 0.00430389 13.30 7.85e-017 ***
beta 1.37767 0.0563557 24.45 7.50e-027 ***

Mean dependent var 0.401087 S.D. dependent var 0.146314
Sum squared resid 0.017272 S.E. of regression 0.020042
Uncentered R-squared 0.982070 Centered R-squared -0.000128
Log-likelihood 116.1364 Akaike criterion 226.2728
Schwarz criterion 220.7868 Hannan-Quinn 224.2177
rho 0.794149 Durbin-Watson 0.392075

GNR: R-squared = 2.22045e-016, max |t| = 9.54129e-008
Convergence seems to be reasonably complete

It took 29 iterations to converge and gretl appears to be satisfied that convergence to a (local)
minimum has been achieved.

An inflection point occurs in this model at −β/δ. This can be computed using accessors. A
parameter can no longer be referenced by the variable that accompanies it. There is no longer a
one-to-one correspondence. Instead, the accessors can be used on the parameter name that you
have designated. Therefore to compute the inflection and print it to the screen we use:

10 printf "\n Inflection Point = %.3f\n ",\
11 -$coeff(beta)/$coeff(delta) # Function
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which yields:

Inflection Point = 24.076

Finally, I’ll add a little lagniappe. Since the model is estimated we might as well go ahead and
compute a confidence interval for the inflection point. It is a nonlinear function of the estimates
and the Delta method can be used to compute its variance.

1 matrix covmat = $vcv # Save the covariance
2 matrix d={0;$coeff(beta)/($coeff(delta)ˆ2);-1/$coeff(delta)} # Derivative
3 scalar se = sqrt(d’*covmat*d) # Std errors
4 t_interval(-$coeff(beta)/$coeff(delta),se,$df,.95) # t_interval
5 printf "\nThe Delta estimated standard error is %.3f \n", se

The accessor $vcv is used to save the variance-covariance matrix computed by nls. The second
line consists of the derivatives of the function with respect to α, β, and δ. Line 3 is the standard
error of the inflection point, i.e., the square root of the quadratic form. All of this is combined and
used in the t_interval function in line 4. For good measure, I print out the estimated standard
error.

6.9 Script

6.9.1 Functions

1 set verbose off
2 # function estimates confidence intervals based on the t-distribution
3 function void t_interval (scalar b, scalar se, scalar df, scalar p)
4 scalar alpha = (1-p)
5 scalar lb = b - critical(t,df,alpha/2)*se
6 scalar ub = b + critical(t,df,alpha/2)*se
7 printf "\nThe %2g%% confidence interval centered at %.3f is\
8 (%.4f, %.4f)\n", p*100, b, lb, ub
9 end function

10

11 # function computes prediction standard errors
12 function series in_sample_fcast_error (series y, list xvars)
13 ols y xvars
14 scalar sig = $sigmaˆ2
15 matrix X = { xvars }
16 matrix f_e = sig*I($nobs)+sig*X*inv(X’X)*X’
17 series se = sqrt(diag(f_e))
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18 return se
19 end function
20

21 # function to compute diagonals of hat matrix
22 function series h_t (list xvars)
23 matrix X = { xvars }
24 matrix Px = X*inv(X’X)*X’
25 matrix h_t = diag(Px)
26 series hats = h_t
27 return hats
28 end function
29

30 # delete-one variance function
31 function series delete_1_variance (series y, list xvars)
32 matrix sig = zeros($nobs,1)
33 loop i=1..$nobs --quiet
34 matrix e_t = zeros($nobs,1)
35 matrix e_t[i,1]=1
36 series et = e_t
37 ols y xvars et --quiet
38 matrix sig[i,1]=$sigmaˆ2
39 endloop
40 series sig_t = sig
41 return sig_t
42 end function
43

44 # model selection rules and a function
45 function matrix modelsel (series y, list xvars)
46 ols y xvars --quiet
47 scalar sse = $ess
48 scalar N = $nobs
49 scalar k = nelem(xvars)
50 scalar aic = ln(sse/N)+2*k/N
51 scalar bic = ln(sse/N)+k*ln(N)/N
52 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
53 matrix A = { k, N, $rsq, rbar2, aic, bic}
54 printf "\nRegressors: %s\n",varname(xvars)
55 printf "k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f, AIC = %.4f,\
56 and SC = %.4f\n", k, N, $rsq, rbar2, aic, bic
57 return A
58 end function
59

60 # Function to compute RMSE for t1, t2
61 function matrix rmse (series yvar, list xvars, scalar t1, scalar t2)
62 matrix y = yvar # Put yvar into matrix
63 matrix X_all = { xvars } # Put xvars into matrix
64 matrix y1 = y[1:t1,] # Estimation subset y
65 matrix X = X_all[1:t2,] # Sample restricted to 1-t2
66 matrix X1 = X_all[1:t1,] # Estimation subset regressors
67 matrix Px1 = X*inv(X1’X1)*X1’y1 # Yhat for entire 1:t2 sample
68 matrix ehat = y[1:t2,]-Px1 # Y-Yhat for entire 1:t2 sample
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69 matrix ehatp = ehat[t1+1:t2,] # Residuals for the prediction sub-period
70 matrix RMSE = sqrt(ehatp’ehatp/(t2-t1))# Mean of squared prediction residuals
71 return RMSE
72 end function
73

74 # f-test
75 # Example 6.1
76 open "@workdir\data\andy.gdt"
77 square advert
78 ols sales const price advert sq_advert
79 scalar sseu = $ess
80 scalar unrest_df = $df
81 ols sales const price
82 scalar sser = $ess
83 scalar Fstat=((sser-sseu)/2)/(sseu/(unrest_df))
84 pvalue F 2 unrest_df Fstat
85

86 # Example 6.2
87 # f-test using omit
88 ols sales const price advert sq_advert
89 omit advert sq_advert --test-only
90

91 # f-test using restrict
92 set echo off
93 set messages off
94 m2 <- ols sales const price advert sq_advert
95 restrict --quiet
96 b[3]=0
97 b[4]=0
98 end restrict
99

100 # Example 6.3
101 # overall f
102 set echo off
103 set messages off
104 open "@workdir\data\andy.gdt"
105 square advert
106 ols sales const price advert sq_advert
107 restrict --quiet
108 b[2] = 0
109 b[3] = 0
110 b[4] = 0
111 end restrict
112

113 ols sales const price advert sq_advert
114 scalar sseu = $ess
115 scalar unrest_df = $df
116 ols sales const
117 scalar sser = $ess
118 scalar rest_df = $df
119
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120 scalar J = rest_df - unrest_df
121 scalar Fstat=((sser-sseu)/J)/(sseu/(unrest_df))
122 pvalue F J unrest_df Fstat
123

124 # Using the Wald option with omit
125 open "@workdir\data\andy.gdt"
126 square advert
127 list xvars = price advert sq_advert
128 ols sales const xvars --quiet
129 omit xvars --wald
130 omit xvars
131

132 # Example 6.4
133 # t-test
134 ols sales const price advert sq_advert
135 omit price --test-only
136 scalar t_2 = ($coeff(price)/$stderr(price))ˆ2
137 scalar F_test = $test
138 print t_2 F_test
139

140 # Example 6.5
141 # optimal advertising
142 open "@workdir\data\andy.gdt"
143 square advert
144 ols sales const price advert sq_advert
145 scalar Ao =(1-$coeff(advert))/(2*$coeff(sq_advert))
146 printf "\nThe optimal level of advertising is $%.2f\n", Ao*1000
147 # test of optimal advertising
148 restrict --quiet
149 b[advert]+3.8*b[sq_advert]=1
150 end restrict
151

152 # Example 6.6
153 # One-sided t-test
154 ols sales const price advert sq_advert --vcv
155 scalar r = $coeff(advert)+3.8*$coeff(sq_advert)-1
156 scalar v = $vcv[3,3]+((3.8)ˆ2)*$vcv[4,4]+2*(3.8)*$vcv[3,4]
157 scalar tratio = r/sqrt(v)
158 scalar crit = critical(t,$df,.05)
159 scalar p = pvalue(t,$df,tratio)
160 printf "\n Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1 \n \
161 the t-ratio is = %.3f \n \
162 the critical value is = %.3f \n \
163 and the p-value = %.3f\n", tratio, crit, p
164

165 # Example 6.7
166 # joint test
167 ols sales const price advert sq_advert
168 restrict --quiet
169 b[3]+3.8*b[4]=1
170 b[1]+6*b[2]+1.9*b[3]+3.61*b[4]=80
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171 end restrict
172

173 # Examples 6.2 and 6.5 revisited
174 ols sales const price advert sq_advert
175 omit advert sq_advert --test-only
176 scalar F_2_nk = $test
177 omit advert sq_advert --test-only --chi-square
178 scalar Chi_2 = $test
179 pvalue F 2 $df F_2_nk
180 pvalue C 2 Chi_2
181

182 restrict --quiet
183 b[3]+3.8*b[4]=1
184 end restrict
185 scalar F_1_nk = $test
186 scalar Chi_1 = $test
187 pvalue F 1 $df F_1_nk
188 pvalue C 1 Chi_1
189

190 # Example 6.8
191 # Nonlinear Hypothesis
192 function matrix restr (const matrix b)
193 matrix v = (1-b[3])/(2*b[4])-1.9
194 return v
195 end function
196

197 ols sales const price advert sq_advert
198 restrict --quiet
199 rfunc = restr
200 end restrict
201

202 # Example 6.9
203 # restricted estimation
204 open "@workdir\data\beer.gdt"
205 logs q pb pl pr i
206 ols l_q const l_pb l_pl l_pr l_i --quiet
207 restrict
208 b2+b3+b4+b5=0
209 end restrict
210

211 restrict --quiet
212 b[2]+b[3]+b[4]+b[5]=0
213 end restrict
214

215 # Example 6.10
216 # model specification -- relevant and irrelevant vars
217 open "@workdir\data\edu_inc.gdt"
218 logs faminc
219 m1 <- ols l_faminc const he we
220 modeltab add
221 m2 <- omit we
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222 modeltab add
223 modeltab show
224

225 corr l_faminc he we kl6 xtra_x5 xtra_x6 --plot=corr.tex
226

227 # Example 6.11
228 ols l_faminc const he we kl6
229

230 # Example 6.12
231 list all_x = const he we kl6 xtra_x5 xtra_x6
232 ols l_faminc all_x
233 matrix a = modelsel(l_faminc,all_x)
234

235 list x1 = const he
236 list x2 = const he we
237 list x3 = const he we kl6
238 list x4 = const he we kl6 xtra_x5 xtra_x6
239 list x5 = const he kl6 xtra_x5 xtra_x6
240 matrix a = modelsel(l_faminc,x1)
241 matrix b = modelsel(l_faminc,x2)
242 matrix c = modelsel(l_faminc,x3)
243 matrix d = modelsel(l_faminc,x4)
244 matrix e = modelsel(l_faminc,x5)
245

246 matrix MS = a|b|c|d|e
247 cnameset(MS,"k n R2 Adj_R2 AIC SC" )
248 printf "%10.5g", MS
249

250 # Table 6.1 in POE5
251 modeltab free
252 m1 <- ols l_faminc x2 --quiet
253 modeltab add
254 m2 <- ols l_faminc x1 --quiet
255 modeltab add
256 m3 <- ols l_faminc x3 --quiet
257 modeltab add
258 m4 <- ols l_faminc x4 --quiet
259 modeltab add
260 m5 <- ols l_faminc x5 --quiet
261 modeltab add
262 modeltab show
263 modeltab --output=family_inc_modeltable.tex
264

265 # Example 6.13
266 # Control for ability in wage equation
267 open "@workdir\data\koop_tobias_87.gdt"
268 logs wage
269 square exper
270 ols l_wage const educ exper sq_exper score
271 omit score
272
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273 # Example 6.14
274 # reset test
275 open "@workdir\data\edu_inc.gdt"
276 logs faminc
277

278 ols l_faminc const he we kl6
279 reset --quiet --squares-only
280 reset --quiet
281

282 ols l_faminc he we kl6 --quiet
283 reset
284

285 /*---POE5 Example 6.15---*/
286 # Forecasting SALES for the Burger Barn
287 open "@workdir\data\andy.gdt"
288 square advert
289 ols sales const price advert sq_advert
290 matrix b = $coeff
291 matrix covmat = $vcv
292 matrix x_0 = { 1, 6, 1.9, 1.9ˆ2 }
293 matrix pred = x_0*b
294 matrix v = (qform(x_0,covmat))+$sigmaˆ2
295 matrix se = sqrt(v)
296 t_interval(pred, se, $df, .95)
297

298 /*---POE5 Example 6.16---*/
299 # Predicting House Prices
300 open "@workdir\data\br5.gdt"
301 set echo off
302 set messages off
303 square age sqft
304 logs price
305 list xvars = const sqft age sq_age
306 scalar t1 = 800
307 scalar t2 = 900
308

309 smpl 1 t1
310 ols l_price xvars
311 smpl 1 t2
312 fcast 801 900 --static --stats-only
313

314 scalar r1 = rmse(l_price, xvars, 800, 900)
315 matrix m1 = modelsel(l_price,xvars)
316 printf "RMSE for observations %g to %g = %.4f\n", 800, 900, r1
317

318 series age_sqft = age*sqft
319 list x1 = const sqft age
320 list x2 = x1 sq_age
321 list x3 = x1 sq_sqft
322 list x4 = x1 age_sqft
323 list x5 = x1 sq_age sq_sqft
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324 list x6 = x1 sq_age age_sqft
325 list x7 = x1 sq_sqft age_sqft
326 list x8 = x1 sq_sqft sq_age age_sqft
327 matrix a = modelsel(l_price,x1)
328 matrix b = modelsel(l_price,x2)
329 matrix c = modelsel(l_price,x3)
330 matrix d = modelsel(l_price,x4)
331 matrix e = modelsel(l_price,x5)
332 matrix f = modelsel(l_price,x6)
333 matrix g = modelsel(l_price,x7)
334 matrix h = modelsel(l_price,x8)
335

336 matrix ra = rmse(l_price,x1,t1,t2)
337 matrix rb = rmse(l_price,x2,t1,t2)
338 matrix rc = rmse(l_price,x3,t1,t2)
339 matrix rd = rmse(l_price,x4,t1,t2)
340 matrix re = rmse(l_price,x5,t1,t2)
341 matrix rf = rmse(l_price,x6,t1,t2)
342 matrix rg = rmse(l_price,x7,t1,t2)
343 matrix rh = rmse(l_price,x8,t1,t2)
344

345 matrix MS = a|b|c|d|e|f|g|h
346 matrix RMS = ra|rb|rc|rd|re|rf|rg|rh
347 matrix all_crit = MS˜RMS
348 cnameset(all_crit,"k n R2 Adj_R2 AIC SC RMSE" )
349 printf "%10.5g", all_crit
350

351 /*---POE5 Example 6.17---*/
352 # Collinearity in a Rice Production Function
353 open "@workdir\data\rice5.gdt"
354 summary --simple
355 corr area fert labor prod year
356 logs area fert labor prod
357 corr l_area l_fert l_labor l_prod year
358

359 smpl (year==1994) --restrict
360 m_1994 <- ols l_prod const l_area l_labor l_fert
361 omit l_area l_labor --test-only
362 vif
363

364 restrict m_1994 --full
365 b[2]+b[3]+b[4]=1
366 end restrict
367

368 t_interval($coeff(l_area),$stderr(l_area),$df,.95)
369 t_interval($coeff(l_labor),$stderr(l_labor),$df,.95)
370 t_interval($coeff(l_fert),$stderr(l_fert),$df,.95)
371

372 smpl full
373 m_full <- ols l_prod const l_area l_labor l_fert
374 vif
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375 t_interval($coeff(l_area),$stderr(l_area),$df,.95)
376 t_interval($coeff(l_labor),$stderr(l_labor),$df,.95)
377 t_interval($coeff(l_fert),$stderr(l_fert),$df,.95)
378 /*---POE5 Example 6.18---*/
379 # Influential Observations in the House Price Equation
380 open "@workdir\data\br5.gdt"
381 genr index
382 logs price
383 square age sqft
384

385 list xvars = const sqft age sq_age
386 ols l_price xvars
387 leverage --save --quiet
388

389 series uhat = $uhat
390 series lev_t = h_t(xvars)
391 series sig_t = delete_1_variance(l_price, xvars)
392 series stu_res = uhat/sqrt(sig_t*(1-lev_t))
393 series DFFits=stu_res*sqrt(lev_t/(1-lev_t))
394

395 list x1 = xvars
396 scalar k = nelem(xvars)
397 matrix results = zeros(k,1)
398 loop i=1..k --quiet
399 list y1 = x1[1]
400 list y2 = x1[2:k]
401 ols y1 y2
402 series dfb$i=stu_res*$uhat/sqrt($ess*(1-lev_t))
403 list x1 = y2 y1
404 endloop
405

406 store influential.gdt index sig_t lev_t stu_res DFFits dfb1 dfb2 dfb3 dfb4
407 series ab_dfb2=abs(dfb2)
408 series ab_stu_res = abs(stu_res)
409 series ab_DFFits = abs(DFFits)
410

411 dataset sortby ab_dfb2
412 smpl $nobs-5 $nobs
413 print index dfb2 --byobs
414

415 smpl full
416 dataset sortby lev_t
417 smpl $nobs-5 $nobs
418 print index lev_t --byobs
419

420 smpl full
421 dataset sortby ab_stu_res
422 smpl $nobs-5 $nobs
423 print index stu_res --byobs
424

425 smpl full
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426 dataset sortby ab_DFFits
427 smpl $nobs-5 $nobs
428 print index DFFits --byobs
429

430 /*---POE5 Example 6.19---*/
431 # Nonlinear Least Squares Estimates for Simple Model
432 open "@workdir\data\nlls.gdt"
433 scalar b=1
434 nls y=b*x1+bˆ2*x2
435 params b
436 end nls
437

438 /*---POE5 Example 6.20---*/
439 # A Logistic Growth Curve
440 open "@workdir\data\steel.gdt"
441 # Starting Values
442 scalar alpha = 1 # Starting Values
443 scalar delta = .1
444 scalar beta = -1
445

446 nls eaf = alpha/(1 + exp(-beta-delta*t)) # Regression function
447 params alpha delta beta # Parameters: remember the order
448 end nls
449 matrix covmat = $vcv # Save the covariance
450 printf "\nInflection Point = %.3f\n ", -$coeff(beta)/$coeff(delta)
451 matrix d={0;$coeff(beta)/($coeff(delta)ˆ2);-1/$coeff(delta)} # Derivative
452 scalar se = sqrt(d’*covmat*d) # Std errors
453 t_interval(-$coeff(beta)/$coeff(delta),se,$df,.95) # confidence interval
454 printf "\nThe Delta estimated standard error is %.3f \n", se
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Chapter 7

Using Indicator Variables

In this chapter we will explore the use of indicator variables in regression analysis. The dis-
cussion will include how to create them, estimate models using them, and how to interpret results
that include them in the model. Several applications will be discussed as well. These include using
indicators to create interactions, regional indicators, and to perform Chow tests of regression equiv-
alence across different categories. Finally, their use in linear probability estimation is discussed and
their use in evaluating treatment effects and the differences-in-difference estimators that are used
in their estimation.

7.1 Indicator Variables

Indicator variables allow us to construct models in which some or all of the parameters of a
model can change for subsets of the sample. As discussed in Chapter 2, an indicator variable
indicates whether a certain condition is met. If it does the variable is equal to 1 and if not, it is 0.
They are often referred to as dummy variables, and gretl uses this term in a utility that is used
to create indicator variables.

Example 7.1 in POE5

The example used in this section is again based on the utown.gdt real estate data. First we will
open the dataset and examine the data.

1 open "@workdir\data\utown.gdt"
2 summary --simple
3 smpl 1 6
4 print --byobs
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5 smpl full
6 smpl $nobs-4 $nobs
7 print --byobs

The sample is limited to the first 6 observations in line 3. The two numbers that follow the smpl
command indicate where the subsample begins and where it ends. Logical statements can be
used as well to restrict the sample. Examples of this will be given later. In the current case, six
observations are enough to see that price and sqft are continuous, that age is discrete, and
that utown, pool, and fplace are likely to be indicator variables. The print statement is used
with the --byobs option so that the listed variables are printed in columns.

price sqft age utown pool fplace

1 205.452 23.46 6 0 0 1
2 185.328 20.03 5 0 0 1
3 248.422 27.77 6 0 0 0
4 154.690 20.17 1 0 0 0
5 221.801 26.45 0 0 0 1
6 199.119 21.56 6 0 0 1
...

996 257.195 22.84 4 1 0 0
997 338.295 30.00 11 1 0 1
998 263.526 23.99 6 1 0 0
999 300.728 28.74 9 1 0 0

1000 220.987 20.93 2 1 0 1

The sample is restored to completeness and then limited to the last five observations. These are
printed as well.

The simple summary statistics for the entire sample from line 2 appear below. These give an
idea of the range and variability of price, sqft and age. The means tell us about the proportions
of homes that are near the University and that have pools or fireplaces.

Mean Median S.D. Min Max
price 247.7 245.8 42.19 134.3 345.2
sqft 25.21 25.36 2.918 20.03 30.00
age 9.392 6.000 9.427 0.0000 60.00
utown 0.5190 1.000 0.4999 0.0000 1.000
pool 0.2040 0.0000 0.4032 0.0000 1.000
fplace 0.5180 1.000 0.4999 0.0000 1.000

You can see that half of the houses in the sample are near the University (519/1000). It is also
pretty clear that prices are measured in units of $1000 and square feet in units of 100. The oldest
house is 60 years old and there are some new ones in the sample (age=0). Minimums and maximums
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of 0 and 1, respectively usually mean that you have indicator variables. This confirms what we
concluded by looking at the first few observations in the sample.

7.1.1 Creating indicator variables

It is easy to create indicator variables in gretl. Suppose that we want to create a dummy
variable to indicate that a house is large. Large in this case means one that is larger than 2500
square feet.

1 series ld = (sqft>25)
2 discrete ld
3 print ld sqft --byobs

The first line generates a variable called ld that takes the value 1 if the condition in parentheses
is satisfied. It will be zero otherwise. The next line declares the variable to be discrete. Often this
is unnecessary. “Gretl uses a simple heuristic to judge whether a given variable should be treated
as discrete, but you also have the option of explicitly marking a variable as discrete, in which case
the heuristic check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where
this is taken to mean that they are all integer multiples of 0.25? If this criterion is met, we then
ask whether the variable takes on a fairly small set of distinct values, where fairly small is defined
as less than or equal to 8. If both conditions are satisfied, the variable is automatically considered
discrete.”(Cottrell and Lucchetti, 2018, p. 84)

Also from the Gretl Users Guide:

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A
dialog box will appear and, if the variable seems suitable, you will see a tick box
labeled “Treat this variable as discrete”. This dialog box [see Figure 7.1 below]
can also be invoked via the context menu (right-click on a variable and choose Edit
attributes) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command
takes one or more arguments, which can be either variables or list of variables.

So, the discrete declaration for ld in line 2 is not strictly necessary. Printing the indicator and
square feet by observation reveals that the homes where sqft > 25 in fact are the same as those
where ld = 1.
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ld sqft
1 0 23.46
2 0 20.03
3 1 27.77
4 0 20.17
5 1 26.45
6 0 21.56

Figure 7.1: From the main gretl window, F2 brings up the variable attributes dialog. From here
you can declare a variable to be discrete. The keyboard shortcut CRTL+e also initiates this dialog.

Indicator variables can also be created using the conditional assignment operator. The variable
ld could be created using:

1 series large = (sqft > 25) ? 1 : 0

The series would be called large and if the expression inside parentheses is true (i.e., the house
has more than 2500 square feet, then it takes the value that follows the question mark (?), which
is 1. If the statement is not true, it is assigned the value that follows the colon (i.e., 0). The
conditional assignment operator can be used with compound logic as well. In the next example, a
series called midprice is given the value 1 if the price falls between 215 and 275 using:

1 series midprice = (215 < price) && (price < 275) ? 1 : 0

The double ampersands means and in this case. If both are true (price greater than 215 and less
than 275, midprice is assigned the value 1. Otherwise, it is zero. A brief printout of the result
demonstrates success.

price sqft large midprice
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1 205.452 23.46 0 0
2 185.328 20.03 0 0
3 248.422 27.77 1 1
4 154.690 20.17 0 0
5 221.801 26.45 1 1

Finally, indicators can be interacted with other indicators or continuous variables using lists.
Suppose we create two lists. The first contains an indicator, utown, which is 0 if the house is
not located in the University Town subdivision. The second list contains both continuous and
indicators (sqft, age, and pool). A set of interaction variables can be created using the following
syntax:

1 list house = sqft age pool
2 list loc = utown
3 list inter = utown ˆ house
4 print inter -o

The list called inter in line 3 contains the interaction of the utown list and the loc list; the
operator is ˆ. Note, the indicator list must be to the left of ˆ. This produces:

sqft_utown_0 sqft_utown_1 age_utown_0

1 23.46 0.00 6
2 20.03 0.00 5
3 27.77 0.00 6
4 20.17 0.00 1
5 26.45 0.00 0

age_utown_1 pool_utown_0 pool_utown_1

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Recall that none of the first five houses in the sample are in University Town. So, when inter-
acted with utown=1, the interaction variables are all zero. Also, none of the houses had a pool,
hence pool_utown is 0 for utown=1 and for utown=0. Also, notice that the --byobs option is
abbreviated with the simple switch -o in the print statement.
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7.1.2 Estimating a Regression

The following regression in Example 7.1 is based on the University Town real estate data. The
regression is:

price = β1 + δ1utown + β2sqft + γ(sqft× utown)

+β3age + δ2pool + δ3fplace + e

The estimated model is

OLS, using observations 1–1000
Dependent variable: price

Coefficient Std. Error t-ratio p-value

const 24.5000 6.19172 3.9569 0.0001
utown 27.4530 8.42258 3.2594 0.0012
sqft 7.61218 0.245176 31.0477 0.0000
sqft utown 1.29940 0.332048 3.9133 0.0001
age −0.190086 0.0512046 −3.7123 0.0002
pool 4.37716 1.19669 3.6577 0.0003
fplace 1.64918 0.971957 1.6968 0.0901

Mean dependent var 247.6557 S.D. dependent var 42.19273
Sum squared resid 230184.4 S.E. of regression 15.22521
R2 0.870570 Adjusted R2 0.869788
F (6, 993) 1113.183 P-value(F ) 0.000000
Log-likelihood −4138.379 Akaike criterion 8290.758
Schwarz criterion 8325.112 Hannan–Quinn 8303.815

The coefficient on the slope indicator variable sqft × utown is significantly different from zero at
the 5% level. This means that size of a home near the university has a different impact on average
home price. Based on the estimated model, the following conclusions are drawn:

• The location premium for lots near the university is $27,453

• The change in expected price per additional square foot is $89.12 near the university and
$76.12 elsewhere

• Homes depreciate $190.10/year

• A pool is worth $4,377.30

• A fireplace is worth $1649.20
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The script that generates these is:

1 scalar premium = $coeff(utown)*1000
2 scalar sq_u = 10*($coeff(sqft)+$coeff(sqft_utown))
3 scalar sq_other = 10*$coeff(sqft)
4 scalar depr = 1000*$coeff(age)
5 scalar sp = 1000*$coeff(pool)
6 scalar firep = 1000*$coeff(fplace)
7 printf "\n University Premium = $%8.7g\n\
8 Marginal effect of sqft near University = $%7.6g\n\
9 Marginal effect of sqft elsewhere = $%7.6g\n\

10 Depreciation Rate = $%7.2f\n\
11 Pool = $%7.2f\n\
12 Fireplace = $%7.2f\n",premium,sq_u,sq_other,depr,sp,firep

Notice that most of the coefficients was multiplied by 1000 since home prices are measured in
$1000 increments. Square feet are measured in increments of 100, therefore its marginal effect is
multiplied by 1000/100 = 10. It is very important to know the units in which the variables are
recorded. This is the only way you can make ecnomic sense of your results.

7.2 Applying Indicator Variables

In this section a number of examples will be given about estimation and interpretation of
regressions that include indicator variables.

7.2.1 Interactions

Example 7.2 in POE5

Consider the simple wage equation

wage = β1 + β2educ + δ1black + δ2female

+γ(female× black) + e

where black and female are indicator variables. Taking the expected value of ln(wage) reveals each
of the cases considered in the regression

E[wage|educ] =


β1 + β2educ White, Males

β1 + δ1 + β2educ Black, Males

β1 + δ2 + β2educ White, Females

β1 + δ1 + δ2 + γ + β2educ Black, Females

(7.1)
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The reference group is the one where all indicator variables are zero, i.e., white males. The
parameter δ1 measures the effect of being black, relative to the reference group; δ2 measures the
effect of being female relative to the reference group, and γ measures the effect of being both black
and female.

The model is estimated using the cps5 small.gdt data which is from March 2013. The script is:

1 open "@workdir\data\cps5_small.gdt"
2 series black_female = black * female
3 list demographic = black female black_female
4 m1 <- ols wage const educ demographic
5 omit demographic --test-only

The results appear below:

m1: OLS, using observations 1–1200
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −9.482 1.958 −4.843 0.0000
educ 2.474 0.1351 18.31 0.0000
black −2.065 2.162 −0.9554 0.3396
female −4.223 0.8249 −5.120 0.0000
black female 0.5329 2.802 0.1902 0.8492

Mean dependent var 23.64004 S.D. dependent var 15.21655
Sum squared resid 214400.9 S.E. of regression 13.39459
R2 0.227720 Adjusted R2 0.225135
F (4, 1195) 88.09155 P-value(F ) 1.21e–65
Log-likelihood −4814.042 Akaike criterion 9638.084
Schwarz criterion 9663.534 Hannan–Quinn 9647.671

Holding the years of schooling constant, black males earn $2.07/hour less than white males. For
the same schooling, white females earn $4.22 less, and black females earn $.53 more. The coefficient
on the interaction term is not significant at the 5% level however.

A joint test of the hypothesis that δ1 = δ2 = γ = 0 is conducted using the omit command in
line 5. The results are:

Test on Model 1:

Null hypothesis: the regression parameters are zero for the variables
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black, female, black_female
Test statistic: F(3, 1195) = 10.5183, p-value 7.8715e-007
Omitting variables improved 0 of 3 information criteria.

The test statistic is 10.5 and the p-value from the F(3, 1195) distribution is well below 5%. The
null hypothesis is rejected.

and the result is

Test on Model 1:

Null hypothesis: the regression parameters are zero for the variables
black, female, black_female

Test statistic: F(3, 1195) = 10.5183, p-value 7.8715e-007
Omitting variables improved 0 of 3 information criteria.

7.2.2 Regional indicators

Example 7.3 in POE5

In this example a set of regional indicator variables is added to the model. There are four
mutually exclusive regions to consider. A reference group must be chosen, in this case for the
northeast. The model becomes:

wage = β1 + β2educ + δ1south + δ2midwest + δ3west + e

where black and female are indicator variables. Taking the expected value of ln(wage) reveals each
of the cases considered in the regression

E[wage|educ] =


β1 + β2educ Northeast

β1 + δ1 + β2educ South

β1 + δ2 + β2educ Midwest

β1 + δ3 + β2educ West

(7.2)

Once again, the omitted case (Northeast) becomes the reference group.

The regional dummy variables are added to the wage model for black females and is estimated
by least squares. The regional indicator variables are tested jointly for significance using the omit
statement.

1 list regions = south midwest west
2 m2 <- ols wage const educ demographic regions
3 omit regions --test-only
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The results from both models appear below:

OLS estimates
Dependent variable: wage

(1) (2)

const −9.482∗∗ −8.371∗∗

(1.958) (2.154)

educ 2.474∗∗ 2.467∗∗

(0.1351) (0.1351)

black −2.065 −1.878
(2.162) (2.180)

female −4.223∗∗ −4.186∗∗

(0.8249) (0.8246)

black female 0.5329 0.6190
(2.802) (2.801)

south −1.652
(1.156)

midwest −1.939
(1.208)

west −0.1452
(1.203)

n 1200 1200
R̄2 0.2251 0.2263
` −4814 −4812

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Workers in the south are expected to earn $1.65 less per hour than those in the northeast holding
other variables constant. Howerver, none of the regional indicators is individually significant at
5%. The joint test results are

Test on Model 2:

Null hypothesis: the regression parameters are zero for the variables
south, midwest, west

Test statistic: F(3, 1192) = 1.57923, p-value 0.192647

The test statistic has an F (3, 992) distribution under the null and is equal to 1.57. The p-value

237



is greater than 5% and we conclude that the indicators are not jointly significant. We could not
conclude that workers with the same education, race and gender in the regions earn different
amounts per hour.

7.2.3 Testing Equivalence of Two Regions

Example 7.4 in POE5

The question arises, is the wage equation different for the south than for the rest of the country?
There are several ways to do this in gretl. One uses the ability to interact variable lists. The other
uses smpl commands to estimate models in different subsamples. The chow command is able to test
the equivalence of subsample regressions based on a indicator variable to determine the subsamples.

To illustrate its use, consider the basic wage model

wage = β1 + β2educ + δ1black + δ2female

+γ(black× female) + e

Now, if wages are determined differently in the south, then the slopes and intercept for southerners
will be different.

The first method used to estimate the model uses the indicator variable south to create inter-
actions. The script is:

1 open "@workdir\data\cps5_small.gdt"
2 series black_female = black * female
3 list demographic = black female black_female
4 list xvars = const educ demographic
5 list inter = south ˆ xvars
6 ols wage inter

First, black and female are interacted and a series formed. This is included in the list demographic
along with its elements, black and female. All of the variables are assembled into another list
xvars which is then interacted with the indicator south in line 5. The regression is estimated in
line 6. The result appears below:

Model 4: OLS, using observations 1-1200
Dependent variable: wage

coefficient std. error t-ratio p-value
---------------------------------------------------------------
const_south_0 9.99910 2.38723 4.189 3.01e-05 ***
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const_south_1 8.41619 3.43377 2.451 0.0144 **
educ_south_0 2.52714 0.164196 15.39 6.95e-049 ***
educ_south_1 2.35572 0.238825 9.864 4.10e-022 ***
black_south_0 1.12757 3.52466 0.3199 0.7491
black_south_1 3.49279 2.80905 1.243 0.2140
female_south_0 4.15199 0.984150 4.219 2.64e-05 ***
female_south_1 4.34061 1.51665 2.862 0.0043 ***
black_female_s˜_0 4.45398 4.48577 0.9929 0.3210
black_female_s˜_1 3.66549 3.71079 0.9878 0.3235

Mean dependent var 23.64004 S.D. dependent var 15.21655
Sum squared resid 213774.0 S.E. of regression 13.40306
R-squared 0.229978 Adjusted R-squared 0.224154
F(9, 1190) 39.49009 P-value(F) 7.85e-62

This matches the results in the first column of Table 7.5 in POE5. By interacting each of the
variables including the constant with the indicator, we have essentially estimated two separate
regressions in one model. Note, the standard errors are computed based on the assumption that
the two subsamples have the same overall variance, σ2. The next approach does not assume this
and the standard errors will be a bit different.

To estimate the equations separately we employ the smpl command to restrict the sample to
either the south or elsewhere.

1 smpl full
2 smpl (south==1) --restrict
3 M_south <- ols wage xvars
4

5 smpl full
6 smpl (south==0) --restrict
7 M_other <- ols wage xvars

We start with the full sample and use the restrict statement with the boolean argument (south==1)
to limit the sample to observations where this is true. The model is estimated, the sample restored
to full and restricted again to only include observations where south==0. The two models appear
below:

OLS estimates
Dependent variable: wage

M south M other

const −8.416∗∗ −9.999∗∗

(3.871) (2.227)

educ 2.356∗∗ 2.527∗∗
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(0.2692) (0.1532)

black −3.493 1.128
(3.167) (3.288)

female −4.341∗∗ −4.152∗∗

(1.710) (0.9182)

black female 3.665 −4.454
(4.183) (4.185)

n 390 810
R̄2 0.1635 0.2597
` −1610 −3193

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient estimates match those that were obtained using the indicators. As expected the
standard errors differ.

A Chow test is used to test for structural breaks or changes in a regression. In other words,
one subsample has different intercept and slopes than another. It can be used to detect structural
breaks in time-series models or to determine whether, in our case, the south’s wages are determined
differently from those in the rest of the country. The easy method uses gretl’s built-in chow
command to test for a change in the regression. It must follow a regression and you must specify
the indicator variable that identifies the two subsets.

The null hypothesis is that the coefficients of the two subsets are equal and the alternative is
that they are not. The gretl commands to perform the test are:

1 smpl full
2 M_pooled <- ols wage xvars
3 chow south --dummy

Line 2 estimates the model using least squares. Line 3 contains the test command. It is initiated
by chow followed by the indicator variable that is used to define the subsets, in this case south.
The --dummy option is used to tell gretl that south is an indicator. When this option is used,
chow tests the null hypothesis of structural homogeneity with respect to the named indicator.
Essentially, gretl is creating interaction terms between the indicator and each of the regressors and
adding them to the model as done above in Model 4. The dialog box to perform the Chow test
is found in the model window. After estimating the regression via the GUI the model window
appears. Click Tests>Chow test on its menu bar to open the dialog box in Figure 7.2. The
results from the test appear below.
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Figure 7.2: Click Tests>Chow test from a model window to reveal the dialog box for the Chow
test. Select an indicator variable or a break point for the sample.

Augmented regression for Chow test
OLS, using observations 1-1200
Dependent variable: wage

coefficient std. error t-ratio p-value
----------------------------------------------------------------
const 9.99910 2.38723 4.189 3.01e-05 ***
educ 2.52714 0.164196 15.39 6.95e-049 ***
black 1.12757 3.52466 0.3199 0.7491
female 4.15199 0.984150 4.219 2.64e-05 ***
black_female 4.45398 4.48577 0.9929 0.3210
south 1.58291 4.18206 0.3785 0.7051
so_educ 0.171420 0.289824 0.5915 0.5543
so_black 4.62036 4.50710 1.025 0.3055
so_female 0.188612 1.80798 0.1043 0.9169
so_black_female 8.11947 5.82169 1.395 0.1634

Mean dependent var 23.64004 S.D. dependent var 15.21655
Sum squared resid 213774.0 S.E. of regression 13.40306
R-squared 0.229978 Adjusted R-squared 0.224154
F(9, 1190) 39.49009 P-value(F) 7.85e-62
Log-likelihood 4812.285 Akaike criterion 9644.570
Schwarz criterion 9695.470 Hannan-Quinn 9663.744

Chow test for structural difference with respect to south
F(5, 1190) = 0.697969 with p-value 0.6250

Notice that the p-value associated with the test is 0.625, thus providing insufficient evidence to
convince us that wages are structurally different in the south.

The other way to do this uses interactions. Though the chow command makes this unnecessary,
it is a great exercise that demonstrates how to create more general interactions among variables.
Replicating a portion of the script found on page (238):
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1 list xvars = const educ demographic
2 list inter = south ˆ xvars
3 m <- ols wage inter
4 restrict
5 b1-b2=0
6 b3-b4=0
7 b5-b6=0
8 b7-b8=0
9 b9-b10=0

10 end restrict

The first line includes each of the variables in the model that are to be interacted with south.
Line 2 adds the interactions to the list and the regression is estimated by least squares in line 3.
The coefficient restrictions are used to conduct the Chow test. The result indicates exactly what
is going on:

Restriction set
1: b[const_south_0] - b[const_south_1] = 0
2: b[educ_south_0] - b[educ_south_1] = 0
3: b[black_south_0] - b[black_south_1] = 0
4: b[female_south_0] - b[female_south_1] = 0
5: b[black_female_south_0] - b[black_female_south_1] = 0

Test statistic: F(5, 1190) = 0.697969, with p-value = 0.625034

Restricted estimates:

coefficient std. error t-ratio p-value
-----------------------------------------------------------------
const_south_0 9.48206 1.95797 4.843 1.45e-06 ***
const_south_1 9.48206 1.95797 4.843 1.45e-06 ***
educ_south_0 2.47370 0.135104 18.31 3.35e-066 ***
educ_south_1 2.47370 0.135104 18.31 3.35e-066 ***
black_south_0 2.06526 2.16163 0.9554 0.3396
black_south_1 2.06526 2.16163 0.9554 0.3396
female_south_0 4.22346 0.824927 5.120 3.56e-07 ***
female_south_1 4.22346 0.824927 5.120 3.56e-07 ***
black_female_south_0 0.532927 2.80203 0.1902 0.8492
black_female_south_1 0.532927 2.80203 0.1902 0.8492

Standard error of the regression = 13.3946

The coefficients of the constants, education, black, female, and black-female are restricted to be
equal to one another and the restriction is tested using an F -test. The test statistic is identical to
that produced by chow.

242



7.2.4 Log-Linear Models with Indicators

Examples 7.5 and 7.6 in POE5

In this example an indicator variable is included in a log-linear model. It is based on a wage
example used earlier.

ln(wage) = β1 + β2educ + δfemale + e (7.3)

Estimation of this model by least squares allows one to compute percentage differences between
the wages of females and males. As discussed in POE5, the algebra suggests that the percentage
difference is

100(eδ̂−1)% (7.4)

The model is estimated and the computation carried out in the following script.

1 open "@workdir\data\cps5_small.gdt"
2 logs wage
3 ols l_wage const educ female
4

5 scalar wd = exp($coeff(female))-1
6 printf "\nThe estimated male/female wage differential is\
7 = %.3f percent.\n", wd*100

The natural logarithm of wage is taken in line 2. Then the model is estimated an the percentage
difference computes.

m: OLS, using observations 1–1200
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const 1.623 0.06917 23.46 0.0000
educ 0.1024 0.004799 21.34 0.0000
female −0.1778 0.02794 −6.364 0.0000

Sum squared resid 272.2378 S.E. of regression 0.476900
R2 0.282005 Adjusted R2 0.280806
F (2, 1197) 235.0716 P-value(F ) 7.74e–87

The coefficient on education suggests that an additional year of schooling increases the average
wage by 10.24%, holding sex constant. The estimated wage differential between men and women
of similar education is 17.78% . Using equation (7.4), which is estimated in line 5, we obtain:

The estimated male/female wage differential is = -16.288 percent.
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for a computed difference is −16.288, suggesting that females earn about 16.29% less than males
who have comparable levels of education. An approximate standard error can be computed via the
delta method (discussed at length in section 5.6.1).

1 scalar variance = exp($coeff(female))ˆ2*$vcv[3,3]
2 scalar se = sqrt(variance)
3 printf "\nThe estimated standard error is\
4 = %.3f%% .\n", se*100

The estimated standard error is = 2.339%.

7.3 Linear Probability

A linear probability model is a linear regression in which the dependent variable is an indicator
variable. The model is estimated by least squares.

Suppose that

yi =

{
1 if alternative is chosen

0 if alternative is not chosen
(7.5)

Suppose further that the Pr(yi = 1) = πi. For a discrete variable

E[yi] = 1× Pr(yi = 1) + 0× Pr(yi = 0) = πi (7.6)

Thus, the mean of a binary random variable can be interpreted as a probability; it is the probability
that y = 1. When the regression E[yi|xi2, xi3, . . . , xiK ] is linear then E[yi] = β1+β2xi2+. . .+βKxiK
and the mean (probability) is modeled linearly.

E[yi|xi2, xi3, . . . , xiK ] = πi = β1 + β2xi2 + . . .+ βKxiK (7.7)

The variance of a binary random variable is

var[yi] = πi(1− πi) (7.8)

which means that it will be different for each individual. Replacing the unobserved probability,
E(yi), with the observed indicator variable requires adding an error to the model that we can
estimate via least squares.

Example 7.7 in POE5

In this following example we have 1140 observations from individuals who purchased Coke
or Pepsi. The dependent variable takes the value of 1 if the person buys Coke and 0 if Pepsi.
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These depend on the ratio of the prices, pratio, and two indicator variables, disp_coke and
disp_pepsi. These indicate whether the store selling the drinks had promotional displays of
Coke or Pepsi at the time of purchase.

The script to estimate the model is:

1 open "@workdir\data\coke.gdt"
2 summary
3

4 ols coke const pratio disp_coke disp_pepsi --robust
5 series p_hat = $yhat
6 series lt_zero = (p_hat<0)
7 matrix count = sum(lt_zero)
8 printf "\nThere are %.2g predictions that are less than zero.\n", count

The data are loaded and summary statistics computed. The regression is estimated by ordinary
least squares, with the binary variable coke as the dependent variable. The predictions from OLS
are saved as a series in line 5 and in line 6 we count the number of predictions that are less than
zero. The main problem with the LPM is that it can predict a probability that is either less than
zero or greater than 1, both of which are inconsistent with the theory of probability.

OLS, using observations 1–1140
Dependent variable: coke

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value
const 0.8902 0.0656 13.56 5.88e-039
pratio −0.4009 0.0607 −6.60 6.26e-011
disp coke 0.0772 0.0340 2.27 0.0235
disp pepsi −0.1657 0.0345 −4.81 1.74e-006

Sum squared resid 248.0043 S.E. of regression 0.467240
R2 0.120059 Adjusted R2 0.117736
F (3, 1136) 56.55236 P-value(F ) 4.50e–34

The model was estimated using a variance-covariance matrix estimator that is consistent when the
error terms of the model have variances that depend on the observation. That is the case here. I’ll
defer discussion of this issue until the next chapter when it will be discussed at some length.

The last line of the script indicates that 16 of the 1140 observation fell below zero:

There are 16 predictions that are less than zero.
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7.4 Treatment Effects

In order to understand the measurement of treatment effects, consider a simple regression model
in which the explanatory variable is a dummy variable, indicating whether a particular individual
is in the treatment or control group. Let y be the outcome variable, the measured characteristic
the treatment is designed to affect. Define the indicator variable d as

di =

{
1 if treated

0 if not treated
(7.9)

The effect of the treatment on the outcome can be modeled as

yi = β1 + β2di + ei i = 1, 2, . . . , N (7.10)

where ei represents the collection of other factors affecting the outcome. The regression functions
for the treatment and control groups are

E(yi) =

{
β1 + β2 if individual is treated

β1 if not treated
(7.11)

The treatment effect that we want to measure is β2. The least squares estimator of β2 is

b2 =

∑N
i=1(di − d̄)(yi − ȳ)∑N

i=1(di − d̄)2
= ȳ1 − ȳ0 (7.12)

where ȳ1 is the sample mean for the observations on y for the treatment group and ȳ0 is the sample
mean for the observations on y for the untreated group. In this treatment/control framework the
estimator b2 is called the difference estimator because it is the difference between the sample
means of the treatment and control groups.

Examples 7.8 in POE5

To illustrate, we use the data from project STAR described in POE5, Chapter 7.5.

The first thing to do is to take a look at the descriptive statistics for a subset of the variables.
The list v is created to hold the variable names of all the variables of interest. Then the summary
command is issued for the variables in v with the --by option. This option takes an argument,
which is the name of a discrete variable by which the subsets are determined. Here, small and
regular are binary, taking the value of 1 for small classes and 0 otherwise. This will lead to two
sets of summary statistics.

1 open "@workdir\data\star.gdt"
2 list v = totalscore small tchexper boy freelunch white_asian \
3 tchwhite tchmasters schurban schrural
4 summary v --by=small --simple
5 summary v --by=regular --simple
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Here is a partial listing of the output:

regular = 1 (n = 2005):

Mean Median S.D. Min Max
totalscore 918.0 912.0 73.14 635.0 1229
small 0.0000 0.0000 0.0000 0.0000 0.0000
tchexper 9.068 9.000 5.724 0.0000 24.00
boy 0.5132 1.000 0.4999 0.0000 1.000
freelunch 0.4738 0.0000 0.4994 0.0000 1.000
white_asian 0.6813 1.000 0.4661 0.0000 1.000
tchwhite 0.7980 1.000 0.4016 0.0000 1.000
tchmasters 0.3651 0.0000 0.4816 0.0000 1.000
schurban 0.3012 0.0000 0.4589 0.0000 1.000
schrural 0.4998 0.0000 0.5001 0.0000 1.000

small = 1 (n = 1738):

Mean Median S.D. Min Max
totalscore 931.9 924.0 76.36 747.0 1253
small 1.000 1.000 0.0000 1.000 1.000
tchexper 8.995 8.000 5.732 0.0000 27.00
boy 0.5150 1.000 0.4999 0.0000 1.000
freelunch 0.4718 0.0000 0.4993 0.0000 1.000
white_asian 0.6847 1.000 0.4648 0.0000 1.000
tchwhite 0.8625 1.000 0.3445 0.0000 1.000
tchmasters 0.3176 0.0000 0.4657 0.0000 1.000
schurban 0.3061 0.0000 0.4610 0.0000 1.000
schrural 0.4626 0.0000 0.4987 0.0000 1.000

Examples 7.9 in POE5

Next, we want to drop the observations for those classrooms that have a teacher’s aide and to
construct a set of variable lists to be used in the regressions that follow.

In addition it may be that assignment to treatment groups is related to one or more of the
observable characteristics (school size or teacher experience in this case). One way to control for
these omitted effects is to used fixed effects estimation. This is taken up in more detail later.
Here we introduce it to show off a useful gretl function called dummify.

The dummify command creates dummy variables for each distinct value present in a series, x.
In order for it to work, you must first tell gretl that x is in fact a discrete variable. We want to
create a set of indicator variables, one for each school in the dataset.

1 smpl aide != 1 --restrict
2 discrete schid
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3 list fe = dummify(schid)
4 list x1 = const small
5 list x2 = x1 tchexper

In the first line the smpl command is used to limit the sample (--restrict) to those observations
for which the aide variable is not equal (!=) to one. To include school effects, a set of indicator
variables is created based on the identification number of the school, schid. To be safe, it is declared
to be discrete in line 2 before using the dummify command in line 3 to create the indicators. The
indicators are put into a list called fe (fixed effects). The list commands are interesting. Notice
that x1 is constructed in a conventional way using list; to the right of the equality is the name
of two variables. Then x2 is created with the first elements consisting of the list, x1 followed by
the additional variable tchexper. Thus, x2 contains const, small, and tchexper.

Now each of the models is estimated with the --quiet option and put into a model table.

1 modeltab free
2

3 m1 <- ols totalscore x1 --quiet
4 modeltab add
5

6 m2 <- ols totalscore x2 --quiet
7 modeltab add
8

9 m3 <- ols totalscore x1 fe --quiet
10 omit fe --test-only
11 modeltab add
12

13 m4 <- ols totalscore x2 fe --quiet
14 t_interval($coeff(small),$stderr(small),$df,.95)
15 omit fe --test-only
16 modeltab add
17 modeltab show

For the models that include the school fixed effects, the omit statement is used to test the hypoth-
esis that the school differences are jointly insignificant. A portion of the results appears below:

OLS estimates
Dependent variable: totalscore

m1 m2 m3 m4

const 918.0** 907.6** 838.8** 830.8**
(1.667) (2.542) (11.56) (11.70)

small 13.90** 13.98** 16.00** 16.07**
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(2.447) (2.437) (2.223) (2.218)

tchexper 1.156** 0.9132**
(0.2123) (0.2256)

Dschid_123056 55.51** 52.90**
(16.16) (16.14)

Dschid_128068 48.27** 51.12**
(16.55) (16.53)

.....

School effects NO NO YES YES

n 3743 3743 3743 3743
Adj. R**2 0.0083 0.0158 0.2213 0.2245

lnL -2.145e+004 -2.144e+004 -2.096e+004 -2.095e+004

The coefficient on the small indicator variable is not affected by adding or dropping teacher
experience from the model. This is indirect evidence that it is not correlated with other regressors.
The effects of a small class increase a bit when the school fixed effects are taken into account. The
effect of teacher experience on test scores falls quite a bit at the same time. The estimated slopes
in columns (3) and (4) match those in POE5. The intercepts are different only because a different
reference group was used. The substance of the results is unaffected.

The hypothesis tests for fixed effects are significant at 5%. The test results produced for m3
and m4, respectively are:

Test statistic: F(78, 3663) = 14.1177, p-value 1.70964e-154
Test statistic: F(78, 3662) = 13.9048, p-value 6.65072e-152

Also, the 95% confidence interval for the coefficient of small in model four (summoned in line 14)
is:

The 95% confidence interval centered at 16.066 is (11.7165, 20.4148)

It includes each of the other estimates and therefore we would conclude that there is no measurable
difference between the size of the effects of small class size on test scores.

7.4.1 Using Linear Probability to Verify Random Assignment

A number of variables are omitted from the model and it is safe to do so as long as they are not
correlated with regressors. This would be evidence of assignments to the control group that are
systematic. This can be checked using a regression. Since small is an indicator, we use a linear
probability regression.
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Example 7.11 in POE5

The independent variables include a constant, boy white asian, tchexper and freelunch.
The result is

OLS, using observations 1–3743
Dependent variable: small

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value
const 0.4665 0.0253 18.46 7.33e-073
boy 0.0014 0.0163 0.09 0.931
white asian 0.0044 0.0197 0.22 0.823
tchexper −0.0006 0.0014 −0.42 0.676
freelunch −0.0009 0.0183 −0.05 0.961

Sum squared resid 930.9297 S.E. of regression 0.499044
R2 0.000063 Adjusted R2 -0.001007
F (4, 3738) 0.059396 P-value(F ) 0.993476

The overall-F statistic is not significant at 10%. None of the individual t-ratios are significant.
Finally, a 95% confidence interval is obtained using t_interval. We find:

The 95% confidence interval centered at 0.466 is (0.4170, 0.5160)

which includes 0.5, suggesting that assigning children to a small or large class is as fair as a fair
coin flip. I think it is safe to omit these other regressors from the model.

7.5 Differences-in-Differences Estimation

If you want to learn about how a change in policy affects outcomes, nothing beats a randomized
controlled experiment. Unfortunately, these are rare in economics because they are either very
expensive of morally unacceptable. No one want to determines what the return to schooling is by
randomly assigning people to a prescribed number of schooling years. That choice should be yours
and not someone else’s.

But, the evaluation of policy is not hopeless when randomized controlled experiments are im-
possible. Life provides us with situations that happen to different groups of individuals at different
points in time. Such events are not really random, but from a statistical point of view the treatment
may appear to be randomly assigned. That is what so-called natural experiments are about.
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You have two groups of similar people. For whatever reason, one group gets treated to the policy
and the other does not. Comparative differences are attributed to the policy.

Examples 7.12 and 7.13 in POE5

In the example, we will look at the effects of a change in the minimum wage. It is made possible
because the minimum wage is raised in one state and not another. The similarity of states is
important because the non-treated state is going to be used for comparison.

The data come from Card and Krueger and are found in the file njmin3.gdt. We will open it
and look at the summary statistics by state.

1 open "@workdir\data\njmin3.gdt"
2 smpl d = 0 --restrict
3 summary fte --by=nj --simple
4 smpl full
5 smpl d = 1 --restrict
6 summary fte --by=nj --simple
7 smpl full

Since we want to get a picture of what happened in NJ and PA before and after NJ raised the
minimum wage we restrict the sample to before the increase. Then get the summary statistics for
fte by state in line 3. Restore the full sample and then restrict it to after the policy d=1. Repeat
the summary statistics for fte. The results suggest not much difference at this point.

nj = 0 (n = 79) d=0:

Mean Minimum Maximum Std. Dev.
fte 23.331 7.5000 70.500 11.856

nj = 1 (n = 331) d=0:
Mean Minimum Maximum Std. Dev.

fte 20.439 5.0000 85.000 9.1062

nj = 0 (n = 79) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.166 0.00000 43.500 8.2767

nj = 1 (n = 331) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.027 0.00000 60.500 9.2930

Now, make some variable list and run a few regressions

251



1 list x1 = const nj d d_nj
2 list x2 = x1 kfc roys wendys co_owned
3 list x3 = x2 southj centralj pa1
4

5 ols fte x1
6 modeltab add
7 ols fte x2
8 modeltab add
9 ols fte x3

10 modeltab add
11 modeltab show

The first set of variables include the indicator variables nj, d and their interaction. The second
set adds more indicators for whether the jobs are at kfc, roys, or wendys and if the store is
companied owned. The final set add more indicators for location.

The results from the three regressions appear below:

OLS estimates
Dependent variable: fte

(1) (2) (3)

const 23.33∗∗ 25.95∗∗ 25.32∗∗

(1.072) (1.038) (1.211)

nj −2.892∗∗ −2.377∗∗ −0.9080
(1.194) (1.079) (1.272)

d −2.166 −2.224 −2.212
(1.516) (1.368) (1.349)

d nj 2.754 2.845∗ 2.815∗

(1.688) (1.523) (1.502)

kfc −10.45∗∗ −10.06∗∗

(0.8490) (0.8447)

roys −1.625∗ −1.693∗∗

(0.8598) (0.8592)

wendys −1.064 −1.065
(0.9292) (0.9206)

co owned −1.169 −0.7163
(0.7162) (0.7190)

southj −3.702∗∗

(0.7800)

centralj 0.007883
(0.8975)
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pa1 0.9239
(1.385)

n 794 794 794
R̄2 0.0036 0.1893 0.2115
` −2904 −2820 −2808

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on d nj is the difference-in-differences estimator of the change in employment due
to a change in the minimum wage. It is not significantly different from zero in this case and we can
conclude that raising the minimum wage in New Jersey did not adversely affect employment.

In the previous analysis we did not exploit an important feature of Card and Krueger’s data.
The same restaurants were observed before and after in both states–in 384 of the 410 observations.
It seems reasonable to limit the before and after comparison to the same units.

This requires adding an individual fixed effect to the model and dropping observations that
have no before or after with which to compare. Also, you will need to limit the sample to the
unique observations (in the original, each is duplicated).

1 smpl missing(demp) != 1 --restrict
2 smpl d = 1 --restrict
3 ols demp const nj

Fortunately, the data set includes the ∆FTE where it is called demp. Dropping the observations for
demp that are missing and using least squares to estimate the parameters of the simple regression
yield: ̂demp = −2.28333

(1.0355)
+ 2.75000

(1.1543)
nj

T = 768 R̄2 = 0.0134 F (1, 766) = 11.380 σ̂ = 8.9560

(standard errors in parentheses)

The coefficient on nj is not significantly less than zero at the 5% level and we conclude that the
increase in minimum wage did not reduce employment.

7.6 Script
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1 set messages off
2 # function estimates confidence intervals based on the t-distribution
3 function void t_interval (scalar b, scalar se, scalar df, scalar p)
4 scalar alpha = (1-p)
5 scalar lb = b - critical(t,df,alpha/2)*se
6 scalar ub = b + critical(t,df,alpha/2)*se
7 printf "\nThe %2g%% confidence interval centered at %.3f is\
8 (%.4f, %.4f)\n", p*100, b, lb, ub
9 end function

10

11 # Example 7.1
12 # Indicator Variables in Real Estate Example
13 open "@workdir\data\utown.gdt"
14

15 # summarize and examine
16 summary --simple
17 smpl 1 6
18 print --byobs
19 smpl full
20 smpl $nobs-4 $nobs
21 print --byobs
22

23 * estimate dummy variable regression
24 smpl full
25 series utown_sqft = utown*sqft
26 list xvars = const sqft utown age pool fplace utown_sqft
27 ols price xvars
28 omit utown utown_sqft --test-only
29

30 # generate some marginal effects
31 scalar premium = $coeff(utown)*1000
32 scalar sq_u = 10*($coeff(sqft)+$coeff(utown_sqft))
33 scalar sq_other = 10*$coeff(sqft)
34 scalar depr = 1000*$coeff(age)
35 scalar sp = 1000*$coeff(pool)
36 scalar firep = 1000*$coeff(fplace)
37 printf "\n University Premium = $%8.7g\n\
38 Marginal effect of sqft near University = $%.2f\n\
39 Marginal effect of sqft elsewhere = $%.2f\n\
40 Depreciation Rate = $%7.2f per year\n\
41 Pool = $%7.2f\n\
42 Fireplace = $%7.2f\n",premium,sq_u,sq_other,depr,sp,firep
43 omit utown_sqft --test-only
44

45 # examples creating indicator variables
46 open "@workdir\data\utown.gdt"
47 series ld = (sqft>25)
48 discrete ld
49

50 series large = (sqft > 25) ? 1 : 0
51 series midprice = (215 < price) && (price < 275) ? 1 : 0
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52 smpl 1 5
53 print price sqft large midprice --byobs
54

55 smpl full
56 list house = sqft age pool
57 list loc = utown
58 list inter = utown ˆ house
59 print inter -o
60

61 /*---POE5 Example 7.2---*/
62 # Applying indicator variables in a wage equation
63

64 open "@workdir\data\cps5_small.gdt"
65 summary --simple
66

67 series black_female = black * female
68 list demographic = black female black_female
69 m1 <- ols wage const educ demographic
70 omit demographic --test-only
71

72 /*---POE5 Example 7.3---*/
73 # Add regional indicators to wage equation
74 list regions = south midwest west
75 m2 <- ols wage const educ demographic regions
76 omit regions --test-only
77

78 /*---POE5 Example 7.4---*/
79 # Testing the equivalence of two regressions
80 list xvars = const educ demographic
81 list inter = south ˆ xvars
82 m <- ols wage inter
83 restrict
84 b1-b2=0
85 b3-b4=0
86 b5-b6=0
87 b7-b8=0
88 b9-b10=0
89 end restrict
90

91 # Estimate separate regressions
92 smpl (south==1) --restrict_south <- ols wage xvars
93

94 smpl full
95 smpl (south==0) --restrict
96 M_other <- ols wage xvars
97

98 smpl full
99 M_pooled <- ols wage xvars

100 chow south --dummy
101

102 /*---POE5 Example 7.5---*/
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103 * Log-linear models
104 open "@workdir\data\cps5_small.gdt"
105 logs wage
106 m <- ols l_wage const educ female
107

108 /*---POE5 Example 7.6---*/
109 scalar wd = exp($coeff(female))-1
110 printf "\nThe estimated male/female wage differential is\
111 = %.3f percent.\n", wd*100
112

113 scalar variance = exp($coeff(female))ˆ2*$vcv[3,3]
114 scalar se = sqrt(variance)
115 printf "\nThe estimated standard error is\
116 = %.3f%%.\n", se*100
117

118 /*---POE5 Example 7.7---*/
119 # Linear Probability Model
120

121 open "@workdir\data\coke.gdt"
122 summary
123

124 ols coke const pratio disp_coke disp_pepsi
125 series p_hat = $yhat
126 series lt_zero = (p_hat<0)
127 matrix count = sum(lt_zero)
128 printf "\nThere are %.2g predictions that are less than zero.\n", count
129

130 /*---POE5 Example 7.8---*/
131 open "@workdir\data\star.gdt"
132 list v = totalscore small tchexper boy freelunch white_asian \
133 tchwhite tchmasters schurban schrural
134 summary v --by=small --simple
135 summary v --by=regular --simple
136 summary v
137 smpl (aide == 0) --restrict
138 summary --simple
139

140 # create lists
141 list x1 = const small
142 list x2 = x1 tchexper
143 list x3 = x2 boy freelunch white_asian
144 list x4 = x3 tchwhite tchmasters schurban schrural
145

146 summary totalscore x4 --by=small --simple
147

148 corr x3
149

150 /*---POE5 Example 7.9 and 7.10---*/
151 # regressions
152 open "@workdir\data\star.gdt"
153 discrete schid
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154 list fe = dummify(schid)
155 list x1 = const small
156 list x2 = x1 tchexper
157 smpl aide != 1 --restrict
158

159 modeltab free
160

161 m1 <- ols totalscore x1 --quiet
162 modeltab add
163

164 m2 <- ols totalscore x2 --quiet
165 modeltab add
166

167 m3 <- ols totalscore x1 fe
168 omit fe --test-only
169 modeltab add
170

171 m4 <- ols totalscore x2 fe --quiet
172 t_interval($coeff(small),$stderr(small),$df,.95)
173 omit fe --test-only
174 modeltab add
175 modeltab show
176

177 /*---POE5 Example 7.11---*/
178 # checking using linear probability models
179 ols small const boy white_asian tchexper freelunch --robust
180 t_interval($coeff(const), $stderr(const), $df,.95)
181

182 # checking randomness using probit: see Chapter 16
183 probit small const boy white_asian tchexper freelunch
184 probit small const boy white_asian tchexper freelunch d
185

186 /*---POE5 Example 7.12---*/
187 # Differences in Differences Estimators
188

189 open "@workdir\data\njmin3.gdt"
190 smpl d == 0 --restrict
191 summary fte --by=nj --simple
192 smpl full
193 smpl d == 1 --restrict
194 summary fte --by=nj --simple
195 smpl full
196

197 list x1 = const nj d d_nj
198 list x2 = x1 kfc roys wendys co_owned
199 list x3 = x2 southj centralj pa1
200

201 summary x1 fte
202

203 ols fte x1
204 modeltab add
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205 ols fte x2
206 modeltab add
207 ols fte x3
208 modeltab add
209 modeltab show
210 modeltab free
211

212 # Example 7.13
213 smpl missing(demp) != 1 --restrict
214 ols demp const nj
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Chapter 8

Heteroskedasticity

The simple linear regression models of Chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the yi or the ei) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This describes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

yi = β1 + β2xi2 + · · ·+ βkxik + ei i = 1, 2, . . . , N (8.1)

where yi is the dependent variable, xij is the ith observation on the jth independent variable, j =
2, 3, . . . , k, ei is random error, and β1, β2, . . . , βk are the parameters you want to estimate. Just as in
the simple linear regression model, ei, have an average value of zero for each value of the independent
variables and are uncorrelated with one another. The difference in this model is that the variance
of ei now depends on i, i.e., the observation to which it belongs. Indexing the variance with the
i subscript is just a way of indicating that observations may have different amounts of variability
associated with them. The error assumptions can be summarized as ei|xi2, xi3, . . . xik iid N(0, σ2

i ).

The intercept and slopes, β1, β2, . . ., βk, are consistently estimated by least squares even if
the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1
and testing hypotheses about the βs when the data are heteroskedastic are explored.

8.1 Food Expenditure Example
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Example 8.1 in POE5

First, the simple linear regression model of food expenditures is estimated using least squares.
The model is

food expi = β1 + β2incomei + ei i = 1, 2, . . . , n (8.2)

where food expi is food expenditure and incomei is income of the ith individual. When the errors
of the model are heteroskedastic, then the least squares estimator of the coefficients is consistent.
That means that the least squares point estimates of the intercept and slope are useful. However,
when the errors are heteroskedastic the usual least squares standard errors are inconsistent and
therefore should not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, you should use a
consistent estimator of their standard errors to construct valid tests and intervals. A simple com-
putation proposed by White accomplishes this. Standard errors computed using White’s technique
are loosely referred to as robust, though one has to be careful when using this term; the standard
errors are robust to the presence of heteroskedasticity in the errors of model (but not necessarily
other forms of model misspecification).

Open the food.gdt data in gretl and estimate the model using least squares.

1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3 gnuplot food_exp income --fit=linear --output=display

This yields the usual least squares estimates of the parameters, but produces the wrong standard
errors when the data are heteroskedastic. To get an initial idea of whether this might be the case a
plot of the data is generated and the least squares line is graphed. If the data are heteroskedastic
with respect to income then there will be more variation around the regression line for some levels
of income. The graph is shown in Figure 8.3 and this appears to be the case. There is significantly
more variation in the data for high incomes than for low.

8.1.1 The plot block command

Before continuing with the examples from POE5, the plot command will be discussed and
added to our repertoire of gretl tools. The plot block provides an alternative to the gnuplot
command which may be more convenient when you are producing an elaborate plot (with several
options and/or gnuplot commands to be inserted into the plot file).

A plot block starts with the command-word plot followed by the required argument that
specifies the data to be plotted: this should be the name of a list, a matrix, or a single time
series.
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Figure 8.1: Food expenditure regression.

Figure 8.2: Food expenditure residuals

Figure 8.3: Absolute value of least squares residuals against income using with loess fit
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If a list or matrix is given, the last element (list) or column (matrix) is assumed to be the
x-axis variable and the other(s) the y-axis variable(s), unless the --time-series option is given
in which case all the specified data go on the y axis.

The starting line may be prefixed with the savename <- to save a plot as an icon in the GUI
program. The block ends with end plot.

The preceding plot is reconfigured using the plot block to present a more uniform appearance
for this section. The code is listed below and then explained.

1 list plotlist = food_exp income
2 string title = "Weekly Food Expenditures vs Income"
3 string xname = "Weekly Income"
4 string yname = "Food Expenditures per Week"
5 g1 <- plot plotlist
6 options fit=linear
7 literal set linetype 1 lc rgb "dark-orange" pt 7
8 literal set linetype 2 lc rgb "black" lw 3
9 printf "set title \"%s\"", title

10 printf "set xlabel \"%s\"", xname
11 printf "set ylabel \"%s\"", yname
12 end plot --output=display

The data to be plotted can be a matrix or a list of series. In this example we plot two series,
food_exp and income. These are placed into the list called plotlist. Three strings are
created in lines 2-4, one for the title, one for the label on the x-axis and one for the label on y.

In gnuplot the series (or matrix columns) are given numbers starting at 1. In this example,
food_exp is series 1. Within the body of the plot block the literal command is used to pass
commands directly to gnuplot . Lines 7 and 8 do this. In line 7 the linetype for series 1 is set.
lc stands for line color. Line color is expressed in rgb colors (red, green, blue) and is set to the
color dark-orange. The default line markers is changed to points using pt, and the number 7
indicates the type of point to use. 7 corresponds to filled in dots.

The second thing plotted in this graph is the linear fit that was delivered by the gretl option
in line 6. To change the line color to black and to make it wider than the default using lw
(linewidth).

For help in selecting linewidths, colors, or point types you can launch a gnuplot session and
type test at the prompt. This will yield the following (Figure 8.4) graph of available choices.

To determine the available colors in gretl type the following in the console:

eval readfile("@gretldir/data/gnuplot/gpcolors.txt")
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Figure 8.4: Type test at the gnuplot command prompt to reveal this handy cheat sheet docu-
menting gnuplot options.

You can use the name of the color or its hex equivalent (preceded by a #). The contents of this
file provide the translation to gnuplot, so it is easiest to use those.

The plot will be saved to a session as an icon labeled g1. The plot command block begins
with plot plotlist. This is followed by some options (gretl options) and some commands
that will be taken in for use in gnuplot. literal that the following command will be passed
to gnuplot as is (i.e., literally). The printf commands are also passed literally to gnuplot as
gnuplot printf commands.

There are two literal commands. The first sets the line type, changes the color of the dots, and
changes the default pointtypoe markers to filled in dots (pt 7). The second literal suppresses the
variable key label.

The printf commands print the previously defined strings to the title, x-axis and y-axis. The
graph appears in Figure 8.5.

8.1.2 Robust Covariance Estimation

Example 8.2 in POE5

To obtain the heteroskedasticity robust standard errors, simply add the --robust option to
the regression as shown in the following gretl script. After issuing the --robust option, the
standard errors stored in the accessor $stderr(income) are the robust ones.
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Figure 8.5: Plot of food expenditures against income with least squares fit.

1 ols food_exp const income --robust
2 t_interval($coeff(income),$stderr(income),$df,.95)

In the script, we have used the t_interval function to produce the interval. Remember, the
degrees of freedom from the preceding regression are stored in $df. The first argument in the
function indicates the desired distribution, and the last is the coverage probability of the confidence
interval.

The script produces

The 95% confidence interval centered at 10.210 is (6.5474, 13.8719)

This can also be done from the pull-down menus. Select Model>Ordinary Least Squares
(see Figure 2.6) to generate the dialog to specify the model shown in Figure 8.6 below. Note,
the check box to generate ‘robust standard errors’ is circled. You will also notice that there is
a button labeled HC1 just to the right of the ‘Robust standard errors’ check box. Clicking this
button reveals a dialog from which two options can be selected. One can choose to select from the
available heteroskedasticity option or by cluster. The cluster option will be discussed later int this
book. Select the first choice to reveal a preferences dialog box shown in Figure 8.7.

To reproduce the results in Hill et al. (2018), select HC1 (gretl’s default) from the pull-down
list. As you can see, other gretl options can be selected here that affect the default behavior of
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Figure 8.6: Check the box for (heteroskedasticity) robust standard errors.

the program. The particular variant it uses depends on which dataset structure you have defined
for your data. If none is defined, gretl assumes you have cross-sectional data.

The model results for the food expenditure example appear in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
based on the variant of White’s standard errors chosen using the ‘configure’ button. In this case, I
chose HC3, which some suggest performs slightly better in small samples. The result is:

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 25.4153 141.417

income 10.2096 6.39125 14.0280

8.2 Detecting Heteroskedasticity using Residual Plots

In the discussion above we used a graph of the data and the regression function to give us an
initial reading of whether the data are heteroskedastic. Residual plots are equally useful, but some
care must be taken in generating and interpreting them. By their very nature, plots allow you to
‘see’ relationships one variable at a time. If the heteroskedasticity involves more than one variable
they may not be very revealing.

In Figure 8.8 is a plot of the least squares residuals against income. It appears that for larger
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Figure 8.7: Set the method for computing robust standard errors. These are located under the
HCCME tab. From the pull-down list for cross-sectional data choose an appropriate option–HC1
in this case.

levels of income there is much higher variance in the residuals.

The graph was generated from the model window by selecting Graphs>Residual plot>Against
income. I also right-clicked on the graph, chose Edit and altered its appearance a bit. Summoning
the dialog looks like

Of course, you can also generate graphs from a script, which in this case is:
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OLS, using observations 1–40
Dependent variable: food exp

Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 83.4160 28.6509 2.9115 0.0060
income 10.2096 1.88619 5.4128 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R2 0.385002 Adjusted R2 0.368818
F (1, 38) 29.29889 P-value(F ) 3.63e–06

Table 8.1: Least squares estimates with the usual and robust standard errors.

1 ols food_exp const income --robust
2 series res = $uhat
3 setinfo res -d "Least Squares Residuals" -n "Residual"
4

5 list plotmat = res income
6 string title = "Least squares residuals vs Income"
7 string xname = "Weekly Income"
8 string yname = "Residual"
9 g2 <- plot plotmat

10 options fit=linear
11 literal set linetype 1 lc rgb "black" pt 7
12 literal set nokey
13 printf "set title \"%s\"", title
14 printf "set xlabel \"%s\"", xname
15 printf "set ylabel \"%s\"", yname
16 end plot --output=display

In this script we continue to expand the use of gretl functions. The residuals are saved in line 2.
Then in line 3 the setinfo command is used to change the description and the graph label using
the -d and -n switches, respectively. Then gnuplot is called to plot res against income. This
time the output is directed to a specific file. Notice that no suffix was necessary. To view the file
in MS Windows, simply launch wgnuplot and load ’olsres.plt’.

Another graphical method that shows the relationship between the magnitude of the residuals
and the independent variable is shown below:

1 series abs_e = abs(res)
2 setinfo abs_e -d "Absolute value of the LS\
3 Residuals" -n "Absolute Value of Residual"
4
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Figure 8.8: Plot of least squares residuals in the food expenditures model against income.

5 list plotmat = abs_e income
6 string title = "Absolute value of OLS residuals vs Income"
7 string xname = "Weekly Income"
8 string yname = "|e|"
9 g3 <- plot plotmat

10 options fit=loess
11 literal set linetype 1 lc rgb "black" pt 7
12 literal set nokey
13 printf "set title \"%s\"", title
14 printf "set xlabel \"%s\"", xname
15 printf "set ylabel \"%s\"", yname
16 end plot --output=display

The graph appears in Figure 8.9. To generate this graph two things have been done. First, the
absolute value of the least squares residuals have been saved to a new variable called abs e. Then
these are plotted against income as a scatter plot and as a locally weighted, smoothed scatterplot
estimated by process called loess.

The basic idea behind loess is to create a new variable that, for each value of the dependent
variable, yi, contains the corresponding smoothed value, ysi . The smoothed values are obtained
by running a regression of y on x by using only the data (xi, yi) and a few of the data points
near this one. In loess, the regression is weighted so that the central point (xi, yi) gets the highest
weight and points that are farther away (based on the distance | xj − xi |) receive less weight.
The estimated regression line is then used to predict the smoothed value ysi for yis only. The
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Figure 8.9: Plot of the absolute value of the food expenditures model residuals against income with
loess fit.

procedure is repeated to obtain the remaining smoothed values, which means that a separate
weighted regression is performed for every point in the data. Obviously, if your data set is large,
this can take a while. Loess is said to be a desirable smoother because of it tends to follow the data.
Polynomial smoothing methods, for instance, are global in that what happens on the extreme left
of a scatterplot can affect the fitted values on the extreme right.

One can see from the graph in Figure 8.9 that the residuals tend to get larger as income rises,
reaching a maximum at 28. The residual for an observation having the largest income is relatively
small and the locally smoothed prediction causes the line to start trending downward.

8.3 Weighted Least Squares

Example 8.3 in POE5

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of the
regression line as those observations having low variance. The idea of generalized least squares in
this context is to reweigh the data so that all the observations contain the same level of information
(i.e., same variance) about the location of the regression line. So, observations that contain more
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noise are given less weight and those containing more signal a higher weight. Reweighing the data
in this way is known is referred to as weighted least squares (WLS). This descriptive term is
the one used by gretl as well.

Suppose that the errors vary proportionally with xi according to

var(ei) = σ2xi (8.3)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of xi. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

1
√
xi

var(ei) = σ2 (8.4)

So, multiply equation (8.1) by 1/
√
xi to complete the transformation. The transformed model is

homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

Gretl makes this easy since it contains a function to reweigh all the observations according to a
weight you specify. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/

√
xi you need to use its square

1/xi as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, x, and the constant and
running the regression. The script shown below does this.

Create the weight (line 4), then call the function wls as in line 5. In the second part of the
script, the data are transformed manually and the weighted data are used with OLS to produce
the same result.

open "@workdir\data\food.gdt"

#GLS using built in function
series w = 1/income
wls w food_exp const income
t_interval($coeff(income),$stderror(income),$df,.95)

#GLS using OLS on transformed data
series wi = 1/sqrt(income)
series ys = wi*food_exp
series xs = wi*x
series cs = wi
ols ys cs xs

The first argument after wls is the name of the weight variable. This is followed by the regression
to which it is applied. Gretl multiplies each variable (including the constant) by the square root
of the given weight and estimates the regression using least squares.
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In the next block of the program, wi = 1/
√
xi is created and used to transform the dependent

variable, x and the constant. Least squares regression using this manually weighted data yields the
same results as you get with gretl’s wls command. In either case, the output of weighted least
squares is interpreted in the usual way.

The weighted least squares estimation yields:

Model 6: WLS, using observations 1–40
Dependent variable: food exp

Variable used as weight: w

Coefficient Std. Error t-ratio p-value

const 78.6841 23.7887 3.3076 0.0021
income 10.4510 1.38589 7.5410 0.0000

Statistics based on the weighted data:

Sum squared resid 13359.45 S.E. of regression 18.75006
R2 0.599438 Adjusted R2 0.588897
F (1, 38) 56.86672 P-value(F ) 4.61e–09
Log-likelihood −172.9795 Akaike criterion 349.9591
Schwarz criterion 353.3368 Hannan–Quinn 351.1804

Statistics based on the original data:

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304611.7 S.E. of regression 89.53266

and the 95% confidence interval for the slope β2 is (7.645, 13.257).

To gain some insight into the effect on the model’s errors, plot the OLS residuals and the GLS
residuals shown in Figure 8.10.

1 ols food_exp const income
2 series ehat = $uhat
3 wls w food_exp const income
4 series ehat_gls=$uhat/sqrt(income)
5

6 list plotmat = ehat_gls ehat income
7 string title = "GLS vs OLS residuals"
8 string xname = "Weekly Income"
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9 string yname = "Residual"
10 g3 <- plot plotmat
11 option single-yaxis
12 literal set linetype 1 lc rgb "black" pt 7
13 literal set key on
14 printf "set title \"%s\"", title
15 printf "set xlabel \"%s\"", xname
16 printf "set ylabel \"%s\"", yname
17 end plot --output=display

Notice that the GLS residuals are divided by the
√

income to reweigh them. The GLS residuals
appear to be homoskedatic relative to OLS.

Figure 8.10: OLS and GLS residuals.

8.3.1 Heteroskedastic Model

A commonly used model for the error variance is the multipicative heteroskedasticity
model. It appears below in equation 8.5.

σ2
i = exp (α1 + α2zi) (8.5)

The variable zi is an independent explanatory variable that determines how the error variance
changes with each observation. You can add additional zs if you believe that the variance is related
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to them (e.g., σ2
i = exp (α1 + α2zi2 + α3zi3)). It’s best to keep the number of zs relatively small.

The idea is to estimate the parameters of (8.5) using least squares and then use predictions as
weights to transform the data.

In terms of the food expenditure model, let zi = ln(incomei). Then, taking the natural loga-
rithms of both sides of (8.5) and adding a random error term, vi, yields

ln (σ2
i ) = α1 + α2zi + vi (8.6)

To estimate the αs, first estimate the linear regression (8.2) (or more generally, 8.1) using least
squares and save the residuals. Square the residuals, then take the natural log; this forms an
estimate of ln (σ2

i ) to use as the dependent variable in a regression. Now, add a constant and the
zs to the right-hand side of the model and estimate the αs using least squares.

The regression model to estimate is

ln (ê2
i ) = α1 + α2zi + vi (8.7)

where ê2
i are the least squares residuals from the estimation of equation (8.1). The predictions

from this regression can then be transformed using the exponential function to provide weights for
weighted least squares.

For the food expenditure example, the gretl code appears below.

1 open "@workdir\data\food.gdt"
2 logs income
3 list x = const income
4 list z = const l_income
5

6 m1 <- ols food_exp x
7

8 # FGLS inconsistent for alpha
9 series lnsighat = log($uhat*$uhat)

10 ols lnsighat z
11 matrix alpha = $coeff
12 series predsighat = exp($yhat)
13 series w = 1/predsighat
14 m2 <- wls w food_exp const income
15 series ehat_fgls = $uhat/sqrt(predsighat)
16

17 #FGLS consistent for alpha
18 matrix alpha[1]=alpha[1]+1.2704
19 series wt = 1/exp(lincomb(z, alpha))
20 m3 <- wls wt food_exp x

The first four lines get the data set up for use; the data are loaded, natural log of income is added
to the data, and two lists needed for the regression and the heteroskedasticity function are created.
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Line 6 estimates the linear regression using least squares and saved to the session as an icon labelled
m1.

Next, a new variable is generated (lnsighat) that is the natural log of the squared residuals
from the preceding regression. Estimate the skedastic function using least squares and put the
estimates from this regression into a matrix called, alpha. We do this because the least squares
estimator of the intercept is biased and 1.2704 must be added to it to remove the bias (line 18). This
isn’t strictly necessary to get the correct parameter estimates and standard errors in the weighted
regression. The weights are easily obtained using the lincomb function, which as seen elsewhere
multiplies zα = α1 + α2 ∗ ln(income)i. Remember, gretl automatically takes the square roots of
wt for you in the wls function.

The output is:

Dependent variable: food exp

(1) (2) (3)
OLS WLS WLS

const 83.42∗ 76.05∗∗ 76.05∗∗

(43.41) (9.713) (9.713)

income 10.21∗∗ 10.63∗∗ 10.63∗∗

(2.093) (0.9715) (0.9715)

n 40 40 40
` −235.5 −73.18 −47.77

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Comparing columns (2) and (3) one can see that having a biased estimator of α does not affect the
estimates or standard errors. It does have a very small impact on the log-likelihood, however.

The model was estimated by least squares with the HCCME standard errors in section 8.1. The
parameter estimates from FGLS are not much different than those. However, the standard errors
are much smaller now. The HC3 standard error for the slope was 1.88 and is now only 0.97. The
constant is being estimated more precisely as well. So, there are some potential benefits from using
a more precise estimator of the parameters.

8.3.2 Grouped Data
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Example 8.5 in POE5

This example, which uses the midwest subset of the cps5 small.gdt dataset, consists of estimat-
ing wages as a function of education and experience. In addition, an indicator variable is included
that is equal to one if a person lives in a metropolitan area. This is an “intercept” dummy, which
means that folks living in the metro areas are expected to respond similarly to changes in educa-
tion and experience (same slopes), but earn a premium relative to those in rural areas (different
intercept).

The sample is restricted to persons living in the midwest U.S. and summary statistics are
computed for metro and rural areas.

1 open "@workdir\data\cps5_small.gdt"
2 # Use only metro observations
3 discrete metro
4 smpl midwest --restrict
5 summary wage educ exper --by=metro --simple

The discrete function is not strictly necessary here since the metro variable already carries
this attribute. This is required because the summary statistics use the --by=metro option that
requires the variable metro to be discrete.

The summary statistics are:

metro = 0 (n = 84):

Mean Median S.D. Min Max
wage 18.86 17.84 8.520 5.780 53.84
educ 13.99 13.00 2.263 8.000 20.00
exper 24.30 25.00 14.32 1.000 56.00

metro = 1 (n = 213):

Mean Median S.D. Min Max
wage 24.25 21.63 14.00 6.170 80.77
educ 14.25 14.00 2.771 3.000 21.00
exper 23.15 23.00 13.17 0.0000 52.00

Average wages in the metro areas are $24.25/hour and only $18.86 in rural areas.

Two regressions are estimated. The first is by OLS using robust standard errors. The second
uses FGLS with the multiplicative model where ln(ê2) = α1 +α2metro. Since metro is an indicator
variable, heteroskedasticity will only take one of two values. Metro areas will have a different
variance than rural ones.
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1 # OLS w/robust std errors
2 m1 <- ols wage const educ exper metro --robust
3

4 # Multiplicative Heteroskedasticity FGLS
5 series lnsighat = log($uhat*$uhat)
6 series z = const metro
7 scalar alpha = $coeff(metro)
8 ols lnsighat z
9 series predsighat = exp($yhat)

10 series w = 1/predsighat
11 m2 <- wls w wage const educ exper metro

The session icons were added to a model table and the results are found below:

Dependent variable: wage

(1) (2)
OLS WLS

const −18.45∗∗ −16.97∗∗

(4.023) (3.788)

educ 2.339∗∗ 2.258∗∗

(0.2606) (0.2391)

exper 0.1890∗∗ 0.1747∗∗

(0.04783) (0.04472)

metro 4.991∗∗ 4.996∗∗

(1.159) (1.214)

n 297 297
R2 0.2749 0.2815
` −1133 −617.5

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

One feature of these results is counterintuitive. Notice that the reported R2 for WLS is larger
than that of OLS. This is a consequence of using the generalized version discussed in section 4.2.
Otherwise, the WLS estimates are fairly similar to OLS (as expected) and the estimated standard
errors are a bit smaller, at least for slopes on education and experience.
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8.4 Maximum Likelihood Estimation

The two-step estimation of the multiplicative heteroskedasticity model can be improved upon
slightly by estimating the model via maximum likelihood. Maximum likelihood estimation of the
model requires a set of starting values for the parameters that are easily obtained via the two-step
estimator. The log-likelihood is:

lnL = −n
2

ln 2π − 1

2

n∑
i=1

lnσ2
i −

1

2

n∑
i=1

u2
i

σ2
i

(8.8)

where σ2
i = exp{α1 + α2 ∗ ln(incomei)} and ui are the residuals from the regression.

1 # Assemble lists for x and z
2 list z = const l_income
3 list x = const income
4 series y = food_exp
5

6 # Starting values
7 ols y x
8 series lnsighat = ln($uhatˆ2)
9 ols lnsighat z

10 matrix alpha = $coeff
11

12 # MLE
13 mle loglik = -0.5 * ln(2*pi) - 0.5*zg - 0.5*eˆ2*exp(-zg)
14 series zg = lincomb(z, alpha)
15 series e = y - lincomb(x, beta)
16 params beta alpha
17 end mle

The first part of the script is basically the same as the one in the preceding section. The only
change is that I placed the food_exp into a new series called y. This cosmetic change makes the
mle block appear to be more general. It should work with any x, z, and y that has previously been
properly populated.

The mle function operates on an observation by observation basis, hence there was no need to
use n and the summations from equation (8.8). The first series in line 14 is for the skedasticity
function and the second, in line 15, gets the residuals. These are the only inputs we need for loglik
defined in line 13 (provided you have defined the series x and z and provided starting values for the
parameter vectors alpha and beta). As written, the routine uses numerical derivatives to search
for the values that maximize the log-likelihood function. Analytical ones may be specified, which
is sometimes useful. Here, the numerical ones work just fine as seen below.

The results are:
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Using numerical derivatives
Tolerance = 1.81899e-012

Function evaluations: 68
Evaluations of gradient: 39

Model 11: ML, using observations 1-40
loglik = -0.5 * ln(2*pi) - 0.5*zg - 0.5*eˆ2*exp(-zg)
Standard errors based on Outer Products matrix

estimate std. error z p-value
-------------------------------------------------------
beta[1] 76.0728 8.39834 9.058 1.33e-019 ***
beta[2] 10.6345 0.975438 10.90 1.12e-027 ***
alpha[1] 0.468398 1.80525 0.2595 0.7953
alpha[2] 2.76976 0.611046 4.533 5.82e-06 ***

Log-likelihood -225.7152 Akaike criterion 459.4304
Schwarz criterion 466.1859 Hannan-Quinn 461.8730

You can see that these are very similar to the ones from weighted least squares.

One of the advantages of using this approach is that it yields a t-ratio for the hypothesis:

H0 : σ2
i = σ2

H1 : σ2
i = exp{α1 + α2 ln(incomei)}

The alternative is specific as to the form of the heteroskedasticity (multiplicative) as well as the
cause (ln(income). Because the model is estimated by maximum likelihood, the asymptotic distri-
bution of the t-ratio is N(0, 1). Gretl produces a p-value from this distribution in the output, which
in this case is less than 0.05 and hence you can reject the null in favor of this specific alternative
at that level of significance.

8.5 Detecting Heteroskedasticity using Hypothesis Tests

8.5.1 Goldfeld Quandt Test

Using examples from Hill et al. (2018) a model of grouped heteroskedasticity is estimated and
a Goldfeld-Quandt test is performed to determine whether the two sample subsets have the same
error variance. The error variance associated with the first subset is σ2

1 and that for the other
subset is σ2

2.
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The null and alternative hypotheses are

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2

Estimating both subsets separately and obtaining the estimated error variances allow us to
construct the following ratio:

F =
σ̂2

1/σ
2
1

σ̂2
2/σ

2
2

∼ Fdf1,df2 (8.9)

where df1 = n1 − k1 from the first subset and df2 = n2 − k2 is from the second subset. Under the
null hypothesis that the two variances are equal, σ2

1 = σ2
2,

GQ =
σ̂2

1

σ̂2
2

∼ Fdf1,df2 (8.10)

This is just the ratio of the estimated variances from the two subset regressions.

Grouped Data: Example 8.6 in POE5

In this example we return to the wage equations estimated using the cps5 small.gdt data. The
Goldfeld-Quandt test compares variances of the metro and rural areas. Again, the sample is limited
to observations from the midwest region of the U.S.

The data are loaded and the sample restricted to the midwest. The --permanent option is
used, which substitute the restricted dataset for the original. Once the restricted sample is flagged
as permanent, the smpl full command restores only the midwest subsample.

1 open "@workdir\data\cps5_small.gdt"
2 smpl midwest --restrict --permanent

Next, the metro subsample is estimated and its σ̂ and degrees of freedom are saved. The midwest
subsample is restored using smpl full and the rural subsample estimated. The GQ statistic is
computed and the result returned.

3 smpl metro=1 --restrict # Use only metro sample
4 ols wage const educ exper
5 scalar stdm = $sigma # sighat metro
6 scalar df_m = $df # metro df
7

8 smpl full # Restore the full sample
9 smpl metro=0 --restrict # Use only rural observations
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10 ols wage const educ exper
11 scalar stdr = $sigma # sighat rural
12 scalar df_r = $df # rural df
13

14 scalar gq = stdmˆ2/stdrˆ2 # GQ statistic
15

16 scalar crit1 = critical(F, df_m, df_r, .025)
17 scalar crit2 = 1/critical(F, df_r, df_m, .025)
18

19 printf "\nThe F(%d, %d) statistic = %.3f.\n\
20 The left 0.025 critical value is %.4g\n\
21 The right 0.025 critical value is %.3f\n",df_m,df_r,gq,crit2,crit1

This results in:

The F(210, 81) statistic = 2.603.
The left 0.025 critical value is 0.7049
The right 0.025 critical value is 1.461

The GQ statistic is in the right-hand rejection region of this test and we conclude that the data
are heteroskedastic at the 5% level.

Food Expenditures: Example 8.7 in POE5

In this example the data are sorted by income (low to high) and the subsets are created using
observation numbers. This is accomplished using the GUI. Click Data>Sort data from the main
menu bar to reveal the dialog box shown on the right side of Figure 8.11. The large income group
is expected to have larger variance so its estimate will be placed in the numerator of the GQ ratio.
The script is:

1 open "@workdir\data\food.gdt"
2 dataset sortby income
3 list x = const income
4

5 smpl 21 40 # large variance observations
6 ols food_exp x
7 scalar stdL = $sigma # sighat large variance
8 scalar df_L = $df # df large variance subset
9

10 smpl 1 20 # small variance observations
11 ols food_exp x
12 scalar stdS = $sigma # sighat small variance
13 scalar df_S = $df # df small variance subset
14 gq = stdLˆ2/stdSˆ2 # GQ statistic
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Figure 8.11: Select Data>Sort data from the main menu bar to reveal the dialog box shown on
the right side of of this figure. Choose the desired sort key and indicate whether you want to sort
in ascending or descending order.

15

16 printf "\nThe F(%d, %d) statistic = %.3f. The right\
17 side p-value is %.4g.\n",df_L,df_S,gq,pvalue(F, df_L, df_S, gq)

This yields:

The F(18, 18) statistic = 3.615. The right side p-value is 0.004596.

The dataset sortby command is used in line 2 to sort the data without using the GUI.1 This
allows us to use the smpl 21 40 command to limit the sample to observations 21-40 for the first
subset. The other minor improvement is to use the list command in line 3 to specify the list of
independent variables. This is useful since the same regression is estimated twice using different
subsamples. The homoskedasticity null hypothesis is rejected at the 5% level since the p-value is
smaller than 0.05. Each subset (metro and rural) is estimated separately using least squares and
the standard error of the regression is saved for each ($sigma). Generally, you should put the
group with the larger variance in the numerator. This allows a one-sided test and also allows you
to use the standard p-value calculations as done below.

1Replace sortby income with dsortby income to sort the sample by income in descending order.
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8.5.2 Lagrange Multiplier Tests

There are many tests of the null hypothesis of homoskedasticity that have been proposed else-
where. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. The
first is sometimes referred to as the Breusch-Pagan (BP) test. The second test is credited to White.
The null and alternative hypotheses for the Breusch-Pagan test are

H0 : σ2
i = σ2

H1 : σ2
i = h(α1 + α2zi2 + . . . αsziS)

The null hypothesis is that the data are homoskedastic. The alternative is that the data are
heteroskedastic in a way that depends upon the variables zis, s = 2, 3, . . . , S. These variables are
exogenous and correlated with the model’s variances. The function h(·), is not specified. It could
be anything that depends on its argument, i.e., the linear function of the variables in z. Here are
the steps:

1. Estimate the regression model

2. Save the residuals

3. Square the residuals

4. Regress the squared residuals on zis, s = 2, 3, . . . , S.

5. Compute nR2 from this regression and compare it to the α level critical value from the χ2
S−1

distribution.

The gretl script to perform the test manually is

1 ols food_exp const income
2 series sq_ehat = $uhat*$uhat
3 ols sq_ehat const income
4 scalar NR2 = $trsq
5 pvalue X 1 NR2

The only new item in this script is the use of the accessor, $trsq. This is the saved value of nR2

from the previously estimated model. The output from the script is

1 Replaced scalar NR2 = 7.38442
2 Chi-square(1): area to the right of 7.38442 = 0.00657911
3 (to the left: 0.993421)
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The p-value is less than 5% and we would reject the homoskedasticity null at that level. The
heteroskedasticity seen in the residual plots appears to be confirmed.

Gretl has a built-in function that will compute a special case of the BP test that yields the
same result in this example. The

1 ols food_exp const income
2 modtest --breusch-pagan

Produces

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-40
Dependent variable: scaled uhatˆ2

coefficient std. error t-ratio p-value
-------------------------------------------------------
const -0.756949 0.633618 -1.195 0.2396
income 0.0896185 0.0305534 2.933 0.0057 ***

Explained sum of squares = 14.6879

Test statistic: LM = 7.343935,
with p-value = P(Chi-square(1) > 7.343935) = 0.006729

The functionality of modtest --breusch-pagan is limited in that it will include every
regressor in the model as a z. It matches the result we derived manually because the model only
includes income as the regressor. The modtest --breusch-pagan uses it as z. This means
that you can’t test a subset of the regressors with this function, nor can you use it to test for
heteroskedasticity of exogenous variables that are not included in the regression function.

To facilitate this more restrictive formulation of a BP test a short program is given to make
computing it quite simple.

1 function void BP_test (series y, list xvars, list zvars)
2 ols y xvars --quiet
3 series ehat_2 = $uhatˆ2
4 ols ehat_2 zvars --quiet
5 scalar pval = pvalue(X,nelem(zvars)-1,$trsq)
6 printf "Z-Variables: %s", varname(zvars)
7 printf "\nBreusch-Pagan test: nR2 = %.3f\
8 p-value = %.3f \n", $trsq, pval
9 end function
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The function is called BP_test and it takes three inputs. The first is a series for the dependent
variable of the model. The second is a list of the regression’s independent variables, including
a constant. The third is a list of variables that cause heteroskedasticity in the tests alternative
hypothesis.

The operation of the function should be obvious. The model is estimated and the squared
residuals put into a series. Line 4 estimates the auxiliary regression for the BP test using the
variables in zvars. The p-value is computed and everything is printed to the screen, including the
variables in z.

Usage is simple.

1 list xvars = const income
2 list zvars = const income
3 BP_test(food_exp, xvars, yvars)

This produces:

Z-Variables: const,income
Breusch-Pagan test: nR2 = 7.384 p-value = 0.007

This confirms both of the computations above.

8.5.3 The White Test

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and alternative
hypotheses are

H0 : σ2
i = σ2 for all i

H1 : σ2
i 6= σ2

j for at least 1 i 6= j

This is a composite alternative that captures every possibility other than the one covered by the
null. If you know nothing about the nature of heteroskedasticity in your data, then this is a
good place to start. The test is very similar to the BP test. In this test, the heteroskedasticity
related variables (zis, s = 2, 3, . . . , S) include each non-redundant regressor, its square, and all cross
products between regressors. See POE5 for details. In the food expenditure model there is only
one continuous regressor and an intercept. So, the constant squared and the cross product between
the constant and income are redundant. This leaves only one unique variable to add to the model,
income squared.

In gretl generate the squared value of income and regress the squared residuals from the model
on income and its square. Compute nR2 from this regression and compare it to α level critical
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value from the χ2(S − 1) distribution. As is the case in all the LM tests considered in this book,
n is the number of observations in the second or auxiliary regression.

As with the BP test there is a built-in function that computes White’s test. It generates all
of the squares and unique cross-products to add to the model. The script to do both manual and
built-in tests is found below:

1 ols food_exp const income
2 series sq_ehat = $uhat*$uhat
3 series sq_income = incomeˆ2
4 ols sq_ehat const income sq_income
5 scalar NR2 = $trsq
6 pvalue X 2 NR2
7

8 ols food_exp const income --quiet
9 modtest --white --quiet

The results from the two match perfectly and only that from the built-in procedure is produced
below:

White’s test for heteroskedasticity

Test statistic: nRˆ2 = 7.555079,
with p-value = P(Chi-square(2) > 7.555079) = 0.022879

The homoskedasticity null hypothesis is rejected at the 5% level.

Note, our BP_test function can be used as well, although there is no need to do so. In fact,
if the regressor list is long, it would be tedious to assemble the variable list for zvars.

1 list xvars = const income
2 list zvars = const income sq_income # all vars, squares, and cross-prods
3 BP_test(food_exp, xvars, zvars)

Breusch-Pagan test: nR2 = 7.555 p-value = 0.023

It matches. The key is to include each variable, its square (if unique), and cross-products in the
list of variables for the heteroskedasticity function. With only a constant and a continuous variable
in the model that amounts to a constant, income, and income squared.
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8.5.4 Variance Stabilizing Transformation

Example 8.8 in POE5

In this example a simple model of household entertainment expenditures is estimated and tested
for heteroskedasticity using the Breusch-Pagan test. In this section, we propose a simple function
that will compute the test and report the outcome to the display.

The model to be estimated is:

enterti = β1 + β2incomei + β3collegei + β4advancedi + ei

The sample is censored to include only those with positive entertainment expenditures. The inde-
pendent variables are monthly income in $100, and indicator for highest degree is Bachelor’s, and
an indicator equal to 1 if the highest degree is masters/professional/PhD.

Frequency plots of the data in levels and natural logs appear below in Figures 8.12 and 8.13. It
is clear that entertainment levels is highly skewed and that taking the logarithms produces a more
even distribution. Breusch-Pagan tests are conduced with zi = 1, incomei.

1 open "@workdir\data\cex5_small.gdt"
2 smpl entert>0 --restrict
3 logs entert
4 g1 <- freq entert --plot=display --silent
5 g2 <- freq l_entert --plot=display --silent
6

7 list xvars = const income college advanced
8 list zvars = const income
9 BP_test(entert, xvars, zvars)

10 BP_test(l_entert,xvars,zvars)

The results of the BP test show:

Z-Variables: const,income
Breusch-Pagan test: nR2 = 31.337 p-value = 0.000

Z-Variables: const,income
Breusch-Pagan test: nR2 = 0.355 p-value = 0.551

The null hypothesis of no heteroskedasticity due to income in the levels model is rejected and not
rejected in the log-linear model.

8.6 Heteroskedasticity in the Linear Probabilty Model
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Figure 8.12: Levels of household entertainment expenditures.

Figure 8.13: Natural Log of household entertainment expenditures.

Example 8.9 in POE5

The linear probability model was introduced in Chapter 7. It was shown that the indicator
variable, yi is heteroskedastic. That is,

var(yi) = πi(1− πi) (8.11)

where πi is the probability that the dependent variable is equal to 1 (the choice is made). The
estimated variance is ̂var(yi) = π̂i(1− π̂i) (8.12)

This can be used to perform feasible GLS. The cola marketing data coke.gdt is the basis for this
example. The independent variable, coke, takes the value of 1 if the individual purchases Coca-
Cola and is 0 if not. The decision to purchase Coca-Cola depends on the ratio of the price relative
to Pepsi, and whether displays for Coca-Cola or Pepsi were present. The variables disp_coke=1
if a Coca-Cola display was present, otherwise 0; disp_pepsi=1 if a Pepsi display was present,
otherwise it is zero.
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1 First, the data are loaded and the summary statistics are provided.
2 open "@workdir\data\coke.gdt"
3 summary --simple
4 list x = const pratio disp_coke disp_pepsi

The --simple option is used for the summary command. Then a list is created that contains
the names of the independent variables to be used in the estimated models. The basic summary
statistics are:

Mean Median S.D. Min Max
coke 0.4474 0.0000 0.4974 0.0000 1.000
pr_pepsi 1.203 1.190 0.3007 0.6800 1.790
pr_coke 1.190 1.190 0.2999 0.6800 1.790
disp_pepsi 0.3640 0.0000 0.4814 0.0000 1.000
disp_coke 0.3789 0.0000 0.4853 0.0000 1.000
pratio 1.027 1.000 0.2866 0.4972 2.325

Everything looks good. There are no negative prices, and the indicator variables are all contained
between 0 and 1. The magnitudes of the means are reasonable.

Next, least squares is used to estimate the model twice: once with usual standard errors and
again with the HCCME standard errors produced by the --robust option. Each is added to a
model table using modeltab add.

1 # OLS
2 ols coke x
3 modeltab add
4 # OLS w/robust
5 ols coke x --robust
6 modeltab add

Feasible GLS will be estimated in two ways. In the first regression, we will omit any observation
that has a negative estimated variance. Remember that one of the problems with linear probability
is that predictions are not constrained to lie between 0 and 1. If ŷi < 0 or ŷi > 1, then variance
estimates will be negative. In the first line below a new series is created to check this condition.
If the variance, varp, is greater than zero, pos will be equal to 1 and if not, then it is zero. The
second line creates a weight for wls that is formed by multiplying the indicator variable pos times
the reciprocal of the variance. In this way, any nonnegative weights become zeros.

Remove observations with negative variance
1 series p = $yhat
2 series varp = p*(1-p)
3 series pos = (varp > 0)
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4 series w = pos * 1/varp
5 # omit regression
6 wls w coke x
7 modeltab add

The first line uses the accessor for the predicted values from a linear regression, $yhat, and
therefore it must follow least squares estimation of the linear probability model; in this model, they
are interpreted as probabilities. Once again, a trick is being used to eliminate observations from
the model. Basically, any observation that has a zero weight in w is dropped from the computation.
There are equivalent ways to do this in gretl as shown below

Two other ways to drop observations
smpl varp>0 --restrict
setmiss 0 w

The restricting the sample is probably the most straightforward method. The second uses the
setmiss command that changes the missing value code to 0 for elements of w; any observation
where w=0 is now considered missing and won’t be used to estimate the model.

Finally, another feasible GLS estimation is done. This time, p̂1 is truncated at 0.01 if ŷi < 0.01
and to 0.99 if ŷi > 0.99. The code to do this is

WLS with truncated variances for observations out of bounds
1 series b = (p<.01) || (p>.99)
2 series pt = b*0.01 + p*(1-b)
3 series varp_t = pt*(1-pt)
4 series w_t = 1/varp_t
5 wls w_t coke x
6 modeltab add
7 modeltab show

The first line creates another indicator variable that takes the value of 1 if the predicted probability
falls outside of the boundary. The || is a logical operator that takes the union of the two condi-
tions (=“OR”). The second line creates the truncated value of the probability using the indicator
variable.

pt =

{
b(0.01) + p(1− b) = 0.01 when b = 1

b(0.01) + p(1− b) = p when b = 0
(8.13)

There is another, less transparent, way to generate the truncated probabilities: use the ternary
conditional assignment operator first discussed in section 2.8.3. This operates like an if statement
and can be used to save a line of script. This syntax would create the series as
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series pt = ( (p<.01) || (p>.99) ) ? 0.01 : p

The bound condition in parentheses (p < .01)||(p > .99) is checked: that is what the question
mark represents. If the condition is true, pt is set to the first value that appears in front of the
colon. If false, it is set to the value specified to the right of the colon. It operates very much like a
traditional if statement in a spreadsheet program. This method is more efficient computationally
as well, which could save some time if used in a loop to perform simulations.

Once the truncated probabilities are created, then the usual weighted least squares estimation
can proceed. The model table appears below:

Dependent variable: coke

(1) (2) (3) (4)
OLS OLS WLS WLS

const 0.8902∗∗ 0.8902∗∗ 0.8795∗∗ 0.6505∗∗

(0.06548) (0.06563) (0.05897) (0.05685)

pratio −0.4009∗∗ −0.4009∗∗ −0.3859∗∗ −0.1652∗∗

(0.06135) (0.06073) (0.05233) (0.04437)

disp coke 0.07717∗∗ 0.07717∗∗ 0.07599∗∗ 0.09399∗∗

(0.03439) (0.03402) (0.03506) (0.03987)

disp pepsi −0.1657∗∗ −0.1657∗∗ −0.1587∗∗ −0.1314∗∗

(0.03560) (0.03447) (0.03578) (0.03540)

n 1140 1140 1124 1140
R̄2 0.1177 0.1177 0.2073 0.0865
` −748.1 −748.1 −1617 −1858

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Columns (1) and (2) are the OLS estimates with usual and robust standard errors, respectively.
Column (3) uses WLS with the negative variance observations omitted from the sample. Column
(4) is WLS with the negative predictions truncated. These results are quite a bit different from
the others. This no doubt occurs because of the large weight being placed on the 16 observations
whose weights were constructed by truncation. The var(ei) = 0.01(1− 0.01) = 0.0099. The square
root of the reciprocal is approximately 10, a large weight to be placed on these 16 observations
via WLS. Since these extreme observations carry a large weight relative to the others, they exert a
considerable influence on the estimated regression.
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8.7 Heteroskedastic-Consistent Standard Errors

The least squares estimator can be used to estimate the linear model even when the errors are
heteroskedastic with good results. As mentioned in the first part of this chapter, the problem with
using least squares in a heteroskedastic model is that the usual estimator of precision (estimated
variance-covariance matrix) is not consistent. The simplest way to tackle this problem is to use
least squares to estimate the intercept and slopes and use an estimator of least squares covariance
that is consistent whether errors are heteroskedastic or not. This is the so-called heteroskcedasticity
robust estimator of covariance that gretl uses.

In this example, the food expenditure data is used to estimate the model using least squares
with both the usual and several variations of the robust sets of standard errors. Based on these,
95% confidence intervals are computed.

Start by estimating the food expenditure model using least squares and add the estimates, which
are saved as icons to the session, to a model table. Reestimate the model using the --robust
option and store the results as icons. Open the session icon view, drag the models to the model
table and open it for viewing.2

1 open "@workdir\data\food.gdt"
2 list xvars = const income
3 Incorrect <- ols food_exp xvars --quiet
4 t_interval($coeff(income),$stderr(income),$df,0.95)
5 set hc_version 1
6 HC1 <- ols food_exp xvars --robust --quiet
7 t_interval($coeff(income),$stderr(income),$df,0.95)
8 set hc_version 2
9 HC2 <- ols food_exp xvars --robust --quiet

10 t_interval($coeff(income),$stderr(income),$df,0.95)
11 set hc_version 3
12 HC3 <- ols food_exp xvars --robust --quiet
13 t_interval($coeff(income),$stderr(income),$df,0.95)

The model table,

OLS estimates
Dependent variable: food exp

(Incorrect) (HC1) (HC2) (HC3)

const 83.42∗ 83.42∗∗ 83.42∗∗ 83.42∗∗

(43.41) (27.46) (27.69) (28.65)

income 10.21∗∗ 10.21∗∗ 10.21∗∗ 10.21∗∗

2Or, you could use the modeltab commands in the script.
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(2.093) (1.809) (1.823) (1.886)

n 40 40 40 40
R2 0.3850 0.3850 0.3850 0.3850
` −235.5 −235.5 −235.5 −235.5

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the coefficient estimates are the same across the columns, but that the estimated
standard errors are different. The robust standard error for the slope is actually smaller than the
usual one.

A number of commands behave differently when used after a model that employs the --robust
option. Using this option forces subsequent Wald tests based on least squares estimates to use the
HCCME for computation. This ensures that results from omit or restrict will be statistically valid
under heteroscedasticity when the preceding regression is estimated with the --robust flag.

The confidence intervals are computed using the t_interval program supplied with this
manual. The results:

The 95% confidence interval centered at 10.210 is (5.9721, 14.4472)
The 95% confidence interval centered at 10.210 is (6.5474, 13.8719)
The 95% confidence interval centered at 10.210 is (6.5183, 13.9010)
The 95% confidence interval centered at 10.210 is (6.3913, 14.0280)

which refer to models ‘Incorrect’, ‘HC1’, ‘HC2’ and ‘HC3,’ respectively.

8.8 Monte Carlo simulation of OLS, GLS and FGLS

There are five different designs in this simulation. All are based on a linear model

y = 5 + x2 + 0 ∗ x3 + e

The heteroskedasticity function is

h(x2) = 3 exp(1 + αx2)/h̄

The heteroskedasticity is controlled via α, which can be 0, 0.3, and 0.5. Sample sizes are either 100
or 5000. In the simulation below, h̄ has been computed and is referred to as “eta”.

For instance, the design that produces column 1 in Table 8E.1 of POE5 is
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1 # * table 8e column 1
2 # n = 100
3 # het = 0
4 # eta = 2.7182818

Sample size is set to 100, het (α) is zero–no heteroskedasticity, and eta is 2.7182818. These are set
in lines 32, 34, and 36 in the script. As an exercise, see if you can replicate (at least get close to
the results in POE5 ). Hint: I did!

1 # Appendix 8E in POE5
2 # Setting the parameters for the simulation
3

4 # * table 8e column 1
5 # n = 100
6 # het = 0
7 # eta = 2.7182818
8

9 # * 8e column 2
10 # n = 100
11 # het = .3
12 # eta = 6.938608
13

14 # * 8e column 3
15 # n = 100
16 # het = .5
17 # eta = 13.8982
18

19 # * table 8e column 4
20 # n = 5000
21 # het = .5
22 # eta = 14.25737
23

24 # * table 8e column 5
25 # n = 5000
26 # het = .5
27 # eta = 6.025252
28

29 # Set the sample size and save it in n
30 set hc_version 3
31 # Set the values of the parameters
32 nulldata 5000
33 scalar n = $nobs
34 scalar het = 0.5
35 scalar sigma = 1
36 scalar eta = 6.025252
37

38 # set a seed if you want to get same results each time you run this
39 set seed 1234567
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40

41 # generate n observations on x2 and x3
42 # series x2 = uniform(1,5)
43 # series x3 = uniform(1,5)
44

45 # start the loop, indicating the desired number of samples.
46 loop 1000 --progressive --quiet
47 series x2 = uniform(1,5) # comment out if holding x2 const
48 series x3 = uniform(1,5) # comment out if holding x3 const
49 # generate variances that depend on x2
50 series sig = 3*(exp(1+het*x2 + 0*x3)/eta)
51 # generate normal errors
52 series u = sig*normal()
53 # generate sample of y
54 series y = 5+x2+0*x3 + u
55 # run the regression with usual error
56 ols y const x2 x3
57 # save the estimated coefficients
58 scalar b1 = $coeff(const)
59 scalar se1 = $stderr(const)
60

61 scalar b2 = $coeff(x2)
62 scalar se2 = $stderr(x2)
63

64 scalar b3 = $coeff(x3)
65 scalar se3 = $stderr(x3)
66

67 # run OLS regression with HC std errors
68 ols y const x2 x3 --robust
69 scalar robse1 = $stderr(const)
70 scalar robse2 = $stderr(x2)
71 scalar robse3 = $stderr(x3)
72

73 # BP test
74 series ehat2=$uhatˆ2
75 ols ehat2 const x2 x3
76 scalar tr2 = $trsq
77 scalar reject = (pvalue(X,2,tr2) < 0.05)
78

79 # FGLS
80 series ln_ehat2=ln(ehat2)
81 ols ln_ehat2 const x2 x3
82 series h0 = 1/exp($coeff(x2)*x2 + $coeff(x3)*x3)
83 wls h0 y const x2 x3
84

85 scalar b1_fgls = $coeff(const)
86 scalar se1_fgls = $stderr(const)
87

88 scalar b2_fgls = $coeff(x2)
89 scalar se2_fgls = $stderr(x2)
90
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91 scalar b3_fgls = $coeff(x3)
92 scalar se3_fgls = $stderr(x3)
93

94 # gls for b2 only
95 series h = 1/x2
96 wls h y const x2 x3
97 scalar b2_gls = $coeff(x2)
98 scalar se2_gls = $stderr(x2)
99

100 # gls robust for b2 only
101 wls h y const x2 x3 --robust
102 scalar robse2_gls = $stderr(x2)
103

104 print b1 se1 b2 se2 b3 se3 robse1 robse2 robse3 \
105 reject b1_fgls se1_fgls b2_fgls se2_fgls b3_fgls\
106 se3_fgls b2_gls se2_gls robse2_gls
107 endloop

8.9 Script

1 set echo off
2 # function estimates confidence intervals based on the t-distribution
3 function void t_interval (scalar b, scalar se, scalar df, scalar p)
4 scalar alpha = (1-p)
5 scalar lb = b - critical(t,df,alpha/2)*se
6 scalar ub = b + critical(t,df,alpha/2)*se
7 printf "\nThe %2g%% confidence interval centered at %.3f is\
8 (%.4f, %.4f)\n", p*100, b, lb, ub
9 end function

10

11 # Breusch-Pagan test
12 function void BP_test (series y, list xvars, list zvars)
13 ols y xvars --quiet
14 series ehat_2 = $uhatˆ2
15 ols ehat_2 zvars --quiet
16 scalar pval = pvalue(X,nelem(zvars)-1,$trsq)
17 printf "Z-Variables: %s", varname(zvars)
18 printf "\nBreusch-Pagan test: nR2 = %.3f\
19 p-value = %.3f \n", $trsq, pval
20 end function
21

22 open "@workdir\data\food.gdt"
23 m1 <- ols food_exp const income
24 gnuplot food_exp income --fit=linear --output=display
25

26 list plotmat = food_exp income
27 string title = "Weekly Food Expenditures vs Income"
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28 string xname = "Weekly Income"
29 string yname = "Food Expenditures per Week"
30 g1 <- plot plotmat
31 options fit=linear
32 literal set linetype 1 lc rgb "black" pt 7
33 literal set nokey
34 printf "set title \"%s\"", title
35 printf "set xlabel \"%s\"", xname
36 printf "set ylabel \"%s\"", yname
37 end plot --output=display
38

39 # ols with HCCME standard errors
40 ols food_exp const income --robust
41 # confidence intervals (Robust)
42 t_interval($coeff(income),$stderr(income),$df,0.95)
43

44 # residual plot
45 ols food_exp const income --robust
46 series res = $uhat
47 setinfo res -d "Least Squares Residuals" -n "Residual"
48

49 list plotmat = res income
50 string title = "Least squares residuals vs Income"
51 string xname = "Weekly Income"
52 string yname = "Residual"
53 g2 <- plot plotmat
54 options fit=linear
55 literal set linetype 1 lc rgb "black" pt 7
56 literal set nokey
57 printf "set title \"%s\"", title
58 printf "set xlabel \"%s\"", xname
59 printf "set ylabel \"%s\"", yname
60 end plot --output=display
61

62 # lauch gnuplot (Windows only)
63 launch wgnuplot
64 # To view graph, type: load ’olsres.plt’ at prompt
65

66 # residual magnitude plot with loess fit
67 series abs_e = abs(res)
68 setinfo abs_e -d "Absolute value of the LS\
69 Residuals" -n "Absolute Value of Residual"
70

71 list plotmat = abs_e income
72 string title = "Absolute value of OLS residuals vs Income"
73 string xname = "Weekly Income"
74 string yname = "|e|"
75 g3 <- plot plotmat
76 options fit=loess
77 literal set linetype 1 lc rgb "black" pt 7
78 literal set nokey
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79 printf "set title \"%s\"", title
80 printf "set xlabel \"%s\"", xname
81 printf "set ylabel \"%s\"", yname
82 end plot --output=display
83

84 # Example 8.3 WLS
85 #GLS using built in function
86 open "@workdir\data\food.gdt"
87 logs income
88 list x = const income
89 list z = const l_income
90

91 ols food_exp const income
92 series ehat = $uhat
93 series w = 1/income
94

95 wls w food_exp const income
96 series ehat_gls=$uhat/sqrt(income)
97 t_interval($coeff(income),$stderr(income),$df,0.95)
98

99 list plotmat = ehat_gls ehat income
100 string title = "GLS vs OLS residuals"
101 string xname = "Weekly Income"
102 string yname = "Residual"
103 g3 <- plot plotmat
104 option single-yaxis
105 literal set linetype 1 lc rgb "black" pt 7
106 literal set key on
107 printf "set title \"%s\"", title
108 printf "set xlabel \"%s\"", xname
109 printf "set ylabel \"%s\"", yname
110 end plot --output=display
111

112 #GLS using OLS on transformed data
113 series wi = 1/sqrt(income)
114 series ys = wi*food_exp
115 series xs = wi*income
116 series cs = wi
117 ols ys cs xs
118

119 # Example 8.4
120 # heteroskedastic model
121 # OLS
122 m1 <- ols food_exp x
123

124 # FGLS inconsistent for alpha
125 series lnsighat = log($uhat*$uhat)
126 ols lnsighat z
127 matrix alpha = $coeff
128 series predsighat = exp($yhat)
129 series w = 1/predsighat
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130 m2 <- wls w food_exp const income
131 series ehat_fgls = $uhat/sqrt(predsighat)
132

133 # Fix alpha
134 matrix alpha[1]=alpha[1]+1.2704
135 series wt = 1/exp(lincomb(z, alpha))
136 m3 <- wls wt food_exp x
137

138 # Plot gls and fgls residuals
139 list plotmat = ehat_gls ehat_fgls income
140 string title = "GLS and FGLS residuals"
141 string xname = "Weekly Income"
142 string yname = "Residual"
143 g4 <- plot plotmat
144 option single-yaxis
145 literal set linetype 1 lc rgb "black" pt 7
146 literal set key on
147 literal set size square
148 printf "set title \"%s\"", title
149 printf "set xlabel \"%s\"", xname
150 printf "set ylabel \"%s\"", yname
151 end plot --output=display
152

153 # Example 8.5
154 # Heteroskedastic Partition
155 #Wage Example
156 open "@workdir\data\cps5_small.gdt"
157 ols wage const educ exper metro
158 # Use only metro observations
159 discrete metro
160 smpl midwest --restrict
161 summary wage educ exper --by=metro --simple
162

163 m1 <- ols wage const educ exper metro --robust
164

165 series lnsighat = log($uhat*$uhat)
166 list z = const metro
167 scalar alpha = $coeff(metro)
168 ols lnsighat z
169 series predsighat = exp($yhat)
170 series w = 1/predsighat
171 m2 <- wls w wage const educ exper metro
172

173 # Example 8.6
174 # Goldfeld Quandt
175 # grouped data--Goldfeld-Quandt
176 open "@workdir\data\cps5_small.gdt"
177 smpl midwest --restrict --permanent
178 smpl metro=1 --restrict # Use only metro sample
179 ols wage const educ exper
180 scalar stdm = $sigma # sighat metro
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181 scalar df_m = $df # metro df
182

183 smpl full # Restore the full sample
184 smpl metro=0 --restrict # Use only rural observations
185 ols wage const educ exper
186 scalar stdr = $sigma # sighat rural
187 scalar df_r = $df # rural df
188

189 scalar gq = stdmˆ2/stdrˆ2 # GQ statistic
190

191 scalar crit1 = critical(F, df_m, df_r, .025)
192 scalar crit2 = 1/critical(F, df_r, df_m, .025)
193

194 printf "\nThe F(%d, %d) statistic = %.3f.\n\
195 The left 0.025 critical value is %.4g\n\
196 The right 0.025 critical value is %.3f\n",df_m,df_r,gq,crit2,crit1
197 # Example 8.7
198 # Goldfeld-Quandt for food expenditure
199 open "@workdir\data\food.gdt"
200 dataset sortby income
201 list x = const income
202

203 smpl 21 40 # large variance observations
204 ols food_exp x
205 scalar stdL = $sigma # sighat large variance
206 scalar df_L = $df # df large variance subset
207

208 smpl 1 20 # small variance observations
209 ols food_exp x
210 scalar stdS = $sigma # sighat small variance
211 scalar df_S = $df # df small variance subset
212 gq = stdLˆ2/stdSˆ2 # GQ statistic
213

214 printf "\nThe F(%d, %d) statistic = %.3f. The right\
215 side p-value is %.4g.\n",df_L,df_S,gq,pvalue(F, df_L, df_S, gq)
216

217 # BP test for food_exp model
218 list xvars = const income
219 list zvars = const income
220 BP_test(food_exp, xvars, zvars)
221

222 # White’s test
223 ols food_exp const income
224 series sq_ehat = $uhat*$uhat
225 series sq_income = incomeˆ2
226 ols sq_ehat const income sq_income
227 scalar NR2 = $trsq
228 pvalue X 2 NR2
229

230 list xvars = const income
231 list zvars = const income sq_income # vars, squares, and X-products
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232 BP_test(food_exp, xvars, zvars)
233

234 ols food_exp const income --quiet
235 modtest --white --quiet
236

237 # Example 8.8
238 # Variance Stabilizing Transformation
239 open "@workdir\data\cex5_small.gdt"
240 smpl entert>0 --restrict
241 logs entert
242 g1 <- freq entert --plot=display --silent
243 g2 <- freq l_entert --plot=display --silent
244

245 list xvars = const income college advanced
246 list zvars = const income
247 BP_test(entert, xvars, zvars)
248 BP_test(l_entert,xvars,zvars)
249

250 # Example 8.9
251 open "@workdir\data\coke.gdt"
252 summary --simple
253 list xvars = const pratio disp_coke disp_pepsi
254 # OLS
255 ols coke xvars
256 modeltab add
257 # OLS w/robust
258 ols coke xvars --robust
259 modeltab add
260 series p = $yhat
261 series varp = p*(1-p)
262 series pos = (varp > 0)
263 series w = pos * 1/varp
264

265 # omit regression
266 wls w coke xvars
267 modeltab add
268

269 # smpl varp>0 --restrict
270 # setmiss 0 w
271 series b = (p<.01) || (p>.99)
272 series pt = b*0.01 + p*(1-b)
273 series varp_t = pt*(1-pt)
274 series w_t = 1/varp_t
275 # trunc regression
276 wls w_t coke xvars
277 modeltab add
278 modeltab show
279

280 ols coke xvars --quiet
281 modtest --white --quiet
282
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283 # Example 8.10
284 # Alternative HCCME
285 open "@workdir\data\food.gdt"
286 list xvars = const income
287 m1 <- ols food_exp xvars --quiet
288 t_interval($coeff(income),$stderr(income),$df,0.95)
289 set hc_version 1
290 m2 <- ols food_exp xvars --robust --quiet
291 t_interval($coeff(income),$stderr(income),$df,0.95)
292 set hc_version 2
293 m3 <- ols food_exp xvars --robust --quiet
294 t_interval($coeff(income),$stderr(income),$df,0.95)
295 set hc_version 3
296 m4 <- ols food_exp xvars --robust --quiet
297 t_interval($coeff(income),$stderr(income),$df,0.95)
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Chapter 9

Regression with Time-Series Data:
Stationary Variables

In this chapter three ways in which dynamics can enter a regression relationship are considered–
through lagged values of the explanatory variable, lagged values of the dependent variable, and
lagged values of the error term.

In time-series regressions the data must be stationary in order for the usual econometric pro-
cedures to have the the desired statistical properties. This requires that the means, variances and
covariances of the time-series data not depend on the time period in which they are observed. For
instance, the mean and variance of GDP in the third quarter of 1973 cannot be different from those
of the 4th quarter of 2006. Methods to deal with this problem have provided a rich field of research
for econometricians in recent years and several of these techniques are explored later in Chapter
12.

The first diagnostic tool used when considering a new time series is to construct a simple of
the data against time. A time-series plot may reveal potential problems with the data and suggest
ways to proceed statistically. As seen earlier, graphs and plots are simple to generate in gretl and
a few new tricks will be explored below.

Finally, since this chapter deals with time series, the usual number of observations, n, is replaced
by the more commonly used T . In later chapters, where both time series and cross sectional data
are used in panels, both n and T will be used.

9.1 Data Structures: Time Series

In order to take advantage of gretl’s many built-in functions for analyzing time-series data,
one has to declare the data in the set to be a time series. Since time series are ordered in time
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their position relative to the other observations must be maintained. It is, after all, their temporal
relationships that make analysis of this kind of data different from cross-sectional analysis.

If your data do not have a proper date to identify the time period in which the observations
were recorded, then adding one is a good idea. This makes identification of historical periods easier
and enhances the information content of graphs considerably.

Most of the data sets distributed with your book have been declared to be time series and
contain the relevant dates in the set of variables. However, you should know how to add this
information yourself and this is shown below. You need to identify that the data are time series,
specify their frequency of observation, and identify the starting date. As long as there are no ‘holes’
in the data, this should get you the relevant set of dates matched to the periods they are observed.

Before getting to the specific examples from the text, something should be said about how gretl
handles dates and times.

Gretl is able to recognize dates as such in imported data if the date strings conform to the
following rules. For annual data, you must use 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1 or 1997q1. For monthly data: a 4-digit year, followed by a period or a colon,
followed by a two-digit month. Examples: 1997.01, 2002:10.

Gretl allows you to declare time series annually, monthly, weekly, daily (5, 6, or 7 per week),
hourly, decennially, and has a special command for other irregular dates. Its date handling features
are reasonably good, but it is not as comprehensive as those found in other software like Stata. On
the other hand, for what it does it is much easier to use. It works beautifully with most datasets
and there are functions included that will assist in converting whatever format you may have to
something that gretl understands as a date.

There are two methods of getting your dataset to be recognized as a time series. The first uses
the GUI. Click Data>Dataset structure from the pull-down menu to initiate the data structure
wizard. The wizard serves up a series of dialog boxes that help you to define when the observations
occur. These work well if there are no missing time periods in your dataset.

The first dialog defines the dataset structure: the choices are cross-sectional, time series, and
panel. Choosing time series brings up a dialog to set the frequency. Choices include: annual,
quarterly, monthly, weekly, daily (5, 6, or 7 per week), hourly, decennial, a special command for
other irregular dates. Choosing one of these brings up the next dialog that sets the start point. For
instance, quarterly data might start at 3rd quarter of 1972. You would enter, 1972:3 in the box.
Then the confirmation dialog opens. It reveals how gretl interpreted your choices. Check to see
whether the data start and stop when expected. If so, then the data structure is almost certainly
correct. If the end date is something other than expected, then go back and try again. There may
be some gaps in the data series that need to be filled in order for the dates and the number of
observations to match up. Sometimes things need manual editing due to holidays and such. Be
patient and get this right, otherwise you may end up having to redo you analysis. Figure 9.1 shows
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the first three dialog boxes for defining a time-series structure. The last box (Figure 9.2) confirms

Figure 9.1: Choose Data>Dataset structure from the main window. This starts the Dataset
wizard, a series of dialogs that allow you to specify the periodicity and dates associated with your
data.

that the series starts in 1948:1 and ends in 2016:1.

Figure 9.2: Check the confirmation box to be sure the expected time periods are given.

The setobs command is used to accomplish the same thing from the console or in a script.
The syntax is summarized
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Define the desired periodicity and the date at which the series starts. Then the options are used
to indicate what the actual structure is (e.g., time series). Some examples are found in Table 9.1.

Syntax Results

setobs 4 1990:1 --time-series Quarterly data that start in 1990:1
setobs 1 1952 --time-series Annual data starting in 1952
setobs 12 1990:03 --time-series Monthly data starting in March, 1990
setobs 5 1950/01/06 --time-series Daily data (5 day weeks) starting Jan. 6, 1950

Table 9.1: Data structure using setobs: Some examples for time-series

9.2 Time-Series Plots

Gnuplot handles all the plotting in gretl. Gretl includes some functions that communicate
with gnuplot, which makes generating simple graphs very easy to do. In section 8.1.1 the plot
command was discussed that provides a bridge from gretl to gnuplot that can help you to enhance
the basic output by giving you direct access to gnuplot commands. It is worth taking a look at
that if your time series plotting needs are not met with the basic graphs.

On the other hand, if you have something really fancy to plot, you could use gnuplot directly
to get the desired result. However, the literal commands provided by the plot block can
likely accomplish what you want. Still, this requires some knowledge of the scripting language in
gnuplot. This is most important when generating publication quality graphics. For diagnostic
purposes the basic graphs are very good and the gretl graph editing commands available through
the GUI will handle most needs quite well. All-in-all, gretl’s graphical interface that works with
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gnuplot is easy to use and powerful.

Gretl’s time-series plot is really just an XY scatter plot that uses time as the x-axis variable.
By default it uses the --lines option to connect the data points. It’s relatively primitive, but
can be edited to improve its appearance. Clicking on a graph brings up a list of things you can do,
including edit the graph. Clicking the edit button brings up the plot control dialog box (Figure
4.22) where substantial customization can be done.

Gretl also has a facility to plot multiple series in separate graphs that appear on the same page.
This is accomplished using the scatters command or View>Multiple graphs>Time-series
from the main menu bar. Additional editing of these graphs require a trip through gnuplot. You
can, however, you can save them in several formats. Examples of this are found below.

Example 9.1 in POE5

In this example time-series graphs are plotted for the U.S. unemployment rate and GDP growth
from 1948.1 to 2016.1. The data are found in the usmacro.gdt data file.

1 open "@workdir\data\usmacro.gdt"
2 # change variable attributes
3 setinfo g -d "% change in U.S. Gross Domestic Product,\
4 seasonally adjusted" -n "Real GDP growth"
5 setinfo u -d "U.S. Civilian Unemployment Rate\
6 (Seasonally adjusted)" -n "Unemployment Rate"
7 setinfo inf -d "U.S. Inflation Rate\
8 (%change CPI, seasonally adjusted) " -n "Inflation Rate"
9

10 gnuplot g --with-lines --time-series --output=display
11 gnuplot u --with-lines --time-series --output=display

Here, the setinfo command is used to add meaningful labels for the y-axis variable (-n). The
graphs are generated using the simple gnuplot command with the desired options.

The two plots, after some editing using gretl plot controls, are shown in Figures 9.3 and 9.4.
The graphs can be combined using the GUI by choosing View>Multiple graphs>Time-series.
The result appears in Figure 9.5.

The plot command can be used to replicate this.

1 g1_simple <- plot u
2 options time-series with-lines
3 end plot --output=display
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This is no more complicated than using gnuplot. The advantage is that its output can be assigned
to an icon and sent to the current session. Not only does this make it available for further editing
in gretl, you can also open the gnuplot script by right-clicking on the icon and choosing Edit
plot commands.

You can add titles and labels to the plot block as shown here, where unemployment and GDP
growth are plotted in separate graphs:

1 string title = "U.S. Quarterly unemployment rate"
2 string xname = "Year"
3 string yname = "Unemployment Rate"
4 g1 <- plot u
5 options time-series with-lines
6 printf "set title \"%s\"", title
7 printf "set xlabel \"%s\"", xname
8 printf "set ylabel \"%s\"", yname
9 end plot --output=display

10

11 string title = "U.S. GDP growth rate"
12 string xname = "Year"
13 string yname = "Quarterly GDP growth rate"
14 g2 <- plot g
15 options time-series with-lines
16 printf "set title \"%s\"", title
17 printf "set xlabel \"%s\"", xname
18 printf "set ylabel \"%s\"", yname
19 end plot --output=display

The strings ‘title’ and ‘xname’ help to label the graphs informatively. The gretl options
handle plotting a single series against time (time-series) and lines (with-lines). Notice that
these are gretl options, but appear without the usual flag --.

The gretl command to generate multiple series in multiple graphs is

8 g3 <- scatters g u

An advantage of using the scatters command is that its output can be sent to the current session
as an icon using the assignment operator. In this example it is assigned to g3. The output from
scatters can be seen in Figure 9.5 below.
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9.3 Serial Correlation in a Time-Series

Correlations measure the strength of linear association between two variables. When there is no
linear association, the covariance between the variables is zero and consequently so is the correlation.
In time-series data, observations located near one another may be correlated. Correlation of this
kind is called autocorrelation (sometimes, serial correlation).1

time-series samples are obviously not random draws from a population of individuals. They
are specifically ordered in time and cannot be reshuffled without losing information about how the
variables evolve or change over time. A useful tool in determining how to parameterize these rela-
tionships is the correlogram. The correlogram is a graph of a time series sample autocorrelation
functions against the time lags.

A common assumption made in he classical multiple linear linear regression model (5.1) is that
the observations not be correlated with one another. While this is certainly believable if the sample
is drawn randomly, it’s less likely if one has drawn observations sequentially in time. time-series
observations, which are usually drawn at regular intervals, often embody a structure where time is
an important component. If this structure cannot be adequately modeled in the regression function
itself, then the remainder spills over into the unobserved component of the statistical model (its
error) and this causes the errors be correlated with one another.

One way to think about it is that the errors will be serially correlated when omitted effects
last more than one time period. This means that when the effects of an economic ‘shock’ last more
than a single time period, the unmodeled components (errors) will be correlated with one another.
A natural consequence of this is that the more frequently a process is sampled (other things being
equal), the more likely it is to be autocorrelated. From a practical standpoint, monthly observations
are more likely to be autocorrelated than quarterly observations, and quarterly more likely than
yearly ones. Once again, ignoring this correlation makes least squares inefficient at best and the
usual measures of precision (standard errors) inconsistent.

Example 9.2 in POE5

For visual evidence of autocorrelation series can be plotted against lagged values. If there is
serial correlation, you should see some sort of positive or negative relationship between the series.
Below (Figure 9.6) is a plot for the U.S. unemployment rate. Clearly, there is a positive relationship
between u and its lagged value.

Better evidence can be obtained by looking at the correlogram. A correlogram is simply a
plot of a series’ sample autocorrelations. The sth order sample autocorrelation for a series y is the

1Auto=self, serial=adjacent
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correlation between observations that are s periods apart (equation 9.1). The formula is

rs =

∑T
t=s+1(yt − ȳ)(yt−s − ȳ)∑T

t=1(yt − ȳ)2
(9.1)

In gretl the command that computes and graphs autocorrelations and partial autocorrelations
is corrgm. This command prints the values of the autocorrelation function (ACF) for a series,
which may be specified by name or number.

The partial autocorrelations (PACF, calculated using the Durbin-Levinson algorithm) are also
shown: these are net of the effects of intervening lags. In addition the Ljung-Box Q statistic
is printed. This may be used to test the null hypothesis that the series is “white noise”; it is
asymptotically distributed as χ2 with degrees of freedom equal to the number of lags used.

By default, a plot of the correlogram is produced: a gnuplot graph in interactive mode or an
ASCII graphic in batch mode. This can be adjusted via the --plot option.

The corrgm command plots a number of these against lags. The syntax to plot 24 autocorre-
lations of the series g is

corrgm g 24

which yields the plot in Figure 9.7. The correlogram is the plot at the top and the partial auto-
correlations are printed in the bottom panel. Approximate 95% confidence intervals are plotted to
indicate which are statistically significant at 5%.

Approximate 95% confidence bands are computed using the fact that
√
Trk ∼ N(0, 1). These

can be computed manually using the fact that the corrgm command generates a matrix re-
turn. There is an option to use Bartlett standard errors for computing the confidence bands,
--bartlett.

A script to generate the first 12 default intervals is

1 matrix ac = corrgm(u, 12)
2 matrix lb = ac[,1]-1.96/sqrt($nobs)
3 matrix ub = ac[,1]+1.96/sqrt($nobs)
4 matrix all = lb˜ac[,1]˜ub
5 cnameset(all, "Lower AC Upper ")
6 printf "\nAutocorrelations and 95%% confidence intervals\n %9.4f\n", all

The intervals generated are:
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Autocorrelations and 95% confidence intervals
Lower AC Upper

0.3885 0.5072 0.6258
0.2500 0.3686 0.4872
0.0303 0.1489 0.2676
-0.0338 0.0848 0.2034
-0.1430 -0.0244 0.0942
-0.0658 0.0529 0.1715
-0.0208 0.0979 0.2165
0.0077 0.1264 0.2450
0.1012 0.2198 0.3384
0.1132 0.2318 0.3505
0.0671 0.1857 0.3043
-0.0405 0.0781 0.1967

The matrix ac holds the autocorrelations in the first column and the partial autocorrelations in the
second. The matrices lb, ub, and all use indexing to use all rows of the first column of ac, i.e.,
ac[,1]. This was be dressed up a bit by adding cnameset function to add the column names to
the matrix.

You can see that zero is not included in the 1st, 2nd, 4th, and last interval. Those are signifi-
cantly different from zero at 5% level.

The correlogram can be useful for detecting the order of autocorrelation. A long series of
declining autocorrelations with a single significant pacf is often an indication of a short order
autocorrelation process. See POE5 for more guidance.

Example 9.3 in POE5

In this example the correlogram for the GDP growth series is generated for 45 lags.

1 corrgm g 45 --plot=display

The correlogram is shown in Figure 9.8. The first four rows of the output show:

Autocorrelation function for g

***, **, * indicate significance at the 1%, 5%, 10% levels
using standard error 1/Tˆ0.5

LAG ACF PACF Q-stat. [p-value]

1 0.5072 *** 0.5072 *** 70.9939 [0.000]
2 0.3686 *** 0.1499 ** 108.6314 [0.000]

310



3 0.1489 ** -0.1185 * 114.7996 [0.000]
4 0.0848 0.0055 116.8060 [0.000]

The first 3 autocorrelations are significantly different from zero at 5%.

9.4 Forecasting

Forecasting the values of economic variables is an important activity for firms, individuals, and
governments. Forecasting can also provide feedback on the quality of the model or its estimators. In
this brief section the fcast command is used to forecast out-of-sample using AR(2) and ARDL(2,1)
models.

Example 9.5 and 9.6 in POE5

First, the AR(2) model of unemployment is considered.

ut = δ + θ1ut−1 + θ2ut−2 + et

The model is estimated using OLS using the available sample in usmacro.gdt, which ends in 2016:1.
Out-of-sample forecasts are generated for the three subsequent periods, 2016:2-2016:4. To make
this possible, 3 empty observations must be added to the sample before using the fcast command
to generate dynamic forecasts of future unemployment. The script is:

1 open "@workdir\data\usmacro.gdt"
2 m1 <- ols u const u(-1 to -2)
3 dataset addobs 3
4 fcast 2016:2 2016:4 --dynamic

The observations are added using the dataset addobs command. The fcast beginning and
ending periods must be given and the --dynamic option issued. The results are:

For 95% confidence intervals, t(268, 0.025) = 1.969

u prediction std. error 95% interval

2016:2 4.88089 0.294702 4.30067 - 5.46112
2016:3 4.91629 0.559250 3.81521 - 6.01737
2016:4 4.98602 0.799577 3.41177 - 6.56028

This matches the output in Table 9.3 ofPOE5.
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Example 9.7 in POE5

In this example one distributed lag term is added to the model.

ut = δ + θ1ut−1 + θ2ut−2 + δ1gt−1 + et

The out-of sample forecast for ut+1 depends on gt which is available from the sample. Out-of-sample
forecasts for ut+2 and ut+3 are conditional on given values of gt+1 and gt+2. These values must be
added to the dataset before dynamic forecasts can be generated using fcast.

There are at least three ways to do this. 1) The observations could be added from another
dataset using append. For two observations this is not worth the trouble. 2) Highlight the series
g and right-click. Choose Edit values to open the series for editing. Scroll to the bottom and add
the desired values of g to observations as pictured in 9.9. Set g2016:2 = 0.869 and g2016:3 = 1.069.
And the easiest way is to use the indexing command as shown in lines 1 and 2 below. Notice that
the indexing recognizes the actual dates you want to fill.

That done, use fcast just as done in the AR(2) example and as shown below:

1 series g[2016:2]=.869
2 series g[2016:3]=1.069
3 ols u const u(-1 to -2) g(-1)
4 fcast 2016:2 2016:4 --dynamic

For 95% confidence intervals, t(267, 0.025) = 1.969

u prediction std. error 95% interval

2016:2 4.94987 0.291923 4.37511 - 5.52463
2016:3 5.05754 0.534339 4.00549 - 6.10959
2016:4 5.18395 0.743022 3.72102 - 6.64688

Once again, these match the values in POE5.

9.5 Model Selection

In ARDL models time is an important part of the model’s specification. Economic theory
suggests that policy changes take time to reach their full effect, but theory is silent about how long
it will take. Omitting relevant lags creates bias and overspecifying lags creates inefficiency. Hence,
lags in any ARDL model must be chosen wisely. Model selection rules, like those discussed in 6.4,
are often used for this purpose.

312



For this task, we reuse the modelsel function from section 6.4.3, with a minor modification
that will suppress most of the printing. Knowing p and q tells us everything we need to know
about the regressors in the model; it is unnecessary to list them separately.

The modified function is shown below:

1 function matrix modelsel_np (series y, list xvars)
2 ols y xvars --quiet
3 scalar sse = $ess
4 scalar N = $nobs
5 scalar k = nelem(xvars)
6 scalar aic = ln(sse/N)+2*k/N
7 scalar bic = ln(sse/N)+k*ln(N)/N
8 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
9 matrix A = { k, N, $rsq, rbar2, aic, bic}

10 return A
11 end function

This differs from modelsel by two lines of code (the printf statements were removed). The
function is renamed modelsel_np for model selection no print.

The function is executed within a loop that increments over q = 0, 1, · · · , 8 and p = 1, 2, · · · , 8.
The model selection statistics are collected into a matrix, the columns given names, and printed to
the screen.

1 open "@workdir\data\usmacro.gdt"
2 smpl 1950:1 2016:1
3 matrix A = {}
4 loop p = 1..8 --quiet
5 loop q = 0..8 --quiet
6 if q==0
7 list xvars = u(-1 to -p) const
8 else
9 list xvars = u(-1 to -p) g(-1 to -q) const

10 endif
11 matrix a = p˜q˜modelsel_np(u, xvars)
12 matrix A = A | a
13 endloop
14 endloop
15 cnameset(A,"p q k n R2 Adj_R2 AIC SC ")
16 matrix B = msortby(A,8)
17 printf "Model Selection in ARDL\n %8.4g\n",B[1:6,]

A selection of results appear below:
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Model Selection in ARDL
p q k n R2 Adj_R2 AIC SC
2 0 3 265 0.9687 0.9684 -2.454 -2.414
2 1 4 265 0.9691 0.9688 -2.462 -2.408
2 3 6 265 0.9704 0.9698 -2.488 -2.407
2 4 7 265 0.9709 0.9702 -2.497 -2.403
3 0 4 265 0.9689 0.9686 -2.456 -2.402
3 1 5 265 0.9694 0.9689 -2.462 -2.395
2 5 8 265 0.9712 0.9704 -2.500 -2.392

Even with suppression of some printing in the “no print” version of modelsel the matrix A would
produce a lot of output. So the matrix sort function (msortby) is used to sort by column 8 (the SC
criterion) and the first six rows are printed. The AR(2) model minimizes SC and the ARDL(2,1)
is a close runner-up.

9.6 Granger Causality test

Example 9.8 in POE5

In this example we test to determine whether GDP growth Granger causes unemployment. In
the context of an ARDL(2,1) model

ut = δ + θ1ut−1 + θ2ut−2 + et

This amounts to a test of the null hypothesis δ1 = 0 against the alternative δ1 6= 0. The t-ratio
from the regression table and the corresponding p-value are sufficient to test this.

Alternatively, one could use the omit command as done below.

1 open "@workdir\data\usmacro.gdt"
2 ols u(0 to -2) g(-1) const
3 omit g_1

This is verified below in Figure 9.10 You can see that the p-value from the t-ratio is the same as
that for the F -statistic. We reject the hypothesis that g Granger causes u at the 5% level.

When there there are more variables involved in the test, one could use lists to clean things
up. Put the lagged values of u in one list and the lagged values of g in another. Then, the omit
statement can be applied to the entire list. For instance, in an ARDL(2,4) model we would have:
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1 list ulags = u(-1 to -2)
2 list glags = g(-1 to -4)
3

4 smpl 1949:1 2016:1
5 ols u ulags glags const --quiet
6 omit glags --test-only

This produces the following result:

Null hypothesis: the regression parameters are zero for the variables
g_1, g_2, g_3, g_4

Test statistic: F(4, 262) = 5.98095, p-value 0.000127776

Again, g Granger causes u.

9.7 Serial Correlation in Residuals

Example 9.10 in POE5

The correlogram can also be used to check whether the assumption that model errors have
zero covariance–an important assumption in the proof of the Gauss-Markov theorem. In the first
example, the residuals from the ARDL(2,1) model are examined using their correlogram. The
entire sample is used to estimate the model.

1 smpl full
2 m1 <- ols u u(-1 to -2) g(-1) const
3 series residual = $uhat
4 g1 <- corrgm residual 24 --plot=display

The estimated model is:

û = 0.3616
(0.07228)

+ 1.533
(0.05555)

u 1− 0.5818
(0.05559)

u 2− 0.04824
(0.01949)

g 1

T = 271 R̄2 = 0.9681 F (3, 267) = 2734.5 σ̂ = 0.29192

(standard errors in parentheses)

The 24 autocorrelations are shown below in Figure 9.11 Three of the autocorrelations (7, 8, 17)
lie outside the 95% confidence bounds.
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Example 9.11 in POE5

The previous example is repeated using the residuals from an ARDL(1,1) model. Estimation
of the ARDL(1,1) yields:

û = 0.4849
(0.08416)

+ 0.9628
(0.01280)

u 1− 0.1672
(0.01871)

g 1

T = 272 R̄2 = 0.9555 F (2, 269) = 2910.2 σ̂ = 0.34538

(standard errors in parentheses)

The first 24 autocorrelations are shown below in Figure 9.12. The first three autocorrelations lie
outside the 95% confidence bounds, which is often taken as strong evidence of autocorrelation
among the residuals.

9.8 Tests for Autocorrelation

Another way to determine whether or not your residuals are autocorrelated is to use an LM
(Lagrange multiplier) test. The null hypothesis of this test is no autocorrelation. The alternative
is that the errors are either autoregressive of order k or are a moving average of k random errors
MA(k).

AR(2) et = ρ1et−1 + ρ2et−2 + vt

MA(2) et = φ1vt−1 + φ2vt−2 + vt

where vt is white noise.

The test is based on an auxiliary regression where lagged least squares residuals are added to
the original regression equation. The parameter k determines the order of the AR or MA process
under the alternative and to conduct the test k lags of residuals should be added to the auxiliary
regression. If the coefficient on the lagged residual is significant (or when k > 1, if the lagged
residuals are jointly significant) then you conclude that the model is autocorrelated.

For example, suppose you want to test the residuals of the model yt = β1 + β2xt + et for
autocorrelation. The null hypothesis is H0: no autocorrelation and the alternative is H1: MA(2)
or AR(2). Estimate the regression model using least squares and save the residuals, êt. Add two
lags of the residuals to the model and run the following regression.

êt = β1 + β2xt + δ1êt−1 + δ2êt−2 + vt

Compute TR2 which is distributed χ2(2) if H0 is true.

316



Example 9.12 in POE5

The residuals of the ARDL(1,1) and ARDL(2,1) model of unemployment are tested using the LM
test. Fortunately, gretl includes a command that computes several model tests for autocorrelation,
including the LM test discussed above.

The modtest syntax is:

modtest [order] --autocorr

The command takes an input (order) which refers to the number k in either AR(k) or MA(k)
process.

In this example orders k = 1, 2, 3, 4 are each tested. This is easily done in a loop. The script to
accomplish this is:

1 ols u u(-1) g(-1) const
2 loop i=1..4
3 modtest $i --autocorr --quiet
4 endloop
5

6 ols u u(-1 to -2) g(-1) const
7 loop i=1..4
8 modtest $i --autocorr --quiet
9 endloop

The first loop is for the ARDL(1,1) model and the second for the ARDL(2,1) model.

These loops produce a good bit of output, but the statistics found in table 9.6 of POE5 are
reproduced. An example of modtest 1 --autocorr for the ARDL(2,1) model is:

Breusch-Godfrey test for first-order autocorrelation

Test statistic: LMF = 2.466115,
with p-value = P(F(1,266) > 2.46611) = 0.118

Alternative statistic: TRˆ2 = 2.489391,
with p-value = P(Chi-square(1) > 2.48939) = 0.115

Ljung-Box Q’ = 1.1404,
with p-value = P(Chi-square(1) > 1.1404) = 0.286

The modtest command sets the lagged values of residuals that would otherwise be missing to zero.
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For instance, in the AR(2)/MA(2) example, êt−1 = 0 and êt−2 = 0 in the auxiliary regressions.
Keep this in mind if you try to replicate the modtest computations.

The statistic named LMF actually performs an F -test of the no autocorrelation hypothesis
based upon the auxiliary regression where êt−1 = 0 and êt−2 = 0. With only one autocorrelation
parameter this is equivalent to the square of the t-ratio. The next test is the LM test, i.e.,
TR2 = 2.489391 from the auxiliary regression. Gretl also computes a Ljung-Box Q statistic whose
null hypothesis is no autocorrelation. It is also insignificant at the 5% level. These results match
those in POE5 exactly.

If you prefer to use the dialogs, then estimate the model using least squares in the usual way
(Model>Ordinary least squares). In the models window select Tests>Autocorrelation to
reveal a dialog box that allows you to choose the number of lagged values of êt to include as
regressors in the auxiliary regression.

This example shows the relative strength of the LM test. One can use it to test for any order of
autocorrelation due to either autoregressive or moving average errors. Other tests, like the Durbin-
Watson discussed later, are more difficult to do in higher orders. The LM test is also robust to
having lag(s) of the dependent variable as a regressor.

9.9 Case Studies

In this section we analyze several models through examples. The examples include Okun’s Law,
Phillips curve, and estimation of a consumption function.

9.9.1 Okun’s Law

Example 9.13 in POE5

Okun’s Law provides another opportunity to search for an adequate specification of the time-
series model. In this model, the change in the unemployment rate depends on deviation of actual
from normal growth. If the economy grows faster than normal, the unemployment rate will drop.

ut − ut−1 = −γ(gt − gN )

where gN is the long-run normal level of economic growth.

Let ut − ut−1 = dut, β0 = −γ, and α = γgN ; add an error term and the regression model is

dut = α+ β0gt + et

Recognizing that some time will pass before growth deviations have their full impact we get a
distributed lag model:

dut = α+ β0gt + β1gt−1 + · · ·+ βqgt−q + et
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The data are found in okun5 aus.gdt. They are loaded into gretl and the difference of the
unemployment rate is added to the dataset. The setinfo command is used to change attributes
so as to improve labelling. A scatter plot is made, with lines, and output to the display. It is also
saved to the current session as an icon.

1 open "@workdir\data\okun5_aus.gdt"
2 diff u
3 setinfo g -n "GDP growth rate"
4 setinfo d_u -d "Change in Australian Civilian Unemployment \
5 Rate (Seasonally adjusted)" -n \
6 "Change in Unemployment Rate"
7 g4 <- scatters g d_u --with-lines --output=display

The figures produced by this script are found in Figure 9.13.

Two finite distributed lag models are estimated. The first has a lag length q = 5 and the second
q = 4. The results are collected into a model table:

OLS estimates
Dependent variable: d u

(1) (2)

const 0.3930∗∗ 0.4100∗∗

(0.04493) (0.04155)

g −0.1287∗∗ −0.1310∗∗

(0.02556) (0.02440)

g 1 −0.1721∗∗ −0.1715∗∗

(0.02488) (0.02395)

g 2 −0.09320∗∗ −0.09400∗∗

(0.02411) (0.02402)

g 3 −0.07260∗∗ −0.07002∗∗

(0.02411) (0.02391)

g 4 −0.06363∗∗ −0.06109∗∗

(0.02407) (0.02384)

g 5 0.02317
(0.02398)

n 148 149
R̄2 0.4816 0.4813
` 13.82 13.83
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Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The lag weight on g5 is not statistically different from zero and we choose the model with q = 4.
In addition, the modelsel_np function is used to compute model selection rules for q ≤ 6. The
results confirm our choice.

Model Selection in ARDL
p q K N R2 Adj_R2 AIC SC
4 0 6 145 0.5062 0.4884 -2.93 -2.806
3 0 5 145 0.4835 0.4687 -2.899 -2.796

Finally, a loop is used to recursively compute impact and delay multipliers based on the esti-
mated model.

Multiplier Analysis

Multiplier analysis refers to the effect, and the timing of the effect, of a change in one variable
on the outcome of another variable. The simplest form of multiplier analysis is based on a finite
distributed lag model

yt = α+ β0xt + β1xt−1 + β2xt−2 + · · ·+ βqxt−q + et (9.2)

The estimated coefficients from this model can be used to produce impact, delay and interim
multipliers. The impact multiplier is the impact of a one unit change in xt on the mean of yt.
Since x and y are in the same time period the effect is contemporaneous and therefore equal to the
initial impact of the change. The s-period delay multiplier

∂E(yt)

∂xt−s
= βs (9.3)

is the effect of a change in x s-periods in the past on the average value of the dependent variable in
the current period. If xt is increased by 1 unit and then maintained at its new level in subsequent
periods (t+ 1), (t+ 2), . . ., then one can compute an interim multiplier. The interim multiplier
simply adds the immediate effect (impact multiplier), β0, to subsequent delay multipliers to measure
the cumulative effect. So in period t + 1 the interim effect is β0 + β1. In period t + 2, it will be
β0 + β1 + β2, and so on. The total multiplier is the final effect on y of the sustained increase
after q or more periods have elapsed; it is given by

∑q
s=0 βs.

In terms of the estimated model of Okun’s law we assemble the multipliers using:
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1 open "@workdir\data\okun5_aus.gdt"
2 diff u
3 ols d_u g(0 to -4) const
4 matrix b = $coeff
5 matrix mult = zeros(5,2)
6 loop i=1..5
7 matrix mult[i,1]=b[i+1]
8 matrix mult[i,2]=b[i+1]
9 if i>1

10 matrix mult[i,2]=mult[i-1,2]+b[i+1]
11 endif
12 endloop
13 cnameset(mult,"Delay Interim")
14 rnameset(mult,"0 1 2 3 4")
15 printf "Multipliers for Okun’s Law, q=4\n%10.4f\n", mult
16

17 printf "\nNormal Growth rate = %.4f%% per quarter\n", -b[1]/mult[5,2]
18 printf "\nThe Total Multiplier = %.4f\n", mult[5,2]

This script if relatively straightforward. The data are reloaded and the differences added to the
dataset. In line 3 the regression is estimated and its coefficients are saved as a vector (matrix) b
in line 4. The vector b contains all of the s-period delay multipliers (i.e., the lag weights) in our
linear finite distributed lag model.

In line 5 a 5× 2 matrix of zeros is created to hold the multipliers we compute iteratively. The
loop commences in line 6. Lines 7 and 8 take care of the impact multiplier and 10 computes the
remaining ones. The normal growth rate is calculated in line 17 and the total multiplier is computed
in 18.

The results are:

Multipliers for Okun’s Law, q=4
Delay Interim

0 -0.1310 -0.1310
1 -0.1715 -0.3025
2 -0.0940 -0.3965
3 -0.0700 -0.4665
4 -0.0611 -0.5276

Normal Growth rate = 0.7770% per quarter
The Total Multiplier = -0.5276

The ARDL model adds lagged values of the dependent variable to the AR model,

yt = δ + θ1yt−1 + · · ·+ θpyt−p + δ0xt + δ1xt−1 + · · ·+ δqxt−q + vt (9.4)

and this makes the multiplier analysis a little harder. The model must first be transformed into
an infinite distributed lag model using the properties of the lag operator, L. That is, Lixt = xt−i.
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This puts the model into the familiar AR form and the usual definitions of the multipliers can be
applied.

For the ARDL(1,1) that contains a linear trend we have

∆yt = yt − yt−1 = δ + θ1(xt − xt−1) + vt = δ + θ1∆xt + vt

Written with the lag operator, L

(1− θ1L) ∆yt = δ + (δ0 + δ1L)xt + vt

∆yt = (1− θ1L)−1δ + (1− θ1L)−1 (δ0 + δ1L)xt + (1− θ1L)−1vt

∆yt = α+ β0xt + β1xt−1 + β2xt−2 + β3xt−3 + · · ·+ et

= α+
(
β0 + β1L+ β2L

2 + β3L
3 + · · ·

)
xt + et

This is just an infinite distributed lag model. The coefficients for the multipliers involve the β
coefficients, which must be solved for in terms of the estimated parameters of the ARDL. The
solutions for the ARDL(1,1) are

β0 =δ0 (9.5)

β1 =δ1 + β0θ1 (9.6)

βj =βj−1θ1 for j ≥ 2 (9.7)

Although the computation of the multipliers is fairly transparent, it involves a lot of code. Gretl
contains two functions that can simplify this and make it much more general. The revised script2

is:

1 open "@workdir\data\okun5_aus.gdt"
2 diff u
3

4 list exo = const
5 p = 0
6 q = 4
7 list exo = const
8 horizon = 4
9

10 ols d_u exo g(0 to -q)
11 k = nelem(exo)
12 matrix b = $coeff[k+1:k+p]
13 matrix a = $coeff[k+p+1:k+p+q+1]
14

15 mult = filter(1|zeros(horizon, 1), a, null)
16 mult = mult ˜ cum(mult)
17

2Adapted from one provided to the author by Jack Lucchetti.

322



18 cnameset(mult,"Delay Interim")
19 rnameset(mult,"0 1 2 3 4")
20 printf "Multipliers for Okun’s Law, q=4\n%10.4f\n", mult
21 printf "\nNormal Growth rate = %.4f%% per quarter\n", -b[1]/mult[5,2]
22 printf "\nThe Total Multiplier = %.4f\n", mult[5,2]

The first improvement is that this one handles additional exogenous regressors easily. These are
place into a list called exo and the number of exogenous regressors is captured in line as k. The
second improvement is the adaptation to a ARDL model that permits p lagged dependent variables
as regressors. Our example contains no lagged endogenous variables and p=0. The scalar q captures
the number of lags for the DL portion of the model, in this case 4. The coefficients are parsed
into two sets, a and b. The vector b contains the coefficients of the AR part of the model, and a
contains the lag weights on the DL portion.

The filter command computes an ARMA-like filter as in:

yt = a0xt + a1xt−1 + · · ·+ aqxt−q + b1yt−1 + · · ·+ bpyt−p

The filter command as used here takes three arguments. The first is a vector (1, 0, 0, 0, 0, 0)
which represents the values of x for the multiplier. This means that xt = 1 and the other lags are
zero. The next argument contains the DL lag weights starting at lag 0. Since there are no AR
terms, b is empty and set to null. This returns a vector containing the delay multipliers. The
cum (cumulative) function takes the cumulative sum which produces the interim multipliers. This
produces the same result as our original script.

9.9.2 Phillips Curve

Example 9.14

The Phillips curve and corresponding model to be estimated are in equations 9.8 and 9.9,
respectively:

inft = inf et − γ(ut − ut−1) (9.8)

inft = α+ β0dut + et (9.9)

where inf et = α is expected inflation and dut = (ut−ut−1) is the change in the unemployment rate.
The data are in phillips5 aus.gdt.

The data are quarterly and begin in 1987:1. A time-series plot of the inflation rate is shown
below in Figure 9.14. The graphs show some evidence of serial correlation in the inflation rate.

The model is estimated by least squares and the residuals are plotted against time. These
appear in Figure 9.15. A correlogram of the residuals that appears below seems to confirm this.
To generate the regression and graphs is simple. The script to do so is:
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1 open "@workdir\data\phillips5_aus.gdt"
2

3 # Graph of series against lags
4 string title = "Australian Inflation Rate: 1987:1 - 2016:1"
5 string xname = "Year"
6 string yname = "Inflation Rate"
7 list plotvars = inf
8 g4 <- plot plotvars # Plotting the series, save to session as g4
9 options --time-series --with-lines # gretl options

10 printf "set title \"%s\"", title # title and axis labels
11 printf "set xlabel \"%s\"", xname
12 printf "set ylabel \"%s\"", yname
13 end plot --output=display
14

15 ols inf const du # Phillips curve estimation
16 series residual = $uhat
17 corrgm residual 16 --plot=display # Graph of correlogram

Unfortuantely, gretl will not accept the accessor, $uhat, as an input into either gnuplot, plot,
or corrgm. That means the residuals must be saved as a series, residual, first. All three
functions work as expected when used on the series.

The GUI is even easier in this instance once the model is estimated. The model window offers
a way to produce both sets of graphs. Simply choose Graphs>Residual plot>Against time to
produce the first. The second is Graphs>Residual correlogram. The latter opens a dialog box
allowing you to specify how many autocorrelations to compute.

If you are using the GUI rather than a hansl script to estimate the model, you have the
opportunity to create the lagged variables through a dialog box. The specify model dialog and
the lag order dialog are shown in Figure 9.16 below. Click on the lags button and the dialog
shown on the right will pop-up. Add the desired number of lags to the variable of choice. Click
OK and the lags will be added to the regressor list as shown on the left.

9.9.3 Least Squares and HAC Standard Errors

As is the case with heteroskedastic errors, HAC covariance estimation provides a statistically
valid way to use least squares when your data are also autocorrelated. Standard errors will be
robust with respect to both heteroskedasticity and autocorrelation. This estimator is sometimes
called HAC, which stands for heteroskedasticity autocorrelated consistent. This and some
issues that surround its use are discussed in the next few sections.
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Bandwidth and Kernel

HAC is not quite as automatic as the heteroskedasticity consistent (HCCME) estimator in
Chapter 8 because it contains an extra parameter. To be robust with respect to autocorrelation
the number of time periods for which there is significant autocorrelation among residuals must be
specified. Autocorrelated errors over the chosen time window are averaged in the computation of
the HAC standard errors

The language of time-series analysis can be opaque. This is the case here. The weighted average
is called a kernel and the number of errors to average in this respect is called the bandwidth. The
kernel provides a weighting scheme over which the average is taken; the bandwidth determines the
number of periods to use to compute the weighted average. In gretl you may choose the method
of averaging (Bartlett kernel or Parzen kernel) and a bandwidth (nw1, nw2 or some integer). Gretl
defaults to the Bartlett kernel and the bandwidth nw1 = 0.75×N1/3. Bandwidth nw1 is computed
based on the sample size, N . The nw2 bandwidth is nw2 = 4 × (N/100)2/9. This one appears to
be the default in other programs like EViews.

Implicity there is a trade-off to consider. Larger bandwidths reduce both bias (good) and
precision (bad). Smaller bandwidths exclude more relevant autocorrelations (and hence have more
bias), but use more observations to compute the overall covariance and hence increase precision
(smaller variance). The generic recommendation is to choose a bandwidth that is large enough to
contain the largest autocorrelations. Goldilock’s choice will ultimately depend on the frequency of
observation and the length of time it takes for the system under study to adjust to shocks.

The bandwidth or kernel can be changed using the set command from the console or in a
script. The set command is used to change various defaults in gretl and the relevant switches for
our use are hac_lag and hac_kernel. The use of these is demonstrated below. The following
script changes the kernel to bartlett and the bandwidth to nw2. Then the differences of the
unemployment rate are generated.

The set command is used to manipulate options that make this possible without much effort.
First, bandwidth choice is switched to the nw2 option using the set hac lag switch. In this
example, nw2 is estimated to be equal to 4, which is what is used in POE5. The set force hc
switch is set to off (the default, which for time series produces HAC). Also, the Bartlett kernel is
chosen by setting the hac kernel switch to bartlett. After this model is estimated and saved
to a model table, the force hc switch is turned on to force computation of HC errors. The entire
set of code is:

1 ols inf const du # Phillips curve estimation
2 series residual = $uhat
3 corrgm residual 16 --plot=display
4

5 ols inf const du # OLS with inconsistent std errors
6 modeltab add
7 set hac_lag nw2 # automatic bandwidth setting
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8 set force_hc off # off: --robust produces HAC
9 set hac_kernel bartlett # choose the kernel

10

11 ols inf const du --robust # OLS with HAC
12 modeltab add
13 set force_hc on # on: --robust produces HC1
14

15 ols inf const du --robust # OLS with HC1
16 modeltab add
17 modeltab show

The model table appears below.

OLS estimates
Dependent variable: inf

(Usual OLS) (HAC) (HC1)

const 0.7317∗∗ 0.7317∗∗ 0.7317∗∗

(0.05606) (0.09075) (0.05688)

du −0.3987∗ −0.3987 −0.3987
(0.2061) (0.2854) (0.2632)

n 117 117 117
R2 0.0315 0.0315 0.0315
` −106.1 −106.1 −106.1

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The HAC standard errors are the larger than the HC1 and the usual OLS standard errors. Notice
that the slope is not significant with HAC standard errors.

Example 9.15

In this example, the Phillips curve with AR(1) errors is estimated using three techniques: 1)
OLS with HAC standard errors, 2) Nonlinear Least Squares (which was introduced in section 6.8),
and 3) Feasible GLS.

First, OLS:
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1 set force_hc off
2 set hac_kernel bartlett
3 set hac_lag 4
4 m1 <- ols inf const du --robust

Nonlinear Least Squares

Perhaps the best way to estimate a linear model that is autocorrelated is using nonlinear least
squares. The nonlinear least squares estimator (NLS) only requires that the timeseries be stable
(not necessarily stationary). Other methods commonly used make stronger demands on the data,
namely that the errors be covariance stationary. Furthermore, the nonlinear least squares estimator
gives you an unconditional estimate of the autocorrelation parameter, ρ, and yields a simple t-test
of the hypothesis of no serial correlation. Monte Carlo studies show that it performs well in small
samples as well.

As mentioned in section 6.8 nonlinear least squares requires more computational power than
linear estimation, though this is not much of a deterent these days. Nonlinear least squares (and
other nonlinear estimators) use numerical methods rather than analytical ones to find the minimum
of the sum-of-squared-errors objective function. The routines are iterative. The user supplies a
good guess for the values of the parameter and the algorithm evaluates the sum-of-squares function
at this guess. The slope of the sum-of-squares function at the guess points in a direction that
leads closer to a smaller sum of squared errors and computes a step in the parameter space that
moves the next iteration toward the minimum (further down the hill). If an improvement in the
sum-of-squared-errors function is found, the new parameter values are used as the basis for another
step. Iterations continue until no further significant reduction in the sum of squared errors can be
found.

In the context of the area response equation the AR(1) model is

inft = β1(1− ρ) + β2(∆ut − ρ∆ut−1) + ρ inft−1 + vt (9.10)

The errors, vt, are random and the goal is to find β1, β2, and ρ that minimize
∑
v2
t .

A More General Model

Equation 9.10 can be expanded and rewritten in the following way:

inft = δ + δ0∆ut + δ1∆ut−1 + θ1 inft−1 + vt (9.11)

Both equations contain the same variables, but Equation (9.10) contains only 3 parameters while
(9.11) has 4. This means that (9.10) is nested within (9.11) and a formal hypothesis test can be
performed to determine whether the implied restriction holds. The restriction is δ1 = −θ1δ0.3

3δ = β1(1− ρ), δ0 = β2, δ1 = −ρβ2, θ1 = ρ
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To test this hypothesis using gretl write a function for the nonlinear hypothesis and use the
restrict statement to estimate and test the restriction. The script is:

1 m3 <- ols inf const du(0 to -1) inf(-1) --robust
2

3 function matrix restr (const matrix b)
4 matrix v = b[3] + b[4]*b[2]
5 return v
6 end function
7

8 restrict
9 rfunc = restr

10 end restrict

The linear regression in equation 9.11 is estimated in line 1 using HAC standard errors.

înf = 0.3483
(0.07381)

− 0.3728
(0.2445)

du + 0.01714
(0.2470)

du 1 + 0.4992
(0.1033)

inf 1

T = 116 R̄2 = 0.2638 F (3, 112) = 13.502 σ̂ = 0.51712

(standard errors in parentheses)

The estimates of ρ and β2 are very close to the ones from NLS found below. The lagged unemploy-
ment rate has a t-ratio of 0.069. It is not significant and it may be worth considering removing it
from the model using the omit du 1 statement.

Lines 3-6 host a function that returns a matrix called restr. It has only one argument, const
matrix b. const matrix signals that the argument is a constraint matrix. See section 6.1.3.
Finally, the last three lines test the hypothesis. The restricted model in not estimated in this
instance.

For the example, the test statistic and p-value are:

Test statistic: Robust chiˆ2(1) = 0.424682, with p-value = 0.51461

The NLS model (null) cannot be rejected at 5% significance.

To estimate the model by NLS requires starting values for the parameters. Ordinary least
squares is a good place to start since OLS is consistent for the slope(s) and intercept. The auto-
correlation parameter, ρ, is started at zero. The script is this follows:

1 open "@workdir\data\phillips5_aus.gdt"
2 ols inf const du --quiet
3
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4 scalar beta1 = $coeff(const)
5 scalar beta2 = $coeff(du)
6 scalar rho = 0
7

8 nls inf = beta1*(1-rho) + rho*inf(-1) + beta2*(du-rho*d_u(-1))
9 params rho beta1 beta2

10 end nls

The nls block is initiated with nls followed by the equation representing the systematic portion
of your model. The block is closed by the statement end nls. When possible, it is a good idea
to supply analytical derivatives for nonlinear optimization. I did not, opting to let gretl compute
numerical derivatives. When using numerical derivatives, the params statement is required for
gretl to figure out what to take the derivatives with respect to.

In the script, I used gretl’s built-in functions to take differences and lags. Hence, inf(-1) is
the variable inf lagged by one period (-1). In this way you can create lags or leads of various
lengths in your gretl programs without explicitly having to create new variables via the genr or
series command.

Magically, this yields the same result as POE5 !

m2: NLS, using observations 1987:2–2016:1 (T = 116)
inf = beta1*(1-rho) + rho*inf(-1) + beta2*(du-rho*du(-1))

Estimate Std. Error t-ratio p-value

rho 0.500064 0.0809356 6.179 0.0000
beta1 0.702846 0.0963154 7.297 0.0000
beta2 −0.383025 0.210459 −1.820 0.0714

Mean dependent var 0.729741 S.D. dependent var 0.602674
Sum squared resid 30.19489 S.E. of regression 0.516925
R2 0.277114 Adjusted R2 0.264319
Log-likelihood −86.53366 Akaike criterion 179.0673
Schwarz criterion 187.3281 Hannan–Quinn 182.4207

GNR: R2 = 8.88178e-016, max |t| = 2.88248e-007
Convergence seems to be reasonably complete

To compare the constrained parameters estimated by NLS and the unconstrained one in the gen-
eralization estimated by OLS, we compute δ = β1(1− ρ) and δ1 = ρβ2.

11 scalar delta = $coeff(beta1)*(1-$coeff(rho))
12 scalar delta1 = -$coeff(rho)*$coeff(beta2)
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13 printf "\nThe estimated delta is %.3f and the estimated delta1\
14 is %.3f.\n",delta,delta1

In lines 11 and 12 δ and δ1 are approximated from the NLS estimated AR(1) regression. the
result is

The estimated delta is 0.351 and the estimated delta1 is 0.192.

FGLS

The feasible GLS estimator of the AR(p) model can be estimated using gretl in a number
of ways. For first order autocorrelated models the ar1 command can be used. There are a
number of estimators available by option including the Cochrane-Orcutt (iterated), the Prais-
Winsten (iterated), and the Hildreth-Lu search procedure. Examples are:

1 m4 <- ar1 inf const du
2 m5 <- ar1 inf const du --pwe
3 m6 <- ar1 inf const du --hilu

The ar command is more general and computes parameter estimates using the generalized
Cochrane-Orcutt iterative procedure. This routine allows additional lags of the errors to be modeled
by specifically listing which lags to include in the error function. The syntax is:

ar

Arguments: lags ; depvar indepvars
Option: --vcv (print covariance matrix)
Example: ar 1 3 4 ; y 0 x1 x2 x3

For the example we include:

1 m7 <- ar 1; inf const du

Notice that the lag number(s) follows the ar command followed by a semi-colon and the regression
model to be estimated. In the script found at the end of this chapter these are combined into a
model table, the results of which are shown below.

Dependent variable: inf
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(1) (2) (3) (4) (5)
Estimator ols --robust ar1 ar 1 ar1 --pwe ar1 --hilu

const 0.7317∗∗ 0.7028∗∗ 0.7028∗∗ 0.7343∗∗ 0.7028∗∗

(0.09075) (0.09568) (0.09568) (0.09581) (0.09568)

du −0.3987 −0.3830∗ −0.3830∗ −0.3950∗ −0.3830∗

(0.2854) (0.2087) (0.2087) (0.2116) (0.2087)

n 117 116 116 117 116
R̄2 0.0231 0.2709 0.2709 0.2714 0.2709
` −106.1

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The first column is estimated using ols with the --robust option, which produces HAC standard
errors. The next two columns are virtually identical; they differ only by the command that was used
to produce them. Column (2) uses the specialized ar1 command and (3) uses the more general ar
command with a single lag of 1 listed as an argument. The final two columns are estimated using
ar1 with the Prais-Winsten option and the Hildreth-Lu option, respectively. Note that only OLS
and ar1 --pwe uses the entire sample of 117 observations.

Maximum Likelihood

There is one more alternative to consider: the arima command., the syntax for which appears
below:

arima

Arguments: p d q [ ; P D Q ] ; depvar [ indepvars ]
Options: --verbose (print details of iterations)

--vcv (print covariance matrix)
--hessian (see below)
--opg (see below)
--nc (do not include a constant)
--conditional (use conditional maximum likelihood)
--x-12-arima (use X-12-ARIMA for estimation)
--lbfgs (use L-BFGS-B maximizer)
--y-diff-only (ARIMAX special, see below)
--save-ehat (see below)

Examples: arima 1 0 2 ; y
arima 2 0 2 ; y 0 x1 x2 --verbose
arima 0 1 1 ; 0 1 1 ; y --nc
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The default estimation method for arima in gretl is to estimate the parameters of the model
uses the “native” gretl ARMA functionality, with estimation by exact maximum likelihood using
the Kalman filter.4 You can estimate the parameters via conditional maximum likelihood as well.

The model has one auto regressive term, no moving average term, and no difference taken. The
arima syntax is similar to the ar command, except you specify p, d, and q, where p is the order
of the desired autocorrelation, d is the number of differences to take of the time series, and q is the
order of any moving average terms you might have in the residuals. The simple syntax is:

1 m8 <- arima 1 0 0; inf const du

The results are:

m8: ARMAX, using observations 1987:1–2016:1 (T = 117)
Dependent variable: inf

Standard errors based on Hessian

Coefficient Std. Error z p-value

const 0.734462 0.0977049 7.517 0.0000
φ1 0.514054 0.0815822 6.301 0.0000
du −0.394770 0.209924 −1.881 0.0600

Mean dependent var 0.740598 S.D. dependent var 0.611454
Mean of innovations −0.005387 S.D. of innovations 0.517551
Log-likelihood −89.10748 Akaike criterion 186.2150
Schwarz criterion 197.2637 Hannan–Quinn 190.7006

Real Imaginary Modulus Frequency

AR
Root 1 1.9453 0.0000 1.9453 0.0000

You can see that these are very close to those obtained using NLS or FGLS. The parameter φ1

corresponds to ρ in the NLS and FGLS estimators. It is estimated to be .51. The root of this
equation is 1/φ1. The roots (or modulus) must be greater than 1 in absolute value in order for the
model to be stationary.

9.9.4 A Consumption Function

4Cottrell and Lucchetti (2018)
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Example 9.16 in POE5

Suppose current consumption is a function of permanent income:

ct = ω + βyPt

The ARDL model adds lagged values of the dependent variable to the AR model,

yt = δ + θ1yt−1 + · · ·+ θpyt−p + δ0xt + δ1xt−1 + · · ·+ δqxt−q + vt (9.12)

Permanent income, yP , is not observed. It is assumed that it consists of a trend and a geometri-
cally weighted average of observed current and past incomes. This is transformed into an infinite
distributed lag model using the properties of the lag operator, L. That is, Lixt = xt−i.

ypt = γ0 + γ1t+ γ2

(
1 + λ1L+ λ2L

2 + λ3L
3 + · · ·

)
yt (9.13)

Taking the difference of ct produces

dct = ct − ct−1 = βγ1 + βγ2

(
1 + λL+ λ2L

2 + λ3L
3 + · · ·

)
dyt

Setting α = βγ1, β0 = βγ2 and adding an error term produces the regression model:

dct = ct − ct−1 = α+ β0

(
1 + λL+ λ2L

2 + λ3L
3 + · · ·

)
dyt + et

The ARDL(1,0) representation of this infinite distributed lag model (i.e., a special case of equation
(9.9.1)) becomes:

dct = δ + λdct−1 + β0dyt + vt (9.14)

This is estimated in gretl :

1 open "@workdir\data\cons_inc.gdt"
2 diff cons y
3 list xvars = const d_cons(-1) d_y
4 ols d_cons xvars

which produces:

̂d cons = 478.6
(74.20)

+ 0.337
(0.0599)

d cons 1 + 0.0991
(0.0215)

d y

T = 227 R̄2 = 0.214 F (2, 224) = 31.847 σ̂ = 734.69

(standard errors in parentheses)

4 ols d_cons xvars
5
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6 matrix b = $coeff
7 printf "\nTotal Multiplier = %.3f\n", b[3]/(1-b[2])
8 loop i=1..4
9 modtest $i --autocorr --quiet

10 endloop

The total multiplier for an infinite distributed lag model is β0/(1− λ). This is computed using the
least squares coefficients accessed through $coeff and placed into a matrix called b.

Delay multipliers are simple to compute as well. The impact is simply the coefficient of dy,
0.0991. The one period delay is λβ0, the second delay is λ2β0 and so on.

The LM test from section 9.8 was conducted using a loop. In each case the null was of no
autocorrelation was not rejected by the LM test.

Another test was conducted as suggested by McClain and Wooldridge (1995). There are four
steps to this test.

1. Estimate the regression and save the residuals, ût.

2. Using the estimated coefficient on the lagged dependent variable, λ̂, and starting with êt = 0,
compute êt = λ̂êt−1 + ût

3. Run a regression of ût on the regressors in the model augmented by êt

4. If the estimator is consistent and assuming ut is homoskedastic, (T − 1)R2 ∼ χ2(1) in large
samples.

For the Phillips curve this is accomplished using:

1 ols d_cons xvars
2 series uhat = $uhat
3 series ehat = 0
4 series ehat = $coeff(d_cons_1)*ehat(-1) + uhat
5 ols uhat xvars ehat(-1) --quiet
6 scalar stat = $trsq
7 pvalue X 1 stat

and produces:

1 Generated scalar stat = 0.056747
2

3 Chi-square(1): area to the right of 0.056747 = 0.811713
4 (to the left: 0.188287)
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The consistency of the model’s estimator is not rejected at 5%.

Example 9.17 and 9.18 in POE5

In these examples multipliers are derived and estimated for an ARDL(2,1) model. As done in
section 9.9.1 above, the ARDL is converted into an infinite distributed lag model before multipliers
are derived. This is done in POE5 example 9.17. At the end of this example, we show how to
avoid this step in gretl using the filter function.

The ARDL(2,1) is:

dut = δ + θ1dut−1 + θ2dut−2 + δ0gt + δ1gt−1 + vt (9.15)

They show that the coefficients of the IDL are:

β0 = δ0

β1 = θ1β0

βj = θ1βj−1 + θ2βj−2 j ≥ 2

For Okun model the hansl script estimates the model and computes the multipliers recursively. To
make the script easier to decipher, scalars are created for the paramters (δ0, δ1, θ1, θ2) in lines 5-8.
We compute only eleven of the multipliers and create a matrix to hold them as they are computed
in the loop. The loop has three equations to compute that depend on lag length. This is done
using if, elif, and else conditional commands.

1 open "@workdir\data\okun5_aus.gdt"
2 diff u
3 ols d_u(0 to -2) g(0 to -1) const
4

5 scalar d0 = $coeff(g)
6 scalar d1 = $coeff(g_1)
7 scalar theta1=$coeff(d_u_1)
8 scalar theta2=$coeff(d_u_2)
9

10 scalar h = 11
11 matrix mult = zeros(h,2)
12

13 loop i=1..h
14 mult[i,1] = i-1
15 if i=1
16 mult[i,2]=d0
17 elif i=2
18 mult[i,2]=d1 + theta1*d0
19 else
20 mult[i,2]=mult[i-1,2]*theta1 + theta2*mult[i-2,2]
21 endif
22 endloop

335



The multipliers are stored in memory to a matrix called mult. Once mult is populated the various
statistics that are computed using them are easy to form. First, we add column names to the matrix
using cnameset and plot the delay multipliers using gnuplot. The graph appears in Figure 9.17.

1 cnameset(mult, " Lag Delay_Mult ")
2 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted

Next, the delay multipliers depicted in the graph are printed.

The impact and delay multipliers are
Lag Delay_Mult
0 -0.0904
1 -0.154
2 -0.0593
3 -0.0475
4 -0.0248
5 -0.0164
6 -0.00946
7 -0.00589
8 -0.00352
9 -0.00215

10 -0.0013

Finally, the total multiplier based on the first 10 delay multipliers, the normal growth rate, and
the the asymptotically derived total multiplier are computed.

1 printf "\nTotal multiplier using the sum of estimates is %.3g\n",\
2 sum(mult[,2])
3 scalar alpha = $coeff(const)/(1-theta1-theta2)
4 scalar TotalMult = (d0+d1)/(1-theta1-theta2)
5 printf "\nNormal Growth = %.3f%%\n", -alpha/TotalMult
6 printf "\nAsymptotic Total Multiplier = %.3f%%\n", TotalMult

This produces:

Total multiplier using the sum of estimates is -0.414
Normal Growth = 0.776%
Asymptotic Total Multiplier = -0.416%

The first 10 delay multipliers captures most of the changes accounted for based on the asymptotic
computation of the total multiplier. The estimated sustained growth rate needed to maintain full
employment is 0.776% per quarter.
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Using filter

As seen in Example 9.13, the filter function can be used to generate multipliers. In this case,
there is no need to generate the infinite DL model, which saves a lot of work. This example shows
how easily it is to conduct a multiplier analysis using any ARDL model.

1 list exo = const
2 p = 2
3 q = 1
4 list exo = const
5 horizon = 10
6

7 ols d_u exo d_u(-1 to -p) g(0 to -q)
8 k = nelem(exo)
9 matrix b = $coeff[k+1:k+p]

10 matrix a = $coeff[k+p+1:k+p+q+1]
11

12 mult = filter(1|zeros(horizon, 1), a, b)
13 mult = mult ˜ cum(mult)
14

15 cnameset(mult,"Delay Interim")
16 printf "Multipliers for Okun’s Law, p=%g, q=%g\n%10.4f\n", p, q, mult

Simply choose the desired p, q, exogenous variables, and horizon. The rest is automated and
produces:

Multipliers for Okun’s Law, p=2, q=1
Delay Interim

-0.0904 -0.0904
-0.1535 -0.2439
-0.0593 -0.3032
-0.0475 -0.3506
-0.0248 -0.3754
-0.0164 -0.3918
-0.0095 -0.4013
-0.0059 -0.4072
-0.0035 -0.4107
-0.0021 -0.4128
-0.0013 -0.4141

Very slick. Thanks Jack!
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Example 9.19

In this example Okun’s ARDL(2,1) from the preceding example is tested for consistency using
the McClain and Wooldridge test. Assuming that the errors of the IDL follow an AR(2) process

et = ψ1et−1 + ψ2et−2 + vt.

In terms of the coefficients of the equation (9.15), H0: ψ1 = θ1 and ψ2 = θ2 against the two-sided
alternative. In this instance, ût are from the estimated ARDL(2,1) model, êt = θ̂1êt−1 + θ̂2êt−2 + ût.
Regress ût onto the regressors of the ARDL(2,1) augmented with êt−1 and êt−1. TR2 ∼ χ2(2) if
H0 is true. The script is:

1 list xvars = d_u(-1 to -2) g(0 to -1) const
2 ols d_u xvars
3 series uhat = $uhat
4 matrix b = $coeff
5

6 series ehat = 0
7 # McLain & Wooldridge test
8 series ehat = $coeff(d_u_1)*ehat(-1) + $coeff(d_u_2)*ehat(-2)+ uhat
9

10 ols uhat xvars ehat(-1 to -2) --quiet
11 scalar stat = $trsq
12 pvalue X 2 stat

which yields:

Chi-square(2): area to the right of 3.13367 = 0.208704
(to the left: 0.791296)

The null hypothesis cannot be rejected at 5%. The parameters of the ARDL are estimated consis-
tently.

Example 9.20 in POE5

Finally, the Durbin-Watson test is used to test for evidence of AR(1) errors in the Phillips curve
example.

1 open "@workdir\data\phillips5_aus.gdt"
2 list x = du const
3 ols inf x
4 scalar dw_p = $dwpval
5 print dw_p
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Gretl computes the actual small sample p-value for this test using Imhoff integration. It stores
the result in temporary memory and can be accessed using the accessor, $dwpval. The regression
output is:

m1: OLS, using observations 1987:1–2016:1 (T = 117)
Dependent variable: inf

Coefficient Std. Error t-ratio p-value

const 0.731739 0.0560595 13.05 0.0000
du −0.398670 0.206055 −1.935 0.0555

Mean dependent var 0.740598 S.D. dependent var 0.611454
Sum squared resid 42.00244 S.E. of regression 0.604350
R2 0.031525 Adjusted R2 0.023103
F (1, 115) 3.743348 P-value(F ) 0.055474
Log-likelihood −106.0857 Akaike criterion 216.1714
Schwarz criterion 221.6958 Hannan–Quinn 218.4142
ρ̂ 0.499727 Durbin–Watson 0.964608

The DW statistic is 0.9646. It’s p-value is:

dw_p = 4.8337456e-010

The p-value is tiny and DW is definitely significant at 5% according to this test.

9.10 Script

1 set verbose off
2 # Example 9.1
3 # Plotting time series
4 open "@workdir\data\usmacro.gdt"
5 # change variable attributes
6 setinfo g -d "% change in U.S. Gross Domestic Product,\
7 seasonally adjusted" -n "Real GDP growth"
8 setinfo u -d "U.S. Civilian Unemployment Rate\
9 (Seasonally adjusted)" -n "Unemployment Rate"

10 setinfo inf -d "U.S. Inflation Rate\
11 (%change CPI, seasonally adjusted) " -n "Inflation Rate"
12

13 # plot series and save output to files
14 gnuplot g --with-lines --time-series --output=display
15 gnuplot u --with-lines --time-series --output=display
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16

17 g1_simple <- plot u
18 options time-series with-lines
19 end plot --output=display
20

21 string title = "U.S. Quarterly unemployment rate"
22 string xname = "Year"
23 string yname = "Unemployment Rate"
24 g1 <- plot u
25 options time-series with-lines
26 printf "set title \"%s\"", title
27 printf "set xlabel \"%s\"", xname
28 printf "set ylabel \"%s\"", yname
29 end plot --output=display
30

31 string title = "U.S. GDP growth rate"
32 string xname = "Year"
33 string yname = "Quarterly GDP growth rate"
34 g2 <- plot g
35 options time-series with-lines
36 printf "set title \"%s\"", title
37 printf "set xlabel \"%s\"", xname
38 printf "set ylabel \"%s\"", yname
39 end plot --output=display
40

41 # graphing multiple time-series
42 g3 <- scatters g u --with-lines --output=display
43

44 # Graph of series against lags
45 string title = "Unemployment against lagged unemployment"
46 string xname = "Lagged Unemployment"
47 string yname = "Unemployment Rate"
48 list plotvars = u(0 to -1)
49 g4 <- plot plotvars
50 literal set linetype 1 lc rgb "black" pt 7
51 printf "set title \"%s\"", title
52 printf "set xlabel \"%s\"", xname
53 printf "set ylabel \"%s\"", yname
54 end plot --output=display
55

56 # Example 9.2
57 # Sample autocorrelations for u
58 corrgm u 24 --plot=display
59

60 matrix ac = corrgm(g, 12) # ACFs and PACFs to a matrix
61 matrix lb = ac[,1]-1.96/sqrt($nobs) # col 1 = acf, col 2 = pacf
62 matrix ub = ac[,1]+1.96/sqrt($nobs)
63 matrix all = lb˜ac[,1]˜ub
64 cnameset(all, "Lower AC Upper ")
65 printf "\nAutocorrelations and 95%% confidence intervals\n\
66 %9.4f\n", all
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67

68 # Example 9.3
69 # Sample autocorrelations for g
70 corrgm g 45 --plot=display
71

72 # Example 9.6
73 # Forecasting Unemployment with AR(2)
74 m1 <- ols u const u(-1 to -2)
75 dataset addobs 3
76 fcast 2016:2 2016:4 --dynamic
77

78 # Example 9.7
79 # Forecasting Unemployment with ARDL(2,1)
80 # correlogram and confidence interval
81 ols u const u(-1 to -2) g(-1)
82 # Add g_2016:2=0.869 and g_2016:3=1.069 to dataset manually
83 series g[2016:2]=.869
84 fcast 2016:2 2016:4 --dynamic
85

86 # Example 9.8 Choosing lag lengths, SC criterion
87 # model selection rules and a function
88 function matrix modelsel (series y, list xvars)
89 ols y xvars --quiet
90 scalar sse = $ess
91 scalar N = $nobs
92 scalar k = nelem(xvars)
93 scalar aic = ln(sse/N)+2*k/N
94 scalar bic = ln(sse/N)+k*ln(N)/N
95 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
96 matrix A = { k, N, $rsq, rbar2, aic, bic}
97 printf "\nRegressors: %s\n",varname(xvars)
98 printf "k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f, AIC = %.4f,\
99 and SC = %.4f\n", k, N, $rsq, rbar2, aic, bic

100 return A
101 end function
102

103 # Same as modelsel except the print statements are supressed
104 function matrix modelsel_np (series y, list xvars)
105 ols y xvars --quiet
106 scalar sse = $ess
107 scalar N = $nobs
108 scalar k = nelem(xvars)
109 scalar aic = ln(sse/N)+2*k/N
110 scalar bic = ln(sse/N)+k*ln(N)/N
111 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
112 matrix A = { k, N, $rsq, rbar2, aic, bic}
113 return A
114 end function
115

116 # using modelsel_np
117 open "@workdir\data\usmacro.gdt"
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118 smpl 1950:1 2016:1
119 matrix A = {}
120 loop p = 1..8 --quiet
121 loop q = 0..8 --quiet
122 if q==0
123 list xvars = u(-1 to -p) const
124 else
125 list xvars = u(-1 to -p) g(-1 to -q) const
126 endif
127 matrix a = p˜q˜modelsel_np(u, xvars)
128 matrix A = A | a
129 endloop
130 endloop
131 cnameset(A,"p q k n R2 Adj_R2 AIC SC ")
132 matrix B = msortby(A,8)
133 printf "\nModel Selection in ARDL\n%8.4g\n",B[1:6,]
134

135 # Example 9.9
136 # Does growth Granger cause unemployment?
137 smpl full
138 ols u(0 to -2) g(-1) const
139 omit g_1
140

141 list ulags = u(-1 to -2)
142 list glags = g(-1 to -4)
143

144 smpl 1949:1 2016:1
145 ols u ulags glags const --quiet
146 omit glags --test-only
147

148 # Another utility to create lags
149 lags 4 ; g
150 list g_lags = g_1 g_2 g_3 g_4
151

152 # Example 9.10
153 # Residual Correlogram
154 smpl full
155 ols u u(-1 to -2) g(-1) const
156 series residual = $uhat
157 g1 <- corrgm residual 24 --plot=display
158

159 # Example 9.11
160 # Residual Correlogram
161 smpl full
162 ols u u(-1) g(-1) const
163 series residual = $uhat
164 g2 <- corrgm residual 24 --plot=display
165

166

167 # Example 9.12
168 # LM Tests for k-1,2,3,4
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169 open "@workdir\data\usmacro.gdt"
170 ols u u(-1) g(-1) const
171 loop i=1..4
172 modtest $i --autocorr --quiet
173 endloop
174

175 ols u u(-1 to -2) g(-1) const
176 loop i=1..4
177 modtest $i --autocorr --quiet
178 endloop
179

180 # Example 9.13
181 # Okun’s Law
182 open "@workdir\data\okun5_aus.gdt"
183 diff u
184 setinfo g -n "GDP growth rate"
185 setinfo d_u -d "Change in Australian Civilian Unemployment \
186 Rate (Seasonally adjusted)" -n \
187 "Change in Unemployment Rate"
188 g4 <- scatters g d_u --with-lines --output=display
189

190 modeltab free
191 m5 <- ols d_u const g(0 to -5)
192 modeltab add
193 m4 <- ols d_u const g(0 to -4)
194 modeltab add
195 modeltab show
196

197 open "@workdir\data\okun5_aus.gdt"
198 diff u
199 smpl 1980:1 2016:1
200 matrix A = {}
201 scalar q=0
202 loop p = 1..6 --quiet
203 list vars = g(0 to -p) const
204 matrix a = p˜q˜modelsel_np(d_u, vars)
205 matrix A = A | a
206 endloop
207 cnameset(A,"p q K N R2 Adj_R2 AIC SC ")
208 print A
209 matrix B = msortby(A,8)
210 printf "\nModel Selection in ARDL\n%8.4g\n",B[1:2,]
211

212 # multiplier analysis
213 open "@workdir\data\okun5_aus.gdt"
214 diff u
215 ols d_u g(0 to -4) const
216 matrix b = $coeff
217 print b
218 matrix mult = zeros(5,2)
219 loop i=1..5
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220 matrix mult[i,1]=b[i+1]
221 matrix mult[i,2]=b[i+1]
222 if i>1
223 matrix mult[i,2]=mult[i-1,2]+b[i+1]
224 endif
225 endloop
226 cnameset(mult,"Delay Interim")
227 rnameset(mult,"0 1 2 3 4")
228 printf "Multipliers for Okun’s Law, q=4\n%10.4f\n", mult
229

230 printf "\nNormal Growth rate = %.4f%% per quarter\n", -b[1]/mult[5,2]
231 printf "\nThe Total Multiplier = %.4f\n", mult[5,2]
232

233 # Simplification using filter and cum
234 open "@workdir\data\okun5_aus.gdt"
235 diff u
236

237 list exo = const
238 p = 0
239 q = 4
240 list exo = const
241 horizon = 4
242

243 ols d_u exo g(0 to -q)
244 k = nelem(exo)
245 matrix b = $coeff[k+1:k+p]
246 matrix a = $coeff[k+p+1:k+p+q+1]
247

248 mult = filter(1|zeros(horizon, 1), a, null)
249 mult = mult ˜ cum(mult)
250

251 cnameset(mult,"Delay Interim")
252 rnameset(mult,"0 1 2 3 4")
253 printf "Multipliers for Okun’s Law, q=4\n%10.4f\n", mult
254 printf "\nNormal Growth rate = %.4f%% per quarter\n", -a[1]/mult[5,2]
255 printf "\nThe Total Multiplier = %.4f\n", mult[5,2]
256

257 # Example 9.14
258 # AR(1) errors
259 modeltab free
260 open "@workdir\data\phillips5_aus.gdt"
261

262 # Graph of series against lags
263 string title = "Australian Inflation Rate: 1987:1 - 2016:1"
264 string xname = "Year"
265 string yname = "Inflation Rate"
266 list plotvars = inf
267 g4 <- plot plotvars
268 options --time-series --with-lines
269 printf "set title \"%s\"", title
270 printf "set xlabel \"%s\"", xname
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271 printf "set ylabel \"%s\"", yname
272 end plot --output=display
273

274 ols inf const du # Phillips curve estimation
275 series residual = $uhat
276 corrgm residual 16 --plot=display
277

278 ols inf const du # OLS with inconsistent std errors
279 modeltab add
280 set hac_lag nw2 # automatic bandwidth setting
281 set force_hc off # off: --robust produces HAC
282 set hac_kernel bartlett # choose the kernel
283

284 ols inf const du --robust # OLS with HAC
285 modeltab add
286 set force_hc on # on: --robust produces HC1
287

288 ols inf const du --robust # OLS with HC1
289 modeltab add
290 modeltab show
291

292 # Example 9.15
293 # Phillips Curve with AR(1) errors
294 open "@workdir\data\phillips5_aus.gdt"
295 setinfo inf -d "Australian Inflation Rate" -n "Inflation Rate"
296 setinfo du -d "Change in Australian Civilian \
297 Unemployment Rate (Seasonally adjusted)" -n \
298 "D.Unemployment Rate"
299 scatters inf du --with-lines --output=display
300

301 # OLS with HAC standard errors
302 set force_hc off
303 set hac_kernel bartlett
304 set hac_lag 4
305 m1 <- ols inf const du --robust
306 modeltab free
307 modeltab add
308 # NLS
309 scalar beta1 = $coeff(const)
310 scalar beta2 = $coeff(du)
311 scalar rho = 0
312

313 m2 <- nls inf = beta1*(1-rho) + rho*inf(-1) + beta2*(du-rho*du(-1))
314 params rho beta1 beta2
315 end nls
316

317 scalar delta = $coeff(beta1)*(1-$coeff(rho))
318 scalar delta1 = -$coeff(rho)*$coeff(beta2)
319 printf "\nThe estimated delta is %.3f and the estimated delta1\
320 is %.3f.\n",delta,delta1
321
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322 # More General model
323 m3 <- ols inf const du(0 to -1) inf(-1) --robust
324 modeltab add
325 function matrix restr (const matrix b)
326 matrix v = b[3] + b[4]*b[2]
327 return v
328 end function
329 restrict
330 rfunc = restr
331 end restrict
332

333 # These two are equivalent. The second preferred since it it more general.
334 m4 <- ar1 inf const du
335 m7 <- ar 1; inf const du
336 modeltab add
337

338 m5 <- ar1 inf const du --pwe
339 modeltab add
340 m6 <- ar1 inf const du --hilu
341 modeltab add
342 modeltab show
343

344 m8 <- arima 1 0 0; inf const du
345

346 # Example 9.16 Consumption function
347

348 open "@workdir\data\cons_inc.gdt"
349 diff cons y
350 list xvars = const d_cons(-1) d_y
351 m1 <- ols d_cons xvars
352

353 matrix b = $coeff
354 printf "\nTotal Multiplier = %.3f\n", b[3]/(1-b[2])
355 loop i=1..4
356 modtest $i --autocorr --quiet
357 endloop
358

359 # McLain & Wooldridge test
360 ols d_cons xvars --quiet
361 series uhat = $uhat
362 series ehat = 0
363 series ehat = $coeff(d_cons_1)*ehat(-1) + uhat
364 ols uhat xvars ehat(-1) --quiet
365 scalar stat = $trsq
366 pvalue X 1 stat
367

368 # Example 9.18
369 # Multipliers for Okun’s Law
370 # The hard way
371 open "@workdir\data\okun5_aus.gdt"
372 diff u
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373 ols d_u(0 to -2) g(0 to -1) const
374 scalar d0 = $coeff(g)
375 scalar d1 = $coeff(g_1)
376 scalar theta1=$coeff(d_u_1)
377 scalar theta2=$coeff(d_u_2)
378

379 scalar h = 11
380 matrix mult = zeros(h,2)
381

382 loop i=1..h
383 mult[i,1] = i-1
384 if i==1
385 mult[i,2]=d0
386 elif i==2
387 mult[i,2]=d1 + theta1*d0
388 else
389 mult[i,2]=mult[i-1,2]*theta1 + theta2*mult[i-2,2]
390 endif
391 endloop
392

393 cnameset(mult, " Lag Delay_Mult ")
394 gnuplot 2 1 --matrix=mult --output=display --with-lines --suppress-fitted
395

396 printf "\nThe impact and delay multipliers are \n %12.3g\n", mult
397

398 printf "\nTotal multiplier using the sum of estimates is %.3g\n", sum(mult[,2])
399 scalar alpha = $coeff(const)/(1-theta1-theta2)
400 scalar TotalMult = (d0+d1)/(1-theta1-theta2)
401 printf "\nNormal Growth = %.3f%%\n", -alpha/TotalMult
402 printf "\nAsymptotic Total Multiplier = %.3f%%\n", TotalMult
403

404 # Using filter to make things easy
405 list exo = const
406 p = 2
407 q = 1
408 list exo = const
409 horizon = 10
410

411 ols d_u exo d_u(-1 to -p) g(0 to -q)
412 k = nelem(exo)
413 matrix b = $coeff[k+1:k+p]
414 matrix a = $coeff[k+p+1:k+p+q+1]
415

416 mult = filter(1|zeros(horizon, 1), a, b)
417 mult = mult ˜ cum(mult)
418

419 cnameset(mult,"Delay Interim")
420 printf "Multipliers for Okun’s Law, p=%g, q=%g\n%10.4f\n", p, q, mult
421

422 # Example 9.19
423 # Testing consistency of OLS
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424 list xvars = d_u(-1 to -2) g(0 to -1) const
425 ols d_u xvars
426 series uhat = $uhat
427 matrix b = $coeff
428

429 series ehat = 0
430 # McLain & Wooldridge test
431 series ehat = $coeff(d_u_1)*ehat(-1) + $coeff(d_u_2)*ehat(-2)+ uhat
432

433 ols uhat xvars ehat(-1 to -2) --quiet
434 scalar stat = $trsq
435 pvalue X 2 stat
436

437 # Example 9.20 DW test
438 open "@workdir\data\phillips5_aus.gdt"
439 list x = du const
440 m1 <- ols inf x
441 scalar dw_p = $dwpval
442 print dw_p
443

444 # ----------------------------------------------------
445

446 # exponential smoothing
447 open "@workdir\data\okun5_aus.gdt"
448 matrix y = { g }
449 scalar T = $nobs
450 matrix sm1 = zeros(T,1)
451 scalar a = .38
452 smpl 1 round((T+1)/2)
453 scalar stv = mean(y)
454 smpl full
455 loop i=1..T --quiet
456 if i == 1
457 matrix sm1[i]=stv
458 else
459 matrix sm1[$i]=a*y[$i]+(1-a)*sm1[i-1]
460 endif
461 endloop
462 series exsm = sm1
463 gnuplot g exsm --time-series
464

465 scalar a = .8
466 loop i=1..T --quiet
467 if i == 1
468 matrix sm1[i]=stv
469 else
470 matrix sm1[$i]=a*y[$i]+(1-a)*sm1[i-1]
471 endif
472 endloop
473 series exsm8 = sm1
474 gnuplot g exsm8 --time-series
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475

476 scalar tmid = round(($nobs+1)/2)
477 scalar a = .38
478 series exsm = movavg(g, a, tmid)
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Figure 9.3: Time-Series graph of Unemployment. The shaded bars are periods of recession as
determined by the NBER.

Figure 9.4: Time-Series graph of Unemployment.
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Figure 9.5: Multiple time-series graphs of U.S. macro data produced using View>Multiple
graphs>Time-series. This uses the scatters command.

Figure 9.6: Plot of the U.S. quarterly unemployment rate against its 1 period lagged value.
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Figure 9.7: The 24 period correlogram for the U.S. unemployment rate.

Figure 9.8: The 45 period correlogram for the U.S. quarterly GDP growth rate.

352



Figure 9.9: Edit data box

Figure 9.10: Granger Causality test result.
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Figure 9.11: The correlogrm of least squares residuals from estimation of an ARDL(2,1) of the
unemployment rate using the usmacro.gdt dataset.

Figure 9.12: The correlogrm of least squares residuals from estimation of an ARDL(1,1) of the
unemployment rate using the usmacro.gdt dataset.
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Figure 9.13: Changes in Australian Unemployment and Growth

inin

Figure 9.14: This plot shows the relationship between inflation and the change in unemployment
in Australia, 1987:1 - 2016:1.
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Figure 9.15: This plot shows that the residuals from the simple Phillips curve model are serially
correlated. Australia, 1987:1 - 2016:1.

Figure 9.16: The OLS specify model dialog box has a button that brings up a dialog to specify lag
order. Once entered the new lagged variables show up in the list of independent variables.

356



Figure 9.17: Lag Weights from Okun’s Law
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Chapter 10

Random Regressors and Moment
Based Estimation

In this chapter gretl’s instrumental variables estimator is used to obtain consistent estimates of
a model’s parameters when its independent variables are correlated with the model’s errors. Several
tests of important assumptions are also explored. We end with a simulation that demonstrates
important properties of OLS and IV estimation when the model contains endogenous regressors.

10.1 Basic Model

Consider the linear regression model

yi = β1 + β2xi + ei i = 1, 2, . . . , n (10.1)

Equation (10.1) suffers from a significant violation of the usual model assumptions when its explana-
tory variable is contemporaneously correlated with the random error, i.e., Cov(ei, xi) = E(eixi) 6= 0.
When a regressor is correlated with the model’s errors, the regressor is said to be endogenous.1

If a model includes an endogenous regressor, least squares is biased and inconsistent.

An instrument is a variable, z, that is correlated with x but not with the error, e. In addition,
the instrument does not directly affect y and thus does not belong in the actual model as a separate
regressor. It is common to have more than one instrument for x. All that is required is that these
instruments, z1, z2, . . . , zs, be correlated with x, but not with e. The parameters of equation (10.1)
can be estimated consistently by using the instrumental variables or two-stage least squares
estimator, rather than the OLS estimator.

1There is a certain sloppiness associated with the use of endogenous in this way, but it has become standard
practice in econometrics.
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10.2 IV Estimation

Gretl handles this estimation problem easily using what is commonly known as two-stage least
squares. In econometrics, the terms two-stage least squares (TSLS) and instrumental variables (IV)
estimation are often used interchangeably. The ‘two-stage’ terminology is a legacy of the time when
the easiest way to estimate the model was to actually use two separate least squares regressions.
With better software, the computation is done in a single step to ensure the other model statistics
are computed correctly. Since the software you use invariably expects you to specify ‘instruments,’
it is probably better to think about this estimator in those terms from the beginning. Keep in mind
that gretl uses the old-style term two-stage least squares (tsls) even as it asks you to specify
instruments in it dialog boxes and scripts.

10.2.1 Least Squares Estimation of a Wage Equation

Example 10.1 in POE5

The example is model of wages estimated using mroz.gdt using the 428 women in the sample
that are in the labor force. The model is

ln(wage) = β1 + β2educ + β3exper + β4exper2 + e (10.2)

In all likelihood a woman’s wages will depend on her ability as well as education and experience.
Ability is omitted from the model, which poses no particular problem as long as it is not correlated
with either education or experience. The problem in this example, however, is that ability is likely
to be correlated with education. The opportunity cost of additional education for those of high
ability is low and they tend to get more of it. Hence, there is an endogeneity problem in this
model. The model is estimated using least squares to produce:

OLS, using observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const −0.522041 0.198632 −2.6282 0.0089
educ 0.107490 0.0141465 7.5983 0.0000
exper 0.0415665 0.0131752 3.1549 0.0017
sq exper −0.000811193 0.000393242 −2.0628 0.0397

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 188.3051 S.E. of regression 0.666420
R2 0.156820 Adjusted R2 0.150854
F (3, 424) 26.28615 P-value(F ) 1.30e–15
Log-likelihood −431.5990 Akaike criterion 871.1979
Schwarz criterion 887.4344 Hannan–Quinn 877.6105
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The estimated return to another year of schooling is 10.75%. That seems fairly high and if education
and omitted ability are positively correlated, then it is being consistently overestimated by least
squares.

10.2.2 Two-Stage Least Squares

Two-Stage Least Squares (TSLS) or Instrumental Variables (IV) estimation requires variables
(a.k.a., instruments) that are correlated with the independent variables, but not correlated with
the errors of your model.

Example 10.2 in POE5

In the following simple wage regression model, we need one or more variables that are correlated
with education, but not with the model’s errors.

ln(wage)i = β1 + β2educi + ei (10.3)

We propose that mother’s education (mothereduc) is suitable. The mother’s education is unlikely
to enter the daughter’s wage equation directly, but it is reasonable to believe that daughters of more
highly educated mothers tend to get more education themselves. These propositions can and will
be be tested later. In the meantime, estimating the wage equation using the instrumental variable
estimator is carried out in the following example.

First, load the mroz.gdt data into gretl. Then, to open the basic gretl dialog box that computes
the IV estimator choose Model>Instrumental Variables>Two-Stage Least Squares from the
pull-down menu as shown below in Figure 10.1. This opens the dialog box shown in Figure 10.2.

Figure 10.1: Two-stage least squares estimator from the pull-down menus

In this example l wage is the dependent variable, the desired instrument(s) are entered into the
Instruments box and the independent variables, including the one(s) measured with error, into
the Independent Variables box. Exogenous right-hand side variables should be referenced in both
lists. Press the OK button and the results are found in Table 10.1. Notice that gretl ignores the
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Figure 10.2: Two-stage least squares dialog box

sound advice offered by the authors of your textbook and computes an R2. Keep in mind, though,
gretl computes this as the squared correlation between observed and fitted values of the dependent
variable, and you should resist the temptation to interpret R2 as the proportion of variation in
l wage accounted for by the model.

If you prefer to use a script, the tsls syntax is very simple.
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TSLS, using observations 1–428
Dependent variable: l wage

Instrumented: educ
Instruments: const mothereduc exper sq exper

Coefficient Std. Error z p-value

const 0.198186 0.472877 0.4191 0.6751
educ 0.0492630 0.0374360 1.3159 0.1882
exper 0.0448558 0.0135768 3.3039 0.0010
sq exper −0.000922076 0.000406381 −2.2690 0.0233

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 195.8291 S.E. of regression 0.679604
R2 0.135417 Adjusted R2 0.129300
F (3, 424) 7.347957 P-value(F ) 0.000082
Log-likelihood −3127.203 Akaike criterion 6262.407
Schwarz criterion 6278.643 Hannan–Quinn 6268.819

Table 10.1: Results from two-stage least squares estimation of the wage equation.

The command syntax is: tsls y x ; z, where y is the dependent variable, x are the regressors,
and z the instruments. Thus, the gretl command tsls calls for the IV estimator to be used and
it is followed by the linear model you wish to estimate.

The script for the example above is

1 list x = const educ
2 list z = const mothereduc
3 tsls l_wage x ; z

In the script, the regressors for the wage equation are collected into a list called x. The instruments,
which should include all exogenous variables in the model including the constant, are placed in
the list called z. Notice that z includes all of the exogenous variables in x. Here the dependent
variable, y, is replaced with its actual value from the example, (l wage).

The output from OLS and IV estimation are compared below:

Dependent variable: l wage

(1) (2)
OLS IV

const −0.1852 0.7022
(0.1852) (0.4851)
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educ 0.1086∗∗ 0.03855
(0.01440) (0.03823)

n 428 428
R2 0.1179 0.1179
` −441.3 −3137

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

You can see that the coefficient for the return to another year of schooling has dropped from 0.1086
to 0.0385. The IV standard error has also increased in value as well, and the return to schooling
coefficient is not significantly positive.

Several other statistics are computed. Following the example in POE5, the ratio of the slope
standard errors is computed. The correlation between mother’s education and daughters is found
and the reciprocal of this number is taken. The latter measures the loss of efficiency due to IV
estimation when the regressor is not actually endogenous.

1 m2 <- ols l_wage x
2 scalar se_educ_ols = $stderr(educ)
3 m3 <- tsls l_wage x; z
4 scalar se_educ_iv = $stderr(educ)
5

6 scalar a=corr(educ, mothereduc)
7 scalar ratio = se_educ_iv/se_educ_ols
8 scalar approx = 1/a
9 printf "\nThe correlation between mothers education and daughter is %.3f\n", a

10 printf "\nThe ratio of IV/OLS standard error for b2 is %.3f\n", ratio
11 printf "\nReciprocal of the correlation is %.3f\n", approx

The outcome is:

1 The correlation between mothers education and daughter is 0.387
2 The ratio of IV/OLS standard error for b2 is 2.655
3 Reciprocal of the correlation is 2.584

In this case the ratio of standard errors (2.655) is very close in magnitude to 1/rxz = 2.584.
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Example 10.3 in POE5

Two-stage least squares can be computed in two steps, but in practice it is not recommended.
The estimates of the slopes and intercept will be the same as you get using the tsls IV estimator.
However, the standard errors will not be computed correctly. To demonstrate, the model is esti-
mated in two discrete steps and the results are compared. The gretl code for two step estimation
is

1 smpl wage>0 --restrict
2 m4 <- ols educ const mothereduc
3 series educ_hat = $yhat
4 m5 <- ols l_wage const educ_hat

Notice that the sample has to be restricted to wages greater than zero using the --restrict
option. Failing to do this causes the first stage regression to be estimated using all 753 observations
instead of the 428 used in tsls. The IV estimator is implicitly limiting the first stage estimation
to the non-missing values of l_wage.

Dependent variable: l wage

(1) (2)
IV OLS

const 0.7022 0.7022
(0.4851) (0.5021)

educ 0.03855
(0.03823)

educ hat 0.03855
(0.03957)

n 428 428
R2 0.1179 0.0022
` −3137 −467.6

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient estimates on educ and educ_hat are the same, but the standard errors are
not. If educ is endogenous, then the least squares standard errors are estimated inconsistently.
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Example 10.4 in POE5

In this example there are extra instruments–the model is overidentified. The worker’s ex-
perience and experience squared are added to the instrument list. The reduced form equation is
estimated and it’s predictions are stored to a series. In the second step, OLS is used to estimate
the model using the predictions as regressors. The estimated standard errors are incorrect, but
the estimated slope and intercept are fine. Finally, the IV estimator is computed which fixes the
problem with standard errors.

The reduced form equation is:

êduc = 9.480
(0.3211)

+ 0.1564
(0.03582)

mothereduc + 0.1881
(0.03363)

fathereduc

n = 428 R̄2 = 0.2043 F (2, 425) = 55.830 σ̂ = 2.0386

(standard errors in parentheses)

Both slopes are significantly different from zero at 5%.

Next the model is estimated using OLS. two-step, and IV estimators. The results are:

Dependent variable: l wage

(1) (2) (3)
OLS IV-two steps IV

const −0.1852 0.5510 0.5510
(0.1852) (0.4258)+ (0.4086)

educ 0.1086∗∗ 0.05049
(0.01440) (0.03217)

educ hat 0.05049
(0.03352)+

n 428 428 428
R2 0.1179 0.0053 0.1179
` −441.3 −467

Standard errors in parentheses
+ Two-step IV standard errors not valid

* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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Example 10.5 in POE5

In this example a worker’s years of experience and experience squared are added to the model.
Parameters estimated using the IV estimator. The model is:

ln(wage) = β1 + β2exper + β3exper2 + β4educ + e (10.4)

Experience is considered exogenous and education endogenous. Two instruments considered are
mother’s education and father’s education. The model is estimated:

1 list xlist = const exper sq_exper educ
2 list instruments = const mothereduc fathereduc exper sq_exper
3 m10 <- tsls l_wage xlist ; instruments
4

5 ols educ instruments # First stage regression
6 omit mothereduc fathereduc --test-only

The IV estimation results

m10: TSLS, using observations 1–428
Dependent variable: l wage

Instrumented: educ
Instruments: const mothereduc fathereduc exper sq exper

Coefficient Std. Error t-ratio p-value

const 0.04810 0.4003 0.1202 0.9044
exper 0.04417 0.01343 3.288 0.0011
sq exper −0.0008990 0.0004017 −2.238 0.0257
educ 0.06140 0.03144 1.953 0.0515

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 193.0200 S.E. of regression 0.674712
R2 0.145660 Adjusted R2 0.139615
F (3, 424) 8.140709 P-value(F ) 0.000028

Another year of schooling is predicted to increase average wage by 0.0614× 100=6.14%.

The reduced form results are also computed and given below:

fs10: OLS, using observations 1–428
Dependent variable: educ
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Coefficient Std. Error t-ratio p-value

const 9.10264 0.426561 21.34 0.0000
mothereduc 0.157597 0.0358941 4.391 0.0000
fathereduc 0.189548 0.0337565 5.615 0.0000
exper 0.0452254 0.0402507 1.124 0.2618
sq exper −0.00100909 0.00120334 −0.8386 0.4022

Mean dependent var 12.65888 S.D. dependent var 2.285376
Sum squared resid 1758.575 S.E. of regression 2.038967
R2 0.211471 Adjusted R2 0.204014
F (4, 423) 28.36041 P-value(F ) 6.87e–21

The t-ratios on the external instruments are quite large. As seen in the next section, this bodes
well for estimation of the model via the IV estimator.

10.3 Specification Tests

There are a number of specification tests one subjects an endogenous regressor model. Instru-
ment strength, the exoogeneity of regressors, and the suitability of the instruments can in most
cases be checked using a battery of statistical tests. These procedures are discussed in this section.

10.3.1 Testing for Weak Instruments

To test for weak instruments, regress each independent variable suspected of being contempora-
neously correlated with the error (xk) onto all of the instruments (internal and external). Suppose
xk is the endogenous regressor. The first stage regression is:

xk = γ1 + γ2x2 + · · ·+ γk−1xk−1 + θ1z1 + · · ·+ θ`z` + νk (10.5)

In this notation, the z1, . . ., z` are the external instruments. The others, x2, . . ., xk−1, are
exogenous and are used as instruments for themselves (i.e., internal to the model). If the F -
statistic associated with the hypothesis that the coefficients on the external instruments, θ1, . . . ,
θ` are jointly zero is less than a suitable critical value, c, then you conclude that the instruments
are weak. If F > c, the instruments are strong (enough).

The problem with weak instruments is that they affect the distribution of the F-statistic, and
hence the critical value, c. Weak instruments cause two problems as summarized by Hill et al.
(2018, p. 522):

Relative Bias: In the presence of weak instruments the amount of bias in the IV estimator can
become large. Stock and Yogo consider the bias when estimating the coefficients of the
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endogenous variables. They examine the maximum IV estimator bias relative to the bias of
the least squares estimator. Stock and Yogo give the illustration of estimating the return to
education. If a researcher believes that the least squares estimator suffers a maximum bias
of 10%, and if the relative bias is 0.1, then the maximum bias of the IV estimator is 1%.

Rejection Rate (Test Size): When estimating a model with endogenous regressors, testing hy-
potheses about the coefficients of the endogenous variables is frequently of interest. If we
choose the α = 0.05 level of significance we expect that a true null hypothesis is rejected 5%
of the time in repeated samples. If instruments are weak, then the actual rejection rate of the
null hypothesis, also known as the test size, may be larger. Stock and Yogo’s second criterion
is the maximum rejection rate of a true null hypothesis if we choose α = 0.05. For example,
we may be willing to accept a maximum rejection rate of 10% for a test at the 5% level, but
we may not be willing to accept a rejection rate of 20% for a 5% level test.

Initially, Staiger and Stock (1997) suggested that a critical value of c = 10 would be suitable for
this test. This has become a rule-of thumb that has since been refined by further simulations.

Why not use the usual 5% critical value from the F -distribution to conduct the test? The
answer is that instrumental variables estimators (though consistent) are biased in small samples.
The weaker the instruments, the greater the bias. Bias is inversely related to the value of the
F -statistic. An F = 10 is roughly equivalent to 1/F = 10% bias in many cases. The other problem
caused by weak instruments is that they affect the asymptotic distribution of the usual t- and
F-statistics.

Example 10.6 in POE5

In the preceding example the IV estimator was used to estimate equation (10.4). The first stage
regression is estimated and the external instruments are tested for their joint significance using the
omit command.

fs10 <- ols educ instruments # First stage regression
omit mothereduc fathereduc --test-only

The --test-only option suppresses the printout from the regressions; only the test results are
printed. The output from gretl appears below:

Test on Model 19:

Null hypothesis: the regression parameters are zero for the variables
mothereduc, fathereduc

Test statistic: F(2, 423) = 55.4003, p-value 4.26891e-022

The instruments appear to be fairly strong. Both mothereduc and fathereduc are individually
significant at 5%. Using the rule-of-thumb critical value, a joint test F -statistic is 55.40 > 10.
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Whenever a model is estimated using two stage least squares, gretl computes the test statistic
for detecting weak instruments. The results appear below the regression and are

Weak instrument test -
First-stage F-statistic (2, 423) = 55.4003
Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25%
value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

The rule-of-thumb F > 10 is refined to reflect the experimental design implied by the model and
sample. The weak instrument test tables (e.g., Tables 10A.1 and 10A.2 in POE5 ) provide more
specific information about the actual size of the weak instruments test. For instance, if you are
willing to reject weak instruments 10% of the time, then use a critical value of 19.93. The rule-of-
thumb value of 10 would lead to actual rejection of weak instruments somewhere between 15% and
20% of the time. Since our F = 55.4 > 19.93 we conclude that our test has a size less than 10%. If
so, you would expect the resulting IV estimator based on these very strong instruments to exhibit
relatively small bias.

10.3.2 Partial Correlations

Valid instruments should be correlated with the endogenous regressor. However, the statistical
properties of the IV estimator depend upon the strength of this correlation. Furthermore, it is
strength of the independent correlation between the instrument and the endogenous regressor
that matters. The higher, the better.

To get at this in a multiple regression model, partial out the correlation in variables measured
with error that is due to the exogenous regressors. Whatever common variation that remains will
measure the independent correlation between the variable measured with error and the instrument.
This sounds complicated, but it is not. It is simple to do in gretl as the following script shows.

1 ols educ const exper sq_exper
2 series reduc = $uhat
3 ols mothereduc const exper sq_exper
4 series rmom = $uhat
5 ols reduc rmom --quiet
6 scalar c1 = corr(reduc, rmom)
7 printf " Partial R2 = %.4f\n\
8 The correlation between reduc and rmom = %.4f\n\
9 The correlation squared is %.4f\n", $rsq, c1,c1ˆ2
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In line 1 education is regressed onto a const, exper, and sq_exper; the residuals are saved
as reduc in line 2. The residuals contain all variation in educ not accounted for by the exoge-
nous regressors. The variation in education due to the const, exper, and sq_exper has been
partialled out.

The second regression does the same for the instrument, mothereduc. The correlation between
mother’s education and a const, exper, and sq exper has been partialled out, resulting in
residuals, rmom. Regressing reduc onto rmom yields, 0.26769. This is the same as the coefficient
on mothereduc in the first-stage regression. This is no coincidence since regression coefficients are
the effect of one variable on another, holding the remaining regressors constant. This demonstrates
the Frisch-Waugh-Lovell Theorem.

The correlation between the two sets of residuals yields a partial correlation. This is a
correlation between education and mother’s education where the common effects of const, exper,
and sq_exper have been removed.

1 Partial R2 = 0.1485
2 The correlation between reduc and rmom = 0.3854
3 The correlation squared is 0.1485

The partial correlation between reduc and rmom is 0.3854. Squaring this correlation yields a
partial-R2. In the Cragg-Donald F-test described below, partial correlations play a key role in
testing for weak instruments.

Father’s years of schooling (fathereduc ) is added to the instrument list and the exercise is
repeated. fathereduc is regressed onto the exogenous regressors and the residuals are saved to
rdad. The partial-R2 from a regression of reduc onto rmom and rdad is the R2 of the partialled-
out endogenous variable on all partialled-out external IVs. The script

1 ols fathereduc const exper sq_exper
2 series rdad = $uhat
3 ols reduc rmom rdad
4 printf "Partial R2 = %.3f\n", $rsq

yields:

Partial R2 = 0.208

There are other useful specification tests to use with instrumental variables estimators. By
default, Gretl computes each of these whenever you estimate a model using two-stage least squares.2

2See section 5.2.4 of POE5 for some background on the Frisch-Waugh-Lovell (FWL) theorem.
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10.3.3 Hausman Test

The first test is to determine whether the independent variable(s) in your model is (are) in
fact uncorrelated with the model’s errors. If so, then least squares is more efficient than the IV
estimator. If not, least squares is inconsistent and you should use the less efficient, but consistent,
instrumental variable estimator. The null and alternative hypotheses are H0: Cov(xi, ei) = 0
against H1: Cov(xi, ei) 6= 0. The first step is to use least squares to estimate the first stage of
TSLS

xi = γ1 + θ1zi1 + θ2zi2 + νi (10.6)

and to save the residuals, ν̂i. Then, add the residuals to the original model

yi = β1 + β2xi + δν̂i + ei (10.7)

Estimate this equation using least squares and use the t-ratio on the coefficient δ to test the
hypothesis. If it is significantly different from zero then the regressor, xi is not exogenous or
predetermined with respect to ei and you should use the IV estimator (TSLS) to estimate β1 and
β2. If it is not significant, then use the more efficient estimator, OLS.

The gretl script for the Hausman test applied to the wage equation using mothereduc and
fathereduc as external instruments is:

list xlist = const exper sq_exper educ
list instruments = const exper sq_exper mothereduc fathereduc
ols educ instruments --quiet
series ehat = $uhat
ols l_wage xlist ehat --quiet
omit ehat --test-only

The test outcome from the omit command is:

Null hypothesis: the regression parameter is zero for ehat
Test statistic: F(1, 423) = 2.79259, p-value 0.0954406

The p-value is 0.954 > 5% and the exogeneity of education cannot be rejected at 5%. An equivalent
way to generate this statistic if from the regression output itself. The regression result appear in
(Figure 10.3). The t-ratio on ehat=1.671 has the same p-value as the F -statistic. Of course, it is
not significant at the 5% level. We would conclude that the instruments are exogenous.

The model is overidentified. There are two additional instruments, mother’s education and
father’s education, that are being used for only one endogenous regressor, educ. Overidentification
means that you have more instruments than necessary to estimate the model. This provides an
opportunity to conduct another test of the adequacy of the instruments themselves.
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Figure 10.3: Hausman test for endogeneity of regressor.

10.3.4 Sargan Test

The final test is the Sargan test of the overidentifying restrictions implied by an overiden-
tified model. Recall that to be overidentified implies that you have more instruments than you
have endogenous regressors. In our example there is one endogenous regressor (educ) and two
instruments, (mothereduc and fatehreduc).

The first step is to estimate the model using TSLS using all the instruments. Save the residuals
and then regress these on the instruments alone. nR2 from this regression is approximately χ2 with
degrees of freedom equal to the number of surplus instruments. Gretl does this easily since it saves
nR2 as a part of the usual regression output, where T is the sample size (which we are calling n in
cross-sectional examples). The script for the Sargan test follows:

1 tsls l_wage xlist; instruments
2 series uhat = $uhat
3 ols uhat instruments
4 scalar test = $rsq*$nobs
5 pvalue X 2 test

In line 1 the model is estimated using tsls with the variables in list xlist as regressors and those
in instruments as the IVs. In line 2 the residuals are saved as uhat. Then in line 3 a regression
is estimated by ordinary least squares using the residuals and instruments as regressors. nR2 is
collected and the p-value computed in the last line.

The result is:

Generated scalar test = 0.378071

Chi-square(2): area to the right of 0.378071 = 0.827757
(to the left: 0.172243)

The p-value is large and the null hypothesis that the overidentifying restrictions are valid cannot
be rejected. The instruments are determined to be ok. Rejection of the null hypothesis can mean
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that the instruments are correlated with the errors either because they are endogenous or because
they are omitted variables in the model. In either case, the model as estimated is misspecified.

Finally, gretl produces these tests whenever you estimate a model using tsls. If the model is
exactly identified, then the Sargan test results are omitted. Here is what the output looks like in
the wage example:

Hausman test -
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: Chi-square(1) = 2.8256
with p-value = 0.0927721

Sargan over-identification test -
Null hypothesis: all instruments are valid
Test statistic: LM = 0.378071
with p-value = P(Chi-square(1) > 0.378071) = 0.538637

Weak instrument test -
First-stage F-statistic (2, 423) = 55.4003
Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25%
value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

You can see that the Hausman test statistic differs a little from the one we computed manually
using the script. However, the p-value associated with this version and ours above are virtually the
same. The results from the instrument strength test and from the Sargan test for overdentification
are the same. In conclusion, there is no need to compute any of these tests manually, unless you
want to.

10.3.5 Multiple Endogenous Regressors and the Cragg-Donald F-test

When there are multiple endogenous regressors in the model, instrument strength cannot be
tested using the F-statistic from first-stage regressions. Cragg and Donald (1993) have proposed
a generalization of this approach that can be used to test for weak identification (i.e., weak in-
struments). In order to compute the CDF statistic manually, you must have a set of canonical
correlations. These are not computed in gretl natively, but they are easy to compute using hansl.
This is demonstrated below. On the other hand, gretl prints the value of the Cragg-Donald statistic
by default so you won’t have to go to all of this trouble.
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Canonical Correlations

Canonical correlations are a generalization of the usual concept of a correlation between two
variables and attempt to describe the association between two sets of variables. Let N denote the
sample size, B the number of righthand side endogenous variables, G the number of exogenous
variables included in the equation (including the intercept), L the number of external instruments–
i.e., ones not included in the regression. If we have two variables in the first set of variables and
two variables in the second set then there are two canonical correlations, r1 and r2.

Gretl’s matrix language is very powerful and you can easily get the canonical correlations from
two sets of regressors. The following funcrion3 does just that.

1 function matrix cc(list Y, list X)
2 matrix mY = cdemean({Y})
3 matrix mX = cdemean({X})
4

5 matrix YX = mY’mX
6 matrix XX = mX’mX
7 matrix YY = mY’mY
8

9 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)
10 return sqrt(ret)
11 end function

The function is called cc and takes two lists as arguments. The lists contain the variable names
to be included in each set for which the canonical correlations are needed. Then, the variables in
each set are demeaned using the handy cdemean function. This function centers the columns of
the matrix argument around the column means. Then the various cross-products are taken (YX,
XX, YY) and the eigenvalues for |Q− λY Y | = 0, where Q = (Y X)(XX)−1(Y X)T , are returned.

Cragg-Donald F statistic

A test for weak identification is based on the Cragg-Donald F -test statistic

Cragg-Donald− F = [(N −G−B)/L]× [r2
B/(1− r2

B)] (10.8)

To compute the Cragg-Donald F, assemble the two sets of residuals and use the cc function to
get the canonical correlations.

3Function supplied by gretl guru Riccardo Lucchetti.
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1 list w = const kidsl6 nwifeinc
2 ols mtr w --quiet
3 series e1 = $uhat
4 ols educ w --quiet
5 series e2 = $uhat
6 ols mothereduc w --quiet
7 series e3 = $uhat
8 ols fathereduc w --quiet
9 series e4 = $uhat

10

11 list E1 = e1 e2
12 list E2 = e3 e4
13

14 l = cc(E1, E2)
15 scalar mincc = minc(l)
16 scalar cd = df*(minccˆ2)/(2*(1-minccˆ2))
17 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd

The Cragg-Donald F (CDF) statistic reduces to the usual weak instruments F -test when the
number of endogenous variables is B = 1. Critical values for this test statistic have been tabulated
by Stock and Yogo (2005), so that we can test the null hypothesis that the instruments are weak,
against the alternative that they are not, for two particular consequences of weak instruments.

For this model the routine yields:

The Cragg-Donald Statistic is 0.1006.

This corresponds to the model and statistic in column (3) of Table 10A.4 in POE5.

To reproduce the other results from this exercise, we will use internal gretl commands.

1 # Weak IV Example 1
2 iv1 <- tsls hours x1 ; z1
3 rf1 <- ols mtr z1
4

5 # Weak IV Example 2
6 list z2 = z1 sq_exper largecity
7 iv2 <- tsls hours x1 ; z2
8 rf2 <- ols mtr z2
9 omit exper sq_exper largecity --test-only

10

11 # Weak IV Example 3
12 list z3 = kidsl6 nwifeinc mothereduc fathereduc const
13 iv3 <- tsls hours x1 ; z3
14 rf3_mtr <- ols mtr z3
15 omit mothereduc fathereduc --test-only

375



16 rf3_educ <- ols educ z3
17 omit mothereduc fathereduc --test-only
18

19 # Weak IV Example 4
20 list z4 = z3 exper
21 iv4 <- tsls hours x1 ; z4
22 rf4_mtr <- ols mtr z4
23 omit exper mothereduc fathereduc --test-only
24 rf4_educ <- ols educ z4
25 omit exper mothereduc fathereduc --test-only

We collect these into sets of model tables.

First, the four instrumental variables estimators for the hours equations:

TSLS estimates
Dependent variable: Hours Worked

IV1 IV2 IV3 IV4

const 17423.72∗∗ 14394.11∗∗ −24491.60 18067.84∗∗

(3136.20) (2532.79) (79689.72) (3534.91)

mtr −18456.59∗∗ −14934.37∗∗ 29709.47 −18633.92∗∗

(3636.53) (2934.73) (90487.78) (3843.85)

educ −145.29∗∗ −118.88∗∗ 258.56 −189.86∗∗

(33.00) (27.78) (846.01) (62.36)

kidsl6 151.02 58.79 −1144.48 190.28
(141.01) (122.04) (2510.19) (158.30)

nwifeinc −103.90∗∗ −85.19∗∗ 149.23 −102.15∗∗

(19.72) (16.00) (470.52) (19.90)

n 428 428 428 428
R2 0.20 0.20 0.16 0.20
` −4.4e+003 −6e+003

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Then the four marginal tax rate reduced form equations:

OLS estimates
Reduced Form Equations
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Dependent variable: Marginal Tax Rate

RF-IV1 RF-IV2 RF-IV3 RF-IV4

const 0.8793∗∗ 0.8847∗∗ 0.7991∗∗ 0.8296∗∗

(0.0118) (0.0123) (0.0077) (0.0089)

kidsl6 0.0204∗∗ 0.0204∗∗ 0.0219∗∗ 0.0156∗∗

(0.0053) (0.0052) (0.0056) (0.0054)

nwifeinc −0.0055∗∗ −0.0054∗∗ −0.0057∗∗ −0.0058∗∗

(0.0002) (0.0002) (0.0002) (0.0002)

educ −0.0072∗∗ −0.0069∗∗

(0.0009) (0.0009)

exper −0.0014∗∗ −0.0022∗∗ −0.0017∗∗

(0.0003) (0.0008) (0.0003)

sq exper 0.0000
(0.0000)

largecity −0.0116∗∗

(0.0043)

mothereduc −0.0011 −0.0013∗

(0.0008) (0.0008)

fathereduc −0.0018∗∗ −0.0020∗∗

(0.0007) (0.0007)

n 428 428 428 428
R̄2 0.7102 0.7146 0.6573 0.6855
` 758 762.3 722.1 741

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The two reduced form equations for education are:

Reduced Form Equations
Dependent variable: Education

(RF-IV3) (RF-IV4)

const 8.7146∗∗ 8.1762∗∗

(0.3374) (0.4020)

kidsl6 0.6181∗∗ 0.7292∗∗

(0.2432) (0.2461)

nwifeinc 0.0496∗∗ 0.0530∗∗
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(0.0091) (0.0091)

mothereduc 0.1520∗∗ 0.1560∗∗

(0.0345) (0.0344)

fathereduc 0.1637∗∗ 0.1675∗∗

(0.0327) (0.0325)

exper 0.0296∗∗

(0.0122)

n 428 428
R̄2 0.2622 0.2706
` −893.5 −890.5

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Thankfully, gretl computes the CDF with each IV estimation.

Example from Appendix 10B of POE5

In this example simulated data are used to illustrate that OLS fails and IV estimation ‘works’
when suitable instruments can be found. The data are from ch10.gdt, which were generated by the
authors of POE5.

y = 1 + x+ e (10.9)

Thus, β1 = 1 and β2 = 1. The regressor and errors are generated to be correlated with one
another, Cov(x, e) 6= 0. There are three instruments, z1, z2, and z3. The correlation betweens x
and instruments z1 and z2 are 0.5 and 0.3, respectively. The other instrument, z3, is not valid since
it is correlated with e, i.e., ρz3e = 0.3.

We run five regressions for the regression model in equation (10.9): OLS, IV(z1). IV(z2), IV(z3),
and IV(z1, z2). The instruments used in the IV estimator are shown in parentheses.

The results:

Dependent variable: y

ols 1 iv 1 iv 2 iv 3 iv 4
OLS TSLS TSLS TSLS TSLS

const 0.9789∗∗ 1.1011∗∗ 1.3451∗∗ 0.9640∗∗ 1.1376∗∗

(0.0883) (0.1091) (0.2555) (0.0952) (0.1164)
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x 1.7034∗∗ 1.1924∗∗ 0.1724 1.7657∗∗ 1.0399∗∗

(0.0899) (0.1945) (0.7965) (0.1722) (0.1942)

n 100 100 100 100 100
R2 0.7854 0.7854 0.7854 0.7854 0.7854
` −125.4 −507.2 −519.8 −514.8

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The OLS estimator estimates β2 as 1.7034, which is nearly twice as large as its true value of 1. The
weak instrument, z2 does not perform very well for estimating β2. Its coefficient is well below 1,
though 1 lies in its 95% confidence interval. The invalid instrument in column (iv 3) also performs
poorly. The stronger instruments appear to perform better than the weaker one, but this is based
on only 1 sample. In the next section we’ll simulate this process to see how things behave in
repeated samples.

The reduced form equation for IV(z1, z2) is:

rf: OLS, using observations 1–100
Dependent variable: x

Coefficient Std. Error t-ratio p-value

const 0.1947 0.07950 2.449 0.0161
z1 0.5700 0.08879 6.420 0.0000
z2 0.2068 0.07716 2.680 0.0087

Mean dependent var 0.239161 S.D. dependent var 0.956655
Sum squared resid 60.37887 S.E. of regression 0.788963
R2 0.333594 Adjusted R2 0.319854
F (2, 97) 24.27844 P-value(F ) 2.83e–09
Log-likelihood −116.6673 Akaike criterion 239.3346
Schwarz criterion 247.1501 Hannan–Quinn 242.4977

Since the equation contains only external instruments as regressors, the joint test of their signifi-
cance is equivalent to the overall-F statistic. Its value is 24.28 and the size of 5% tests are likely to
be less than 10%.

Printing the results from column 5 allow us to test for endogeneity of x, weak instruments and
for overidentification. The tests are:

iv 4: TSLS, using observations 1–100
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Dependent variable: y
Instrumented: x

Instruments: const z1 z2
Hausman test –

Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 38.5
with p-value = 5.47545e-010

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 3.62757
with p-value = P (χ2(1) > 3.62757) = 0.0568296

Weak instrument test –
First-stage F (2, 97) = 24.2784

The Hausman test statistic is 38.5. This is exactly the square of the t-ratio on the RF residual
included in the auxiliary regression (not shown). Weak instruments are rejected since 24.28 > 19.93,
which indicates that the maximal size is less than 10%. The Sargan test for overidentification is
not significant at 5% but it is at 10%.

Finally, the regression is repeated using all instruments (one of which is invalid).

1 iv_5 <- tsls y const x ; const z1 z2 z3

The Sargan test results indicate that at 5% the instruments are not valid.

iv 5: TSLS, using observations 1–100
Dependent variable: y

Instrumented: x
Instruments: const z1 z2 z3

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 13.1107
with p-value = P (χ2(2) > 13.1107) = 0.00142246
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10.4 Simulation

In appendix 10C of POE5, the authors conduct a Monte Carlo experiment comparing the
performance of OLS and TSLS. The basic simulation is based on the model

yi = xi + ei (10.10)

xi = θzi1 + θzi2 + θzi3 + vi (10.11)

The zi are exogenous instruments that are each N(0,1). The errors, ei and vi, are(
ei
vi

)
∼ N

[(
0
0

)
,

(
1 ρ
ρ 1

)]
(10.12)

The parameter θ controls the strength of the instruments and is set to either 0.1 or 0.5. The
parameter ρ controls the endogeneity of x. When ρ = 0, x is exogenous. When ρ = 0.8 it is
seriously endogenous. Sample size is set to 100 and 10,000 simulated samples are drawn.

To reduce clutter in the body of the loop, I have written a function that determines whether the
null hypothesis of exogeneity is rejected at 5% using a Hausman test. One of the things measured
in the simulation is the rejection rate of this test and this will facilitate that.

The most novel thing here, at least for this manual, is how the endogenous variables are tracked
for the first regression used in the test. list has a feature that makes this easy to do. In line 3 a list
is created that subtracts one list from another. In this case, anything that is in x but not in z will
be added to the endogenous variables list. This is likely what gretl is doing under the hood in the
tsls command (but with error catching). At any rate, it seems to work. The rest of the function is
just an execution of the regression based Hausman test of the exogeneity of regressors.

It returns a scalar (1 or 0) and its input arguments are y (series for the dependent variable of
the model), xvars (a list of regressors in the model), and zvars (another list that contains all
internal and external instruments). The standard normal is used to obtain the critical value for
the test. Feel free to use the t if you wish.

1 # Function returns a 1 if reject Hausman null
2 function scalar Hausman (series y, list xvars, list zvars)
3 list endogvars = xvars - zvars
4 ols endogvars zvars --quiet
5 series vhat = $uhat
6 ols y xvars vhat --quiet
7 scalar t = $coeff(vhat)/$stderr(vhat)
8 scalar reject = abs(t)>1.96
9 return reject

10 end function

The gretl script to perform the simulation appears below:

381



1 # Simulation
2 scalar N = 100
3 nulldata N --preserve
4 scalar rho = 0.0 # set r = (0.0 or 0.8)
5 scalar p = 0.5 # set p = (0.1 or 0.5)
6 matrix S = {1, rho; rho, 1}
7 matrix C = cholesky(S)
8

9 series z1 = normal(N,1)
10 series z2 = normal(N,1)
11 series z3 = normal(N,1)
12 series xs = p*z1 + p*z2 + p*z3
13 list zvars = const z1 z2 z3
14

15 loop 10000 --progressive --quiet
16 matrix errors = mnormal(N,2)*C’
17 series v = errors[,1]
18 series e = errors[,2]
19 x = xs + v
20 y = x + e
21 list xvars = const x
22 ols x const zvars --quiet
23 scalar f = $Fstat
24 ols y xvars --quiet
25 scalar b_ols = $coeff(x)
26 scalar se_ols = $stderr(x)
27 scalar t_ols = (b_ols-1)/se_ols
28 scalar r_ols = abs(t_ols)>critical(t,$df,.025)
29 tsls y xvars; zvars --quiet
30 scalar b_tsls = $coeff(x)
31 scalar se_tsls = $stderr(x)
32 scalar t_tsls = (b_tsls-1)/se_tsls
33 scalar r_tsls = abs(t_tsls)>critical(t,$df,.025)
34 scalar a = Hausman(y, xvars, zvars)
35 store coef.gdt b_ols se_ols r_ols b_tsls se_tsls r_tsls a f
36 print b_ols se_ols r_ols b_tsls se_tsls r_tsls a f
37 endloop

The top part of the script initializes all of the parameters for the simulation. The sample size
is set to 100, an empty dataset is created, the values of ρ and π are set, then the covariance
matrix is created and the Cholesky decomposition is taken. The Cholesky decomposition is a trick
used to create correlation among the residuals. There are more transparent ways to do this (e.g.,
e = rho*v + normal(0,1)), but this is a useful trick to use, especially when you want to
correlate more than two series. The systematic part of x is created and called xs and a list to
contain the instruments is created as well.

The loop uses the --progressive option and is set to do 10,000 iterations. The matrix
called errors uses the Cholesky decomposition of the variance covariance to create the correlated
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errors. The first column we assign to v and the second to e. The endogenous regressor x is
created by adding v to the systematic portion of the model, and then the dependent variable in
the regression is created. The first regression in line 20 is the reduced form. The overall F statistic
from this regression can serve as the test for weak instruments since there are no other exogenous
variables in the model. The omit form of the F -test won’t work in a progressive loop so I avoided
it here. The slope estimates for least squares and two-stage least squares are collected, stored to
coef.gdt, and printed.

For this particular parameterization, I obtained the following result:

rho=0 (OLS efficient), theta=.5 (instruments strong)

Statistics for 10000 repetitions

mean std. dev
b_ols 0.999341 0.0789376
se_ols 0.0784693 0.00766539
r_ols 0.0540000 0.226018
b_tsls 0.997716 0.125607

se_tsls 0.124852 0.0184785
r_tsls 0.0486000 0.215030

a 0.0538000 0.225623
f 23.1022 6.53108

With strong instruments, TSLS is basically unbiased. Least squares is unbiased and much more
efficient that TSLS. The size of the Hausman test (Ho is true) is 0.0538, very close to the nominal
level. Notice that the average value of the weak instrument test is 23.1, indicating the strong
instruments. Try changing p and rho to replicate the findings in Table 10B.1 of POE5.

10.5 Script

1 set echo off
2 open "@workdir\data\mroz.gdt"
3 logs wage
4 square exper
5

6 # least squares and IV estimation of wage eq
7 # Example 10.1
8 m1 <- ols l_wage const educ exper sq_exper
9

10 # Example 10.2
11 smpl wage>0 --restrict
12 list x = const educ
13 list z = const mothereduc
14 m2 <- ols l_wage x
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15 scalar se_educ_ols = $stderr(educ)
16 m3 <- tsls l_wage x; z
17 scalar se_educ_iv = $stderr(educ)
18

19 scalar a=corr(educ, mothereduc)
20 scalar ratio = se_educ_iv/se_educ_ols
21 scalar approx = 1/a
22 printf "\nThe correlation between mothers education\
23 and daughter is %.3f\n", a
24 printf "\nThe ratio of IV/OLS standard error for b2 is %.3f\n",\
25 ratio
26 printf "\nReciprocal of the correlation is %.3f\n", approx
27

28 # Example 10.3
29 # tsls--manually
30 smpl wage>0 --restrict
31 m4 <- ols educ const mothereduc
32 series educ_hat = $yhat
33 m5 <- ols l_wage const educ_hat
34

35 # Example 10.4
36 # Simple regression, two instruments
37 list instruments = const mothereduc fathereduc
38 m6 <- ols educ instruments
39 series educ_hat = $yhat
40 m7 <- ols l_wage const educ
41 m8 <- ols l_wage const educ_hat
42 m9 <- tsls l_wage const educ; instruments
43

44 # Example 10.5
45 list xlist = const exper sq_exper educ
46 list instruments = const mothereduc fathereduc exper sq_exper
47 m10 <- tsls l_wage xlist ; instruments
48

49 fs10 <- ols educ instruments # First stage regression
50 omit mothereduc fathereduc --test-only
51 # Example 10.6
52 # partial correlations--the FWL result
53 ols educ const exper sq_exper
54 series reduc = $uhat
55 ols mothereduc const exper sq_exper
56 series rmom = $uhat
57 ols reduc rmom --quiet
58 scalar c1 = corr(reduc, rmom)
59 printf " Partial R2 = %.4f\n\
60 The correlation between reduc and rmom = %.4f\n\
61 The correlation squared is %.4f\n", $rsq, c1,c1ˆ2
62

63 ols fathereduc const exper sq_exper
64 series rdad = $uhat
65 ols reduc rmom rdad
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66 printf "Partial R2 = %.3f\n", $rsq
67

68 # Example 10.7
69 list xlist = const exper sq_exper educ
70 list instruments = const exper sq_exper mothereduc fathereduc
71

72 # Hausman test
73 ols educ instruments --quiet
74 series ehat = $uhat
75 h1 <- ols l_wage xlist ehat
76 omit ehat --test-only
77

78 # Sargan test
79 tsls l_wage xlist; instruments
80 series uhat = $uhat
81 ols uhat instruments
82 scalar test = $rsq*$nobs
83 pvalue X 2 test
84

85 # Cragg-Donald F
86 open "@workdir\data\mroz.gdt"
87 smpl wage>0 --restrict
88 logs wage
89 square exper
90 series nwifeinc = (faminc-wage*hours)/1000
91 list x1 = mtr educ kidsl6 nwifeinc const
92 list z1 = kidsl6 nwifeinc educ exper const
93

94 # Weak IV Example 1
95 iv1 <- tsls hours x1 ; z1
96 rf1 <- ols mtr z1
97

98 # Weak IV Example 2
99 list z2 = z1 sq_exper largecity

100 iv2 <- tsls hours x1 ; z2
101 rf2 <- ols mtr z2
102 omit exper sq_exper largecity --test-only
103

104 # Weak IV Example 3
105 list z3 = kidsl6 nwifeinc mothereduc fathereduc const
106 iv3 <- tsls hours x1 ; z3
107 rf3_mtr <- ols mtr z3
108 omit mothereduc fathereduc --test-only
109 rf3_educ <- ols educ z3
110 omit mothereduc fathereduc --test-only
111

112 # Weak IV Example 4
113 list z4 = z3 exper
114 iv4 <- tsls hours x1 ; z4
115 rf4_mtr <- ols mtr z4
116 omit exper mothereduc fathereduc --test-only
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117 rf4_educ <- ols educ z4
118 omit exper mothereduc fathereduc --test-only
119

120 tsls hours x1 ; z3
121 scalar df = $df
122 list w = const kidsl6 nwifeinc
123 ols mtr w --quiet
124 series e1 = $uhat
125 ols educ w --quiet
126 series e2 = $uhat
127 ols mothereduc w --quiet
128 series e3 = $uhat
129 ols fathereduc w --quiet
130 series e4 = $uhat
131

132 # Example 10.8
133 # canonical correlations in gretl--Weak IV example 3
134 function matrix cc(list Y, list X)
135 matrix mY = cdemean({Y})
136 matrix mX = cdemean({X})
137

138 matrix YX = mY’mX
139 matrix XX = mX’mX
140 matrix YY = mY’mY
141

142 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)
143 return sqrt(ret)
144 end function
145

146 list E1 = e1 e2
147 list E2 = e3 e4
148

149 l = cc(E1, E2)
150 scalar mincc = minc(l)
151 scalar cd = df*(minccˆ2)/(2*(1-minccˆ2))
152 printf "\nThe Cragg-Donald Statistic is %10.4f.\n",cd
153

154 # Example 10.9
155 open "@workdir\data\ch10.gdt"
156 ols_1 <- ols y const x
157 iv_1 <- tsls y const x ; const z1
158 iv_2 <- tsls y const x ; const z2
159 iv_3 <- tsls y const x ; const z3
160 iv_4 <- tsls y const x ; const z1 z2
161

162 rf <- ols x const z1 z2
163 iv_5 <- tsls y const x ; const z1 z2 z3
164

165 # Sampling Properties of 2sls
166 # Function returns a 1 if reject Hausman null
167 function scalar Hausman (series y, list xvars, list zvars)
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168 list endogvars = xvars - zvars
169 ols endogvars zvars --quiet
170 series vhat = $uhat
171 ols y xvars vhat --quiet
172 scalar t = $coeff(vhat)/$stderr(vhat)
173 scalar reject = abs(t)>1.96
174 return reject
175 end function
176

177 # Simulation
178 scalar N = 100
179 nulldata N --preserve
180 scalar rho = 0.0 # set r = (0.0 or 0.8)
181 scalar p = 0.5 # set p = (0.1 or 0.5)
182 matrix S = {1, rho; rho, 1}
183 matrix C = cholesky(S)
184

185 series z1 = normal(N,1)
186 series z2 = normal(N,1)
187 series z3 = normal(N,1)
188 series xs = p*z1 + p*z2 + p*z3
189 list zvars = const z1 z2 z3
190

191 loop 10000 --progressive --quiet
192 matrix errors = mnormal(N,2)*C’
193 series v = errors[,1]
194 series e = errors[,2]
195 x = xs + v
196 y = x + e
197 list xvars = const x
198 ols x const zvars --quiet
199 scalar f = $Fstat
200 ols y xvars --quiet
201 scalar b_ols = $coeff(x)
202 scalar se_ols = $stderr(x)
203 scalar t_ols = (b_ols-1)/se_ols
204 scalar r_ols = abs(t_ols)>critical(t,$df,.025)
205 tsls y xvars; zvars --quiet
206 scalar b_tsls = $coeff(x)
207 scalar se_tsls = $stderr(x)
208 scalar t_tsls = (b_tsls-1)/se_tsls
209 scalar r_tsls = abs(t_tsls)>critical(t,$df,.025)
210 scalar a = Hausman(y, xvars, zvars)
211 store coef.gdt b_ols se_ols r_ols b_tsls se_tsls r_tsls a f
212 print b_ols se_ols r_ols b_tsls se_tsls r_tsls a f
213 endloop
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Chapter 11

Simultaneous Equations Models

In Chapter 11 of POE5 the authors present a model of supply and demand. The econometric
model contains two equations and two dependent variables. The distinguishing factor for models
of this type is that the values of two (or more) of the variables are jointly determined. This means
that a change in one of the variables causes the other to change and vice versa. The estimation of a
simultaneous equations model is demonstrated using the truffle example which is explained below.

11.1 Truffle Example

Consider a supply and demand model for truffles:

qi =α1 + α2pi + α3psi + α4dii + edi (11.1)

qi =β1 + β2pi + β3pfi + esi (11.2)

The first equation (11.1) is demand and q us the quantity of truffles traded in a particular French
market, p is the market price of truffles, ps is the market price of a substitute good, and di is per
capita disposable income of the local residents. The supply equation (11.2) contains the variable
pf, which is the price of a factor of production. Each observation is indexed by i, i = 1, 2, . . . , N .
As explained in the text, prices and quantities in a market are jointly determined; hence, in this
econometric model p and q are both endogenous to the system.
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11.2 The Reduced Form Equations

The reduced form equations express each endogenous variable as a linear function of every
exogenous variable in the entire system. So, for our example

qi =π11 + π21psi + π31dii + π41pfi + νi1 (11.3)

pi =π12 + π22psi + π32dii + π42pfi + νi2 (11.4)

Since each of the independent variables is exogenous with respect to q and p, the reduced form
equations (11.3) and (11.4) can be estimated using least squares. In gretl the script is

1 open "@workdir\data\truffles.gdt"
2 list z = const ps di pf
3 ols q z
4 ols p z

The gretl results appear in Table 11.1 Each of the variables are individually different from zero

q̂ = 7.895
(3.243)

+ 0.6564
(0.1425)

ps + 2.167
(0.7005)

di− 0.5070
(0.1213)

pf

n = 30 R̄2 = 0.6625 F (3, 26) = 19.973 σ̂ = 2.6801

(standard errors in parentheses)

p̂ = −32.51
(7.984)

+ 1.708
(0.3509)

ps + 7.602
(1.724)

di + 1.354
(0.2985)

pf

n = 30 R̄2 = 0.8758 F (3, 26) = 69.189 σ̂ = 6.5975

(standard errors in parentheses)

Table 11.1: The least squares estimates of the reduced form equations.

at 5%. The overall F -statistics are 19.97 and 69.19, both significant at 5% as well.

11.3 The Structural Equations

The structural equations are estimated using two-stage least squares. The basic gretl commands
for this estimator are discussed in Chapter 10. The instruments consist of all exogenous variables,
i.e., the same variables you use to estimate the reduced form equations (11.3) and (11.4).
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The gretl commands to open the truffle data and estimate the structural equations using two-
stage least squares are:

1 open "@workdir\data\truffles.gdt"
2 list z = const ps di pf
3 tsls q const p ps di; z
4 tsls q const p pf; z

The second line of the script estimates puts all of the exogenous variables into a list called z.
These variables are the ones used to compute the first-stage regression, i.e., the list of instruments.
Line 3 estimates the coefficients of the demand equation by TSLS. The gretl command tsls calls
for the two-stage least squares estimator and it is followed by the structural equation you wish to
estimate. List the dependent variable (q) first, followed by the regressors (const p ps di). A
semicolon separates the model to be estimated from the list of instruments, now contained in the
list, z. The fourth line uses the same format to estimate the parameters of the supply equation.
Refer to section 10.2, and Figures 10.1 and 10.2 specifically, about using the GUI to estimate the
model.

The results from two-stage least squares estimation of the demand equation appear below in
Table 11.2 The coefficient on price in the demand equation is −0.374 and it is significantly negative

Demand: TSLS, using observations 1–30
Dependent variable: q

Instrumented: p
Instruments: const ps di pf

Coefficient Std. Error t-ratio p-value

const −4.2795 5.5439 −0.7719 0.4471
p −0.37446 0.16475 −2.273 0.0315
ps 1.2960 0.35519 3.649 0.0012
di 5.0140 2.2836 2.196 0.0372

Sum squared resid 631.9171 S.E. of regression 4.929960
R2 0.226805 Adjusted R2 0.137590
F (3, 26) 5.902645 P-value(F ) 0.003266

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 132.484
with p-value = 1.17244e-030

Weak instrument test –
First-stage F (1, 26) = 20.572

Table 11.2: Two-stage least square estimates of the demand of truffles.
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at 5% level. It is good to know that demand curves have a negative slope! The Hausman test for
the exogeneity of price is equal to 132 with a near 0 p-value. Price is clearly not exogenous. The
test for weak instruments exceeds 10. Additional information from the results yields

Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 25%
value 16.38 8.96 6.66 5.53

Maximal size is probably less than 10%

Clearly, the set of instruments is fairly strong. There is no Sargan test because the model is not
overidentified. With one endogenous variable there is only 1 external instrument provided by pf
from the supply equation.

The results for the supply equation are in Table 11.3 In this case, the coefficient on price

Supply: TSLS, using observations 1–30
Dependent variable: q

Instrumented: p
Instruments: const ps di pf

Coefficient Std. Error t-ratio p-value

const 20.03 1.223 16.38 0.0000
p 0.3380 0.02492 13.56 0.0000
pf −1.001 0.08253 −12.13 0.0000

Sum squared resid 60.55457 S.E. of regression 1.497585
R2 0.901878 Adjusted R2 0.894610
F (2, 27) 95.25929 P-value(F ) 5.85e–13

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 2.62751e-007
with p-value = 0.999591

Sargan over-identification test –
Null hypothesis: all instruments are valid
Test statistic: LM = 1.53325
with p-value = P (χ2(1) > 1.53325) = 0.215625

Weak instrument test –
First-stage F (2, 26) = 41.49

Table 11.3: Two-stage least square estimates of the demand of truffles.

is positive (as expected). The model is suitably overidentified according to the Sargan test (p-
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value=0.216 > 0.05), and the instruments are suitably strong (First-stage F -statistic (2, 26) =
41.4873). The outcome of the Hausman test looks suspicious. The statistic is close to zero. A
manual check can easily be done using the script:

1 ols p x
2 series v = $uhat
3 ols q const p pf v
4 omit v

The first step is to regress all instruments on the endogenous regressor, p. Get the residuals and
add them to the structural equation for supply. Reestimate by least squares and check the t-ratio
on the added residual. If it is significant, then p is endogenous. In this example, we confirm the
gretl calculation. This suggests that the supply equation can safely be estimated by least squares.
Doing so using:

ols q const p pf

reveals that the results are almost identical to those from TSLS. This is an implication of having a
Hausman statistic that is so small. See the appendix in Chapter 10 of POE5 for a nice explanation
for this.

11.4 Fulton Fish Example

The following script estimates the reduced form equations using least squares and the demand
equation using two-stage least squares for Graddy’s Fulton Fish example.

In the example, ln(quan) and ln(price) are endogenously determined. There are several potential
instruments that are available. The variable stormy may be useful in identifying the demand
equation. In order for the demand equation to be identified, there must be at least one variable
available that effectively influences the supply of fish without affecting its demand. Presumably,
stormy weather affects the fishermen’s catch without affecting people’s appetite for fish! Logically,
stormy may be a good instrument.

The model of demand includes a set of indicator variables for day of the week. Friday is omitted
to avoid the dummy variable trap. These day of week variables are not expected to affect supply;
fishermen catch the same amount on average on any working day. Day of the week may affect
demand though, since people in some cultures buy more fish on some days than others.

The demand equation is:

ln(quan) = α1 + α2 ln(price) + α3mon + α4tue + α5wed + α6thu + ed (11.5)
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Supply is affected by the weather in the previous three days, which is captured in the indicator
variable stormy.

ln(quan) = β1 + β2 ln(price) + β3stormy + es (11.6)

In both demand and supply equations, ln(price) is the right-hand side endogenous variable. Iden-
tification of the demand equation requires stormy to be significantly correlated with lprice. This
can be determined by looking at the t-ratio in the lprice reduced form equation.

For supply to be identified, at least one of the day of the week dummy variables (mon tue wed
thu) that are excluded from the supply equation, has to be significantly correlated with lprice in
the reduced form. If not, the supply equation cannot be estimated; it is not identified.

Proceeding with the analysis, open the data and estimate the reduced form equations for lquan
and lprice. Go ahead and conduct the joint test of the day of the week variables using the --quiet
option.

1 open "@workdir\data\fultonfish.gdt"
2 #Estimate the reduced form equations
3 list days = mon tue wed thu
4 list z = const stormy days
5 ols lquan z
6 omit days --quiet
7 ols lprice z
8 omit days --quiet

Notice how the list command is used. A separate list is created to contain the indicator variables.
This allows us to add them as a set to the list of instruments in line 4 and to test their joint
significance in the reduced form equation for price in lines 6 and 8. The reduced form results for
ln(Q) and ln(price) appear below:

RF Qty: OLS, using observations 1–111
Dependent variable: lquan

Coefficient Std. Error t-ratio p-value

const 8.810 0.1470 59.92 0.0000
stormy −0.3878 0.1437 −2.698 0.0081
mon 0.1010 0.2065 0.4891 0.6258
tue −0.4847 0.2011 −2.410 0.0177
wed −0.5531 0.2058 −2.688 0.0084
thu 0.05369 0.2010 0.2671 0.7899

R2 0.193372 Adjusted R2 0.154961
F (5, 105) 5.034295 P-value(F ) 0.000356

RF Price: OLS, using observations 1–111
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Dependent variable: lprice

Coefficient Std. Error t-ratio p-value
const −0.2717 0.076 −3.557 0.001
stormy 0.3464 0.075 4.639 0.000
mon −0.1129 0.107 −1.052 0.295
tue −0.0411 0.105 −0.394 0.695
wed −0.0118 0.107 −0.111 0.912
thu 0.0496 0.104 0.475 0.636

Mean dependent var −0.193681 S.D. dependent var 0.381935
Sum squared resid 13.17566 S.E. of regression 0.354235
R2 0.178889 Adjusted R2 0.139789
F (5, 105) 4.575106 P-value(F ) 0.000816
Log-likelihood −39.22286 Akaike criterion 90.44572
Schwarz criterion 106.7029 Hannan–Quinn 97.04078

In the reduced form equation for price, stormy is highly significant with a t-ratio of 4.639. This
implies that the demand equation is identified and can be estimated with the data.

The joint test of the significance of the daily indicator variables reveals that they are not jointly
significant; the F -statistic has a p-value of only 0.65.

Test on Model 5:

Null hypothesis: the regression parameters are zero for the variables
mon, tue, wed, thu

Test statistic: F(4, 105) = 0.618762, p-value 0.650111

Since the daily indicators are being used as instruments to estimate supply, the supply structural
equation is not identified by the data and can’t be estimated without better variables.

The two-stage least squares estimates of the demand equation are obtained using:

1 tsls lquan const lprice days ; zvars

to produce the result:

Demand: TSLS, using observations 1–111
Dependent variable: lquan

Instrumented: lprice
Instruments: const stormy mon tue wed thu
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Coefficient Std. Error t-ratio p-value
const 8.5059 0.166 51.189 0.000
lprice −1.1194 0.429 −2.612 0.010
mon −0.0254 0.215 −0.118 0.906
tue −0.5308 0.208 −2.552 0.012
wed −0.5664 0.213 −2.662 0.009
thu 0.1093 0.209 0.523 0.602

Mean dependent var 8.523430 S.D. dependent var 0.741672
Sum squared resid 52.09032 S.E. of regression 0.704342
R2 0.196499 Adjusted R2 0.158237
F (5, 105) 4.717062 P-value(F ) 0.000631
Log-likelihood −457.7821 Akaike criterion 927.5643
Schwarz criterion 943.8214 Hannan–Quinn 934.1593

Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 2.4261
with p-value = 0.119329

Weak instrument test –
First-stage F (1, 105) = 21.517

The coefficient on lprice is negative and significant. It also appears that demand is significantly
lower on Tuesday and Wednesday compared to Fridays. The Hausman test for the exogeneity
of lprice is not rejected at 5%. This suggests that least squares might be a suitable means of
estimating the parameters in this case. Also, the instruments appear to be sufficiently strong, i.e.,
the F = 21.51 > 10.

11.5 Systems of Equations

Example 11.3 in POE5

In this example a system of macroeconomic equations of the U.S. economy is proposed and
analyzed. This is one of the most widely used examples of systems estimation and the data and
code for it are included with gretl. I present this here as an example of gretl’s system command.

system

Variants: system method=estimator
sysname <- system

Examples: "Klein Model 1" <- system
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system method=tsls
system method=liml

Either of two forms of the command may be given, depending on whether you wish to save the
system for estimation in more than one way or just estimate the system once.

To save the system you should assign it a name using the assignment operator, as in the first
example (if the name contains spaces it must be surrounded by double quotes). In this case you
estimate the system using the estimate command. With a saved system of equations, you are
able to impose restrictions (including cross-equation restrictions) using the restrict command.

Alternatively you can specify an estimator for the system using method= followed by a string
identifying one of the supported estimators: ols (Ordinary Least Squares), tsls (Two-Stage
Least Squares) sur (Seemingly Unrelated Regressions), 3sls (Three-Stage Least Squares), fiml
(Full Information Maximum Likelihood) or liml (Limited Information Maximum Likelihood). In
this case the system is estimated once its definition is complete.

An equation system is terminated by the line end system. Within the system you can define
an equation, a list of instruments, a list of endogenous variable or an identity. In the Klein I
example we define equations to be estimated and identities that help to identify the equations in
the system. Also, the model is assigned a name and therefore we use estimate commands to run
the regressions. The code is:

1 open klein.gdt
2

3 series W = Wp + Wg
4 series A = t + (1918 - 1931)
5

6 # set the model up as a system
7 "Klein Model 1" <- system
8 equation C 0 P P(-1) W
9 equation I 0 P P(-1) K(-1)

10 equation Wp 0 X X(-1) A
11 identity P = X - T - Wp
12 identity W = Wp + Wg
13 identity X = C + I + G
14 identity K = K(-1) + I
15 endog C I Wp P W X K
16 end system
17

18 # and estimate it in various ways
19 estimate "Klein Model 1" method=ols
20 estimate "Klein Model 1" method=tsls
21 estimate "Klein Model 1" method=liml

Two series are created. Total wage, W, is composed of private wages + government wages. A time
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trend, A, is created to match the year of observation.

The system is assigned the name ”Klein Model 1”. This is followed by three structural equations
(consumption, investments, and private wages) and a set of four identities. Additionally, the
endogenous variable names are listed. There are seven endogenous variables and seven equations.
Only three of those equations contain parameters and errors (i.e., they are structural).

Once the system has been defined, estimation can be carried out in a number of ways. Here
we estimate the named model using method= ols, tsls, or liml. The LIML estimator is
discussed in the next section.

1 # and estimate it in various ways
2 estimate "Klein Model 1" method=ols
3 estimate "Klein Model 1" method=tsls
4 estimate "Klein Model 1" method=liml

The results from gretl reveal:

Equation system, Klein Model 1
Estimator: Limited Information Maximum Likelihood

Equation 1: LIML, using observations 1921–1941 (T = 21)
Dependent variable: C

Coefficient Std. Error z p-value
const 17.1477 1.840 9.318 0.000
P −0.2225 0.202 −1.103 0.270
P 1 0.3960 0.174 2.281 0.023
W 0.8226 0.055 14.853 0.000

Mean dependent var 53.99524 S.D. dependent var 6.860866
Sum squared resid 40.88419 S.E. of regression 1.395301
Log-likelihood −132.4186 Smallest eigenvalue 1.498746

LR over-identification test: χ2(4) = 8.4972 [0.0750]

Equation 2: LIML, using observations 1921–1941 (T = 21)
Dependent variable: I
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Coefficient Std. Error z p-value
const 22.5908 8.546 2.643 0.008
P 0.0752 0.202 0.372 0.710
P 1 0.6804 0.188 3.616 0.000
K1 −0.1683 0.041 −4.124 0.000

Mean dependent var 1.266667 S.D. dependent var 3.551948
Sum squared resid 34.99649 S.E. of regression 1.290930
Log-likelihood −121.0536 Smallest eigenvalue 1.085953

LR over-identification test: χ2(4) = 1.73161 [0.7850]

Equation 3: LIML, using observations 1921–1941 (T = 21)
Dependent variable: Wp

Coefficient Std. Error z p-value
const 1.5262 1.188 1.284 0.199
X 0.4339 0.068 6.387 0.000
X 1 0.1513 0.067 2.257 0.024
A 0.1316 0.032 4.063 0.000

Mean dependent var 36.36190 S.D. dependent var 6.304401
Sum squared resid 10.02192 S.E. of regression 0.690821
Log-likelihood −136.8911 Smallest eigenvalue 2.468583

LR over-identification test: χ2(4) = 18.9765 [0.0008]

Cross-equation VCV for residuals
(correlations above the diagonal)

1.9469 (0.555) (−0.384)
1.0006 1.6665 (0.256)
−0.36970 0.22834 0.47723

log determinant = −0.557984

Breusch–Pagan test for diagonal covariance matrix:
χ2(3) = 10.946 [0.0120]

If you are following along in POE5, note that Et in POE5 is labeled X by gretl .
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11.6 Alternatives to TSLS

There are several alternatives to the standard IV/TSLS estimator. Among them is the limited
information maximum likelihood (LIML) estimator, which was first derived by Anderson and Rubin
(1949). There is renewed interest in LIML because evidence indicates that it performs better than
TSLS when instruments are weak. Several modifications of LIML have been suggested by Fuller
(1977) and others. These estimators are unified in a common framework, along with TSLS, using
the idea of a k -class of estimators. LIML suffers less from test size aberrations than the TSLS
estimator, and the Fuller modification suffers less from bias. Each of these alternatives will be
considered below.

In a system of M simultaneous equations let the endogenous variables be y1, y2, . . . , yM . Let
there be K exogenous variables x1, x2, . . . , xK . The first structural equation within this system is

y1 = α2y2 + β1x1 + β2x2 + e1 (11.7)

The endogenous variable y2 has reduced form y2 = π12x1 +π22x2 + · · ·+πK2xK + v2 = E (y2) + v2,
which is consistently estimated by least squares. The predictions from the reduced form are

Ê (y2) = π̂12x1 + π̂22x2 + · · ·+ π̂K2xK (11.8)

and the residuals are v̂2 = y2 − Ê (y2).

The two-stage least squares estimator is an IV estimator using Ê (y2) as an instrument. A
k -class estimator is an IV estimator using instrumental variable y2 − kv̂2. The LIML estimator
uses k = l̂ where l̂ is the minimum ratio of the sum of squared residuals from two regressions. The
explanation is given on pages 468-469 of POE5. A modification suggested by Fuller (1977) that
uses the k -class value

k = ˆ̀− a

N −K
(11.9)

where K is the total number of instrumental variables (included and excluded exogenous variables)
and N is the sample size. The value of a is a constant-usually 1 or 4. When a model is just identified,
the LIML and TSLS estimates will be identical. It is only in overidentified models that the two
will diverge. There is some evidence that LIML is indeed superior to TSLS when instruments are
weak and models substantially overidentified.

With the Mroz data we estimate the hours supply equation

hours = β1 + β2mtr + β3educ + β4kidsl6 + β5nwifeinc + e (11.10)

A script can be used to estimate the model via LIML. The following one is used to replicate the
results in Table 11B.3 of POE5.

1 open "@workdir\data\mroz.gdt"
2 square exper

399



3 series nwifeinc = (faminc-wage*hours)/1000
4 smpl hours>0 --restrict
5 list x = mtr educ kidsl6 nwifeinc const
6 list z1 = educ kidsl6 nwifeinc const exper
7 list z2 = educ kidsl6 nwifeinc const exper sq_exper largecity
8 list z3 = kidsl6 nwifeinc const mothereduc fathereduc
9 list z4 = kidsl6 nwifeinc const mothereduc fathereduc exper

10

11 Model_1 <- tsls hours x; z1 --liml
12 Model_2 <- tsls hours x; z2 --liml
13 Model_3 <- tsls hours x; z3 --liml
14 Model_4 <- tsls hours x; z4 --liml
15 Model_4_tsls <- tsls hours x; z4

LIML estimation uses the tsls command with the --liml option. The results from LIML
estimation of the hours equation, (11.10) the fourth model in line 14, are given below. The variables
mtr and educ are endogenous, and the external instruments are mothereduc, fathereduc, and exper ;
two endogenous variables with three external instruments suggests that the model is overidentified
in this specification.

LIML estimates
Dependent variable: hours

Model 1 Model 2 Model 3 Model 4 Model 4 tsls

const 17423.721∗∗ 16191.333∗∗ −24491.599 18587.906∗∗ 18067.842∗∗

(3117.827) (2979.234) (79222.875) (3662.026) (3534.909)

mtr −18456.589∗∗ −17023.816∗∗ 29709.468 −19196.517∗∗ −18633.922∗∗

(3615.228) (3454.423) (89957.674) (3980.227) (3843.850)

educ −145.293∗∗ −134.550∗∗ 258.559 −197.259∗∗ −189.861∗∗

(32.810) (31.407) (841.058) (64.243) (62.355)

kidsl6 151.023 113.503 −1144.478 207.553 190.275
(140.188) (134.363) (2495.489) (162.296) (158.305)

nwifeinc −103.898∗∗ −96.289∗∗ 149.232 −104.942∗∗ −102.152∗∗

(19.602) (18.735) (467.761) (20.565) (19.899)

n 428 428 428 428 428
R2 0.199

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The LIML results are easy to replicate using matrix commands. Doing so reveals some of
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hansl’s power. The equations that make this magic are found in Davidson and MacKinnon (2004,
pp. 537-538). Hansl’s straightforward syntax makes translating the algebra into a computation
quite easy.

The proposed function computes LIML, its standard errors and t-ratios. It takes four arguments.
The first is a series for the dependent variable, next is a list of variables for the regression, next
is a complete set of instruments that includes all exogenous variables in x, and finally a string. If
the value of the string is "Fuller" then Fuller’s modification is used for LIML estimation. If it is
something else, it uses the regular LIML routing. For non Fuller modified problems I suggest using
"no Fuller" since the value of this string makes its way to the screen as part of the output.

1 function void LIML (series depvar "dependent variable",
2 list xvars "regressor list",
3 list zvars "instrument list",
4 string a "Fuller or No Fuller")
5 list endogvars = xvars - zvars
6 list yvars = depvar endogvars
7 matrix Y = { yvars } # All Endogenous vars, y and Y
8 matrix y = { depvar }
9 matrix w = { zvars } # w=All instruments

10 matrix z = { xvars - endogvars } # z=Internal instruments only
11 matrix X = { xvars }
12

13 matrix Mz = I($nobs)-z*invpd(z’*z)*z’ # Projection off of Z
14 matrix Mw = I($nobs)-w*invpd(w’*w)*w’ # Projection off of w
15 matrix Ez = Mz*Y # Residuals
16 matrix Ew = Mw*Y # Residuals
17 matrix W0 = Ez’*Ez # SSE
18 matrix W1 = Ew’*Ew # SSE
19 matrix G = inv(W1)*W0
20 matrix l = eigengen(G, null)
21

22 if a == "Fuller"
23 scalar k=min(l)-(1/($nobs-nelem(xvars)))
24 else
25 scalar k=min(l)
26 endif
27

28 matrix kM = (I($nobs)-(k*Mw))
29 matrix b =invpd(X’*kM*X)*X’*kM*y
30 matrix sig2=(y-X*b)’*(y-X*b)/($nobs-nelem(xvars))
31 matrix covmat = sig2*invpd(X’*kM*X)
32 matrix se = sqrt(diag(covmat))
33 matrix results = b˜se˜b./se
34

35 cnameset(results, "Coeff Std_Error t-ratio")
36 rnameset(results, "mtr educ kidsl6 nwifeinc const ")
37 printf "\nThe LIML estimates using %s adjustment with k=%3f \n %12.3f\n", a, k, results
38 end function
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It is called using:

1 LIML(hours, x, z1, "no Fuller")
2 LIML(hours, x, z2, "no Fuller")
3 LIML(hours, x, z3, "no Fuller")
4 LIML(hours, x, z4, "no Fuller")

Which produces the same results as did the tsls command using the --liml flag. An example
of the output is shown below:

LIML(hours, x, z3, "no Fuller")

The LIML estimates using no Fuller adjustment with k=1.000000
Coeff Std_Error t-ratio

mtr 29709.468 90487.777 0.328
educ 258.559 846.014 0.306

kidsl6 -1144.478 2510.194 -0.456
nwifeinc 149.232 470.517 0.317

const -24491.599 79689.720 -0.307

POE5 also produces results for a Fuller-Modified LIML estimator. This requires that the string
in our LIML function be set to ”Fuller”.

The result from the script for LIML(hours, x, z3, "Fuller") is:

The LIML estimates using Fuller adjustment with k=0.997636
Coeff Std_Error t-ratio

mtr -1304.857 15767.674 -0.083
educ -29.605 151.111 -0.196

kidsl6 -287.791 445.963 -0.645
nwifeinc -12.011 82.098 -0.146

const 2817.572 13887.860 0.203

which matches the ones produced by gretl’s tsls with --liml option.

Fuller’s modification relies on a user chosen constant and makes a small change in k of the
k -class estimator. In the script that ends the chapter, the value of a is set to 1 and the model
is reestimated using Fuller’s method. The modification is quite simple to make and the chapter
ending script shows the actual details.

11.7 Script
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1 set verbose off
2 open "@workdir\data\truffles.gdt"
3 # reduce form estimation
4 list zvars = const ps di pf
5 RF_Q <- ols q zvars
6 RF_P <- ols p zvars
7

8 # demand and supply of truffles
9 Demand <- tsls q const p ps di; zvars

10 Supply <- tsls q const p pf; zvars
11

12 # Hausman test
13 ols p zvars
14 series v = $uhat
15 ols q const p pf v
16 omit v
17

18 # supply estimation by OLS
19 Supply_ols <- ols q const p pf
20

21 # Fulton Fish
22 open "@workdir\data\fultonfish.gdt"
23 #Estimate the reduced form equations
24 list days = mon tue wed thu
25 list z = const stormy days
26 RF_Qty <- ols lquan z
27 RF_Price <- ols lprice z
28 omit days --quiet
29

30 Demand <- tsls lquan const lprice days ; z
31

32 # Example Klein I
33 open klein.gdt
34

35 series W = Wp + Wg
36 series A = t + (1918 - 1931)
37

38 # set the model up as a system
39 "Klein Model 1" <- system
40 equation C 0 P P(-1) W
41 equation I 0 P P(-1) K(-1)
42 equation Wp 0 X X(-1) A
43 identity P = X - T - Wp
44 identity W = Wp + Wg
45 identity X = C + I + G
46 identity K = K(-1) + I
47 endog C I Wp P W X K
48 end system
49

50 # and estimate it in various ways
51 estimate "Klein Model 1" method=ols
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52 estimate "Klein Model 1" method=tsls
53 estimate "Klein Model 1" method=liml
54

55 # LIML
56 open "@workdir\data\mroz.gdt"
57 square exper
58 series nwifeinc = (faminc-wage*hours)/1000
59 smpl hours>0 --restrict
60 list x = mtr educ kidsl6 nwifeinc const
61 list z1 = educ kidsl6 nwifeinc const exper
62 list z2 = educ kidsl6 nwifeinc const exper sq_exper largecity
63 list z3 = kidsl6 nwifeinc const mothereduc fathereduc
64 list z4 = kidsl6 nwifeinc const exper mothereduc fathereduc
65

66 # LIML using tsls
67 Model_1 <- tsls hours x; z1 --liml
68 Model_2 <- tsls hours x; z2 --liml
69 Model_3 <- tsls hours x; z3 --liml
70 Model_4 <- tsls hours x; z4 --liml
71 Model_4_tsls <- tsls hours x; z4
72

73 # Optional Fuller Modified LIML a=1
74 function void LIML (series depvar "dependent variable",
75 list xvars "regressor list",
76 list zvars "instrument list",
77 string a "Fuller or No Fuller")
78 list endogvars = xvars - zvars
79 list yvars = depvar endogvars
80 matrix Y = { yvars } # All Endogenous vars, y and Y
81 matrix y = { depvar }
82 matrix w = { zvars } # w=All instruments
83 matrix z = { xvars - endogvars } # z=Internal instruments only
84 matrix X = { xvars }
85

86 matrix Mz = I($nobs)-z*invpd(z’*z)*z’ # Projection off of Z
87 matrix Mw = I($nobs)-w*invpd(w’*w)*w’ # Projection off of w
88 matrix Ez = Mz*Y # Residuals
89 matrix Ew = Mw*Y # Residuals
90 matrix W0 = Ez’*Ez # SSE
91 matrix W1 = Ew’*Ew # SSE
92 matrix G = inv(W1)*W0
93 matrix l = eigengen(G, null)
94

95 if a == "Fuller"
96 scalar k=min(l)-(1/($nobs-nelem(xvars)))
97 else
98 scalar k=min(l)
99 endif

100

101 matrix kM = (I($nobs)-(k*Mw))
102 matrix b =invpd(X’*kM*X)*X’*kM*y
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103 matrix sig2=(y-X*b)’*(y-X*b)/($nobs-nelem(xvars))
104 matrix covmat = sig2*invpd(X’*kM*X)
105 matrix se = sqrt(diag(covmat))
106 matrix results = b˜se˜b./se
107

108 colnames(results, "Coeff Std_Error t-ratio")
109 rownames(results, "mtr educ kidsl6 nwifeinc const ")
110 printf "\nThe LIML estimates using %s adjustment with k=%3f \n %12.3f\n", a, k, results
111 end function
112

113 # LIML and Fuller modified LIML using matrices
114 LIML(hours, x, z1, "no Fuller" )
115 LIML(hours, x, z2, "no Fuller" )
116 LIML(hours, x, z3, "no Fuller" )
117 LIML(hours, x, z4, "no Fuller" )
118 LIML(hours, x, z1, "Fuller" )
119 LIML(hours, x, z2, "Fuller" )
120 LIML(hours, x, z3, "Fuller" )
121 LIML(hours, x, z4, "Fuller" )
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Chapter 12

Regression with Time-Series Data:
Nonstationary Variables

The main purpose this chapter is to explore the time-series properties of your data using gretl.
One of the basic points we make in econometrics is that the properties of the estimators and
their usefulness for point estimation and hypothesis testing depends on how the data behave. For
instance, in a linear regression model where errors are correlated with regressors, least squares
won’t be consistent and consequently it should not be used for either estimation or subsequent
testing.

In most time-series regressions the data must be stationary in order for estimators to have
desirable properties. This requires that the means, variances and covariances of the data series be
independent on the time period in which they are observed. For instance, the mean and variance
of the probability distribution that generated GDP in the third quarter of 1973 cannot be different
from the one that generated the 4th quarter GDP of 2006. Observations on stationary time series
can be correlated with one another, but the nature of that correlation can’t change over time.
U.S. GDP is growing over time (not mean stationary) and may have become less volatile (not
variance stationary). Changes in information technology and institutions may have shortened the
persistence of shocks in the economy (not covariance stationary).

Nonstationary time series should be used with care in regression analysis. Methods to effectively
deal with this problem have provided a rich field of research for econometricians in recent years.

12.1 Series Plots

The first thing to do when working with time series is to look at the data graphically. A time-
series plot will reveal potential problems with your data and suggest ways to proceed statistically. As
seen in Chapter 9, time-series plots are simple to generate using built-in functions that performs this
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task. Open the data file gdp5.gdt and create the first differences of GDP using the diff command.
The first differences of the time series are added to the data set and each of the differenced series
is prefixed with ‘d_’, e.g., ∆gdpt = gdpt − gdpt−1 ⇒ d_gdp.

1 open "@workdir\data\gdp5.gdt"
2 diff gdp
3 setinfo gdp -d "= real US gross domestic product" -n "Real GDP"
4 setinfo d_gdp -d "= first difference of GDP" -n "D.GDP"

The setinfo command is used to add descriptions and labels for graphing. Recall, the -d switch
changes the description and -n assigns a label to be used in graphs. Text needs to be enclosed in
double quotes.

Plotting the series can be done in any number of ways. The easiest is to use view>multiple
graphs>Time series from the pull-down menu. This will allow you to graph up to 16 variables
at a time.

Use your mouse to select four of the series. I chose gdp and d_gdp. Once these are highlighted
there are two ways to generate a simple graph. 1) right-click and choose choose Time series plot
from the flyout menu. This opens a dialog box called define graph that allows you to choose
whether to plot the series on a single graph or in separate small graphs. 2) Select View>Multiple
graphs>Time-series from the pull-down menu. These variables should appear in the ‘Selected
variables to plot’ box of a define graph dialog. You can change the ordering of the variables by
highlighting a variable and a right mouse click. The Up/Down box opens and clicking Down will
place d_gdp below gdp in the list as shown in Figure 12.1.

When plotting two series, putting the series in the same graph can be useful. Below, the plot
command is used to do this for the GDP and change in GDP series. In this example, separate scales
are added to the right and left side y axis since the scales of the two variables are so different. The
left side scale is in $trillion and the right side is also in $trillion but varies on a much smaller scale.

1 string title = "U.S. GDP and Change in GDP"
2 string xname = "Year"
3 string yname = "GDP $Trillion"
4 string y2name = "Change in Quarterly GDP"
5 list plotmat = gdp d_gdp
6 g1 <- plot plotmat
7 options time-series with-lines
8 printf "set title \"%s\"", title
9 printf "set xlabel \"%s\"", xname

10 printf "set ylabel \"%s\"", yname
11 printf "set y2label \"%s\"", y2name
12 end plot --output=display
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Figure 12.1: Choose View>Multiple graphs>Time series from the pull-down menu. Then
select the desired variables to plot from the available list on the left-hand side by highlighting the
variable and clicking on the green arrow. The ordering of the variables can be changed as desired
by highlighting the variable in the right-side box, right-clicking and choosing up or down to move
its position.

The output from this plot can be seen in Figure 12.2.

Example 12.1 in POE5 cont.

In this part of the example the inflation rate, the three year bond rate, and the fed funds rate
are plotted. These series are recorded monthly and are found in the usdata5.gdt dataset. Load
the data and add the differences of the three series to the dataset. If desired, change the series
attributes using the setinfo commands with the -d and -n switches.

1 open "@workdir\data\usdata5.gdt"
2 diff br infn ffr # take differences
3

4 # change series attributes
5 setinfo br -d "3-year Bond rate" -n "3-year Bond rate"
6 setinfo d_br -d "Change in the 3-year Bond rate" -n "D.bond rate"
7 setinfo infn -d "annual inflation rate" -n "inflation rate"
8 setinfo d_infn -d "Change in the annual inflation rate" -n "D.inflation"
9 setinfo ffr -d "federal funds rate" -n "Fed Funds Rate"
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Figure 12.2: Two series are plotted in the same graph with different scales applied to left and right
axes.

10 setinfo d_ffr -d "= first difference of f" -n "D.fed funds rate"

Finally, use the scatters command to plot each of the series and their differences.

1 g3 <- scatters infn d_infn br d_br ffr d_ffr --output=display

With a little editing in gnuplot this leads to Figure 12.3 You can gain more control over how the
graphs look by plotting the series individually and then editing the graphs to taste. For instance,
here is the plot of the change in the bond rate, with recessionary periods highlighted (Figure 12.4).

Comparing summary statistics of subsamples can be revealing. Stationarity implies that sum-
mary statistics (means, variances) should not change over time in stationary random variables.
Below, the sample of GDP and of inflation and interest rates are split and simple summary statis-
tics are generated. For quarterly GDP and its changes, the first subsample is from 1984:2-2000:3.
The second subsample is 2000:4-2016:4.

1 open "@workdir\data\gdp5.gdt"
2 diff gdp
3 smpl 1984:2 2000:3
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Figure 12.3: Plots of inflation, 3 year bond, and fed funds rates

4 summary gdp d_gdp --simple
5 smpl 2000:4 2016:4
6 summary gdp d_gdp --simple
7 smpl full

For the GDP series we get:

Full data range: 1984:1 - 2016:4 (n = 132)
Current sample: 1984:2 - 2000:3 (n = 66)

Mean Median S.D. Min Max
gdp 9.557 9.268 1.482 7.266 12.61
d_gdp 0.08283 0.08030 0.05287 -0.07650 0.2334

Current sample: 2000:4 - 2016:4 (n = 65)

Mean Median S.D. Min Max
gdp 14.68 14.75 1.159 12.64 16.80
d_gdp 0.06457 0.07780 0.08722 -0.3146 0.2203

The average GDP is increasing over time. In the latter period it is more than 3 standard deviations
higher than in the early period. The averages of the differenced series do not appear to be changing
significantly. This is consistent with stationarity in mean.

As discussed in Chapter 9, sample autocorrelations can reveal potential nonstationarity in a
series. Nonstationary series tend to have large autocorrelations at long lags. This is evident for the
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Figure 12.4: Individual plots can be edited using the edit controls. This one shows the first
differences of the 3 year bond rate. Recessions are shaded grey.

GDP series as shown in Figure 12.5 The large autocorrelations for GDP persist beyond 24 lags, a
clear sign that the series is nonstationary. Only the first two autocorrelations are significant for
the changes series.

For the monthly inflation and interest rate series the subsamples are 1954:08-1985:10 and
1985:11-2016:12.

1 open "@workdir\data\usdata5.gdt"
2 diff br infn ffr # take differences
3

4 list levels = infn ffr br # Variable list for levels
5 list diffs = d_infn d_ffr d_br # Variable list for differences
6 smpl 1954:8 1985:10
7 summary levels diffs --simple
8 smpl 1985:11 2016:12
9 summary levels diffs --simple

10 smpl full

Full data range: 1954:08 - 2016:12 (n = 749)
Current sample: 1954:08 - 1985:10 (n = 375)

Mean Median S.D. Min Max
infn 4.416 3.552 3.350 -0.8574 13.62
ffr 6.203 5.060 3.877 0.6300 19.10
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Figure 12.5: Autocorrelations and partial autocorrelations for GDP

Figure 12.6: Autocorrelations and partial autocorrelations for changes in GDP.
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br 6.562 5.880 3.236 1.490 16.22
d_infn 0.008513 -0.009750 0.3349 -0.9808 1.555
d_ffr 0.01810 0.03000 0.6927 -6.630 3.060
d_br 0.02075 0.05000 0.4230 -2.580 1.960

Current sample: 1985:11 - 2016:12 (n = 374)

Mean Median S.D. Min Max
infn 2.593 2.660 1.328 -1.978 6.184
ffr 3.650 3.990 2.788 0.07000 9.850
br 4.291 4.555 2.614 0.3300 9.610
d_infn -0.002978 -0.006500 0.3850 -2.569 2.121
d_ffr -0.01992 0.0000 0.1969 -0.9600 0.8700
d_br -0.02075 -0.03000 0.2572 -0.8000 0.7400

Ordinarily, gretl’s smpl functions are cumulative. This means that whatever modifications
you make to the sample are made based on the sample that is already in memory. In this example
though, we are able to load the second subperiod without having to first restore the full sample.
This is undocumented so it may stop working at some point. If so, issue a smpl full command
after getting summary statistics for the first subset.

Another option that is useful in time-series data is --contiguous. The --contiguous form
of smpl is intended for use with time-series data. It trims any observations at the start and end of
the current sample range that contain missing values (either for the variables in varlist, or for
all data series if no varlist is given). Then a check is performed to see if there are any missing
values in the remaining range; if so, an error is flagged.

The --simple option is used to suppress other summary statistics like the median, skewness
and kurtosis. If these statistics interest you, feel free to remove the option.

One can limit the summary statistics to certain variables by creating a list that follows
summary. For instance, to limit the summary statistics to the variables in levels you could use:

list levels = infl ffr br
summary levels --simple

The levels of each time series are put into a list called levels. The summary statistics of all the
contents can then be obtained using summary levels.

12.2 Deterministic Trends

Nonstationary variables that appear to wander up for a while and then down for a while are
said to have stochastic trends. On the other hand, some trends are persistent and these are said
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to be deterministic. A time series may posses both types of trend. A simple deterministic trend
for a series yt could be modeled:

yt = c1 + c2t+ ut

where t is an index of time. A quadratic trend would be

yt = c1 + c2t+ c3t
2 + ut.

A trend in the percentage change could be modeled

ln(yt) = c1 + c2t+ ut.

In each of these, the effect of time period is parameterized and can be estimated.

Example 12.2 in POE5

In this example wheat production in Toodyay Shire Australia is studied. Wheat production
depends on rainfall and productivity, which tends to improve over time. Thus, it is reasonable that
yield might have a deterministic trend. Rainfall could also be changing over time as well, perhaps
due to changes in global climate.

After loading the data, which are in toody5.gdt, add the natural logarithm of yield and the
square of rainfall to the dataset.

1 open "@workdir\data\toody5.gdt"
2 logs y
3 square rain

Linear trends are estimated for both ln(yield) and rainfall. The series along with the estimated
trends are plotted using the plot commands. First, wheat yield:

1 Model_1 <- ols l_y const year
2 series l_yhat = $yhat
3 list yield = l_y l_yhat year
4

5 # Graph of series against lags
6 string title = "Wheat Yield"
7 string xname = "Year"
8 string yname = "ln(Yield)"
9 g3 <- plot yield

10 options --with-lines
11 literal set linetype 1 lc rgb "black" pt 7
12 printf "set title \"%s\"", title
13 printf "set xlabel \"%s\"", xname
14 printf "set ylabel \"%s\"", yname
15 end plot --output=display
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In line 1 the linear deterministic trend is estimated and the predictions saved as a series in line
2. The plot command (line 9) requires either a matrix or a list of variables to plot. A list is
formed in line 3 and consists of the ln(yield) and the predictions from the estimated model.

Titles and labels are created in lines 6-8 and the plot block begins in line 9. Line 10 is for
the gretl option that replaces dots with lines in the plots. The next line is a gnuplot literal that
alters the line types and colors. The plot appears in Figure 12.7. The fitted trend is positive.

Figure 12.7: Plot of Wheat Yield for Toodyay Shire

The figure for rainfall was produced similarly:

1 Model_2 <- ols rain const year
2 series l_yhat = $yhat
3 list rainfall = rain l_yhat year
4

5 # Graph of series against lags
6 string title = "Rainfall during growing season 1950-1997"
7 string xname = "Year"
8 string yname = "Rain"
9 g4 <- plot rainfall

10 options --with-lines
11 literal set linetype 1 lc rgb "black" pt 7
12 printf "set title \"%s\"", title
13 printf "set xlabel \"%s\"", xname
14 printf "set ylabel \"%s\"", yname
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15 end plot --output=display

The plot appears in Figure 12.8. In this case there may be a slight negative trend, though the
regression results do not suggest that the trend coefficient is significantly different from zero.

Figure 12.8: Plot of Rainfall for Toodyay Shire

A model of yield is estimated that includes a time-trend, rainfall and its square. The regression
is estimated using:

1 list xvars = const year rain sq_rain
2 Trend <- ols l_y xvars

and yields

l̂ y = −40.9210
(4.9754)

+ 0.0197080
(0.0025194)

year + 1.14895
(0.29036)

rain− 0.134388
(0.034610)

sq rain

T = 48 R̄2 = 0.6408 F (3, 44) = 28.945 σ̂ = 0.23264

(standard errors in parentheses)
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Another approach that yields the same estimates is to detrend each of the series before estimat-
ing the regression. The results are the same as predicted by the FWL theorem already discussed
on page (370).

Log yield, rainfall, and rainfall squared are detrended and the regression estimated:

1 # Detrend
2 ols l_y const t
3 series e_ly = $uhat
4 ols rain const t
5 series e_rain = $uhat
6 ols sq_rain const t
7 series e_rain2 = $uhat
8 Detrend <- ols e_ly e_rain e_rain2
9 scalar se_e_rain = sqrt(46/44)*$stderr(e_rain)

The detrended regression is

ê ly = 1.14895
(0.28397)

e rain− 0.134388
(0.033850)

e rain2

T = 48 R̄2 = 0.2473 F (1, 46) = 16.442 σ̂ = 0.22753

(standard errors in parentheses)

Notice that the coefficients of rain and rain-squared are identical to those estimated in the deter-
ministic trend model. The standard errors are slightly different due to how canned software counts
degrees of freedom for the calculation of σ̂2. This is easily fixed (see line 9) as this output confirms:

se_rain = 0.29035553

se_e_rain = 0.29035553

12.3 Spurious Regressions

Example 12.3 in POE5

It is possible to estimate a regression and find a statistically significant relationship even if none
exists. In time-series analysis this is actually a common occurrence when data are not stationary.
This example uses two data series, rw1 and rw2, that were generated as independent random walks.

rw1 : yt = yt−1 + v1t

rw2 : xt = xt−1 + v2t
(12.1)
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OLS, using observations 1–700
Dependent variable: rw1

Coefficient Std. Error t-ratio p-value

const 17.8180 0.620478 28.7167 0.0000
rw2 0.842041 0.0206196 40.8368 0.0000

Sum squared resid 51112.33 S.E. of regression 8.557268
R2 0.704943 Adjusted R2 0.704521

Table 12.1: Least squares estimation of a spurious relationship.

The errors are independent standard normal random deviates generated using a pseudo-random
number generator. As you can see, xt and yt are not related in any way. To explore the empirical
relationship between these unrelated series, load the spurious.gdt data and declare the data to be
time series.

1 open "@workdir\data\spurious.gdt"
2 setobs 1 1 --special-time-series

The sample information at the bottom of the main gretl window indicates that the data have
already been declared as time series and that the full range (1-700) is in memory. The first thing
to do is to plot the data using a time-series plot. To place both series in the same time-series
graph, select View>Graph specified vars>Time-series plots from the pull-down menu. This
will reveal the define graph dialog box. Place both series into the right-hand side box and click
OK. The result appears in top part of Figure 12.9 (after editing) below. The XY scatter plot is
obtained similarly, except use View>Graph specified vars>X-Y scatter from the pull-down
menu. Put rw1 on the y axis and rw2 on the x axis.

The linear regression confirms this. Left click on the graph to reveal a pop-up menu, from
which you choose Edit. This brings up the plot controls shown in Figure 4.22. Select the linear
fit option to reveal the regression results in Table 12.1.

The coefficient on rw2 is positive (0.842) and significant (t = 40.84 > 1.96). However, these
variables are not related to one another! The observed relationship is purely spurious. The cause
of the spurious result is the nonstationarity of the two series. This is why you must check your
data for stationarity whenever you use time series in a regression.

Finally, the residuals of the spurious regression are tested for 1st order autocorrelation using
the LM test discussed in Chapter 9. The modtest 1 --autocorr command produces:

Breusch-Godfrey test for first-order autocorrelation
OLS, using observations 1-700
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Dependent variable: uhat

coefficient std. error t-ratio p-value
--------------------------------------------------------
const 0.0657376 0.0968844 0.6785 0.4977
rw2 0.00298902 0.00321967 0.9284 0.3535
uhat_1 0.988357 0.00591374 167.1 0.0000 ***

Unadjusted R-squared = 0.975654

Test statistic: LMF = 27932.065123,
with p-value = P(F(1,697) > 27932.1) = 0

Alternative statistic: TRˆ2 = 682.957879,
with p-value = P(Chi-square(1) > 682.958) = 1.52e-150

Ljung-Box Q’ = 685.049,
with p-value = P(Chi-square(1) > 685.049) = 5.33e-151

The LM test statistic is 682.95 and its p-value is well below the 5% threshold. The conclusions
based on visual evidence are confirmed statistically. The errors are autocorrelated.

The hansl script to produce similar plots can be found in section 12.7 below.

12.4 Tests for Stationarity

The (augmented) Dickey-Fuller test can be used to test for the stationarity of data. The test
is based on the following regression model The augmented version of the Dickey-Fuller test adds
a number of lagged differences to the model. For the model with a constant and no deterministic
trend this would be:

∆yt = α+ γyt−1 +

m∑
s=1

as∆yt−s + vt (12.2)

To perform the test, a few decisions have to be made regarding the time series. The decisions
are usually made based on visual inspection of the time-series plots. Plots are used to identify any
deterministic trends in the series. If the trend in the series is quadratic then the differenced version
of the series will have a linear trend in them.

In Figure 12.3 you can see that the fed funds rate appears to be trending downward and its
difference appears to wander around a constant. Ditto for bonds. This suggests that the Augmented
Dickey Fuller test regressions for each of the series should contain a constant, but not a time trend.

The GDP series (red) Figure 12.2 may be slightly quadratic in time, although the financial crisis
in 2007 may have broken the trend. The differenced version of the series that appears below it has
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a slight upward drift through 2006 and hence I would try an augmented Dickey-Fuller (ADF) test
that includes a constant and a time trend. The time coefficient can be tested for significance and
dropped if desired.

As you may have guessed, analyzing time series in this way is a bit like reading entrails and
there is an art to it. Our goal is to reduce some of the uncertainty using formal tests whenever we
can, but realize that choosing the appropriate test specification requires some judgement by the
econometrician.

The number of lagged terms to include in the ADF regressions must also be determined. There
are a number of ways to do this. In principle, the residuals from the ADF regression should
be void of any autocorrelation. Include just enough lags of ∆yt−s to ensure that the residuals are
uncorrelated. The number of lagged terms can also be determined by examining the autocorrelation
function (ACF) of the residuals, or the significance of the estimated lag coefficients. The latter
is what gretl does when the --test-down=tstat option is used. Others use a model selection
rule for lag selection, as done in POE5. Gretl also reports the outcome of an autocorrelation test
whenever the built-in ADF routines are used.

The null hypothesis of the ADF test is that the time series has a unit root and is not stationary.
If you reject this hypothesis, then you conclude that the series is stationary. To not reject the null
means that the level is not stationary.

One more thing should be said about the ADF test results. Gretl expresses the model in a
slightly different way than POE5. The model is

(1− L)yt = β0 + (α− 1)yt−1 + α1∆yt−1 + et (12.3)

The coefficient β0 is included because the series may have a trend, (α− 1) = γ is the coefficient of
interest in the Dickey-Fuller regression, and α1 is the parameter for the term that ‘augments’ the
Dickey-Fuller regression. It is included to eliminate autocorrelation in the model’s errors, et, and
more lags can be included if needed to accomplish this. The notation on the left side of the equation
(1−L)yt makes use of the lag operator, L. The lag operator performs the magic Lyt = yt−1. Thus,
(1− L)yt = yt − Lyt = yt − yt−1 = ∆yt.

Conducting ADF tests in gretl is very simple. The adf command is quite thorough in its
options. The syntax for the command is:

adf

Arguments: order varlist
Options: --nc (test without a constant)

--c (with constant only)
--ct (with constant and trend)
--ctt (with constant, trend and trend squared)
--seasonals (include seasonal dummy variables)
--gls (de-mean or de-trend using GLS)
--verbose (print regression results)
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--quiet (suppress printing of results)
--difference (use first difference of variable)
--test-down[=criterion] (automatic lag order)
--perron-qu (see below)

Examples: adf 0 y
adf 2 y --nc --c --ct
adf 12 y --c --test-down
See also jgm-1996.inp

The first argument is the number of augmented differences to include in the ADF regression. This is
followed by a list (note more than one variable can be tested if put into a list.) Options allow choices
of models with constant, constant and trend and other deterministic models. The --difference
option will perform the test on differenced series. The --test-down option is useful in selecting
a suitable number of lagged differences to include in the model. When using the --test-down
the specified order of adf serves as the maximum lag to consider. See section 13.1.2 for a short
discussion of this approach.

When testing down, gretl will select the lag length that minimizes the AIC criterion. The
--test-down=tstat option follows the following algorithm.

1. Estimate the ADF regression with the given maximum lags, km, of the dependent variable
included as regressors.

2. Gretl checks to see if the last lag significantly different from zero at the 10% level. If it is,
perform the ADF test with lag order km. If the coefficient on the last lag is not significant,
reduce the lag number by one, km−1 = km − 1 and repeat.

3. if k1 is insignificant, execute the test with lag order 0.

You could also use model selection rules as we have done in the example by using the qualifiers
--test-down=AIC or --test-down=BIC. Gretl also includes an estimate of the autocorrelation
coefficient in the output. Thus, it serves as a final check of the adequacy of the ADF regression.

Example 12.4 in POE5

In the example from POE5, the federal funds rate (ffr) and the 3-year bond rate (br) are
considered. The series plots show that the data wander about, indicating that they may be non-
stationary. To perform the Dickey-Fuller tests, first decide whether to use a constant and/or a
deterministic trend. Since the levels of the series fluctuate around a nonzero mean and the differ-
ences around zero, we include a constant. Then decide on how many lagged difference terms to
include on the right-hand side of the equation.

The script to perform the ADF test is:
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1 open "@workdir\data\usdata5.gdt" --preserve
2 diff br infn ffr # take differences
3 list levels = ffr br
4

5 adf 19 levels --c --test-down=BIC
6 adf 2 levels --c --verbose

In line 5 the lag lengths for both series are found by testing down from a maximum of 19 lags using
the BIC criterion. A constant is included in the regression.

The test results are quite informative. For the fed funds rate thirteen lagged values were selected
(from a maximum of 19) to include in the model.1 It reveals that the first set of statistics is for a
test based on a regression with a constant. It provides you with the t-ratio for the ADF test and
it’s approximate p-value. It also reports a calculation of first-order residual autocorrelation, which
should be small if you have chosen the correct number of lags in the ADF regression.

As mentioned in POE5, 13 lags is a awful lot for data of this frequency. For the bond rate, only
2 lags were selected.

Augmented Dickey-Fuller test for ffr
testing down from 19 lags, criterion BIC
sample size 735
unit-root null hypothesis: a = 1

test with constant
including 13 lags of (1-L)ffr
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0117889
test statistic: tau_c(1) = -2.46008
asymptotic p-value 0.1255
1st-order autocorrelation coeff. for e: -0.004
lagged differences: F(13, 720) = 19.453 [0.0000]

Augmented Dickey-Fuller test for br
testing down from 19 lags, criterion BIC
sample size 746
unit-root null hypothesis: a = 1

test with constant
including 2 lags of (1-L)br
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.00635098
test statistic: tau_c(1) = -1.69527
asymptotic p-value 0.4337

1Schwert (1989) proposed that for N > 100 the maximum lag be set to kmax = int[12(T + 1)/100]0.25. If your
sample is smaller then use kmax = int[4(T + 1)/100]0.25.
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1st-order autocorrelation coeff. for e: 0.010
lagged differences: F(2, 742) = 74.518 [0.0000]

Here, the test statistic for the stationarity of the fed funds rate is −2.460 which has a p-value
of 0.1255. Nonstationarity of the fed funds rate can not be rejected in this case at the usual 5 or
10% levels of significance.

For the bond rate, the nonstationary null cannot be rejected either. The t-ratio is -1.695 and
has a p-value of .4337.

To replicate the results in POE5, we limit the lags to 2 and repeat the exercise, this time with
the --verbose option to show the regression results. This confirms that the tau_c(1) statistic
reported in the test result is the same as the t-ratio on the lagged level of the variable being tested.
Since testing down led to the ADF(2) model, I only show the result for the fed funds rate.

Augmented Dickey-Fuller test for ffr
including 2 lags of (1-L)ffr
sample size 746
unit-root null hypothesis: a = 1

test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0117728
test statistic: tau_c(1) = -2.47497
asymptotic p-value 0.1216
1st-order autocorrelation coeff. for e: -0.003
lagged differences: F(2, 742) = 75.854 [0.0000]

Augmented Dickey-Fuller regression
OLS, using observations 1954:11-2016:12 (T = 746)
Dependent variable: d_ffr

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 0.0580131 0.0290229 1.999 0.0460 **
ffr_1 0.0117728 0.00475674 2.475 0.1216
d_ffr_1 0.444301 0.0361201 12.30 8.87e-032 ***
d_ffr_2 0.147091 0.0363172 4.050 5.66e-05 ***

AIC: 976.543 BIC: 995.002 HQC: 983.658

You can see that the t-ratio is −2.475 and equal to tau_c(1) in the test result. The p-value is
.12 and hence nonstationarity of ffr cannot be rejected at 5%.
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Using the GUI

The GUI can be used as well. To perform the ADF test on the fed funds rate, use the cursor
to highlight the series and click Variable>Unit root tests>Augmented Dickey-Fuller test
from the pull-down menu to open the adf dialog box shown in Figure 12.10. Select the maximum
lag to consider (if testing down) or set the desired number of augmented terms to include in the
regression. Choose whether to include a constant, trend, trend-squared, seasonal indicators, etc.

We have chosen to start with a maximum lag of 19 and to allow gretl to test-down to the
number of lags required. In testing down, one has a choice of criterion to use. In POE5 the authors
use SC, which is equivalent to the BIC in gretl.

Also, chose to suppress the regression results by unchecking show regression results box. To
make the results a bit more transparent it is often a good idea to check the regression results that
generate the test statistics. Finally, At the bottom of the dialog you one choose whether to use
the level or the difference of the variable in the regressions. Choosing level as shown in the box,
puts the difference on the left-hand side of the regression. This can be a bit confusing, but in
reality it should not be. Remember, you are testing to see whether the levels values of the series
are stationary. Choosing this box is telling gretl that you want to test the nonstationarity of the
series in its levels.

Augmented Dickey-Fuller test for ffr
testing down from 18 lags, criterion BIC
sample size 735
unit-root null hypothesis: a = 1

test with constant
including 13 lags of (1-L)ffr
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0117889
test statistic: tau_c(1) = -2.46008
asymptotic p-value 0.1255
1st-order autocorrelation coeff. for e: -0.004
lagged differences: F(13, 720) = 19.453 [0.0000]

Testing down selected 13 lags, the value of τ = −2.46 and it’s asymptotic p-value is .125.

12.4.1 Other Tests for Nonstationarity

There are other tests for nonstationarity in gretl that you may find useful. The first is the
DF-GLS test. It performs the modified Dickey-Fuller t-test (known as the DF-GLS test) proposed
by Elliott et al. (1996). Essentially, the test is an augmented Dickey-Fuller test, similar to the test
performed by gretl’s adf command, except that the time series is transformed via a generalized
least squares (GLS) regression before estimating the model. Elliott et al. (1996) and others have
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shown that this test has significantly greater power than the previous versions of the augmented
Dickey-Fuller test. Consequently, it is not unusual for this test to reject the null of nonstationarity
when the usual augmented Dickey-Fuller test does not.

The --gls option performs the DF-GLS test for a series of models that include 1 to k lags
of the first differenced, detrended variable. The lag k can be set by the user or by the method
described in Schwert (1989). As discussed above and in POE5, the augmented Dickey-Fuller test
involves fitting a regression of the form

∆yt = α+ βyt−1 + δt+ ζ1∆yt−1 + ...+ ζk∆yt−k + ut (12.4)

and then testing the null hypothesis H0: β = 0. The DF-GLS test is performed analogously but
on GLS-demeaned or GLS-detrended data. The null hypothesis of the test is that the series is a
random walk, possibly with drift. There are two possible alternative hypotheses: yt is stationary
about a linear time trend or stationary with a possibly nonzero mean but with no linear time trend.
Thus, you can use the --c or --ct options.

The adf command is used with the --gls option:

1 adf 2 levels --c --gls

For the levels of the fed funds rate:

Augmented Dickey-Fuller (GLS) test for ffr
including 2 lags of (1-L)ffr
sample size 746
unit-root null hypothesis: a = 1

test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.00603286
test statistic: tau = -1.77353
asymptotic p-value 0.07239
1st-order autocorrelation coeff. for e: -0.003
lagged differences: F(2, 743) = 75.202 [0.0000]

The test statistic is −1.7735 and has a p-value of .0723, which is in the 10% rejection region for
the test. At 10%, the series is stationary.

For the levels of the bond rate:

Augmented Dickey-Fuller (GLS) test for br
including 2 lags of (1-L)br
sample size 746
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unit-root null hypothesis: a = 1

test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.00267845
test statistic: tau = -1.10861
asymptotic p-value 0.2435
1st-order autocorrelation coeff. for e: 0.010
lagged differences: F(2, 743) = 74.387 [0.0000]

The test statistic is −1.10861, which is not in the 10% rejection region for the test. The series is
nonstationary.

Gretl also can perform the KPSS test proposed by Kwiatkowski et al. (1992). The kpss
command computes the KPSS test for each of the specified variables (or their first difference, if
the --difference option is selected). The null hypothesis is that the variable in question is
stationary, either around a level or, if the --trend option is given, around a deterministic linear
trend.

The statistic (Cottrell and Lucchetti, 2018, p. 241) itself is very simple

η =

∑T
i=1 S

2
t

T 2σ̃2
(12.5)

where St =
∑t

s=1 es and σ̃2 is an estimate of the long-run variance of et = (yt − ȳ). The long run
variance is estimated using a bandwidth parameter, m, that the user chooses.

σ̃2 =
m∑

i=−m

(
1− |i|

(m+ 1)

)
γ̂i (12.6)

and where γ̂i is an empirical autocovariance of et from order −m to m.

The command calls for the a bandwidth parameter, m (see section 9.9.3 for a brief discussion).
For this estimator to be consistent, m must be large enough to accommodate the short-run persis-
tence of et, but not too large compared to the sample size T . If you supply a negative number for
the bandwidth, gretl will compute an automatic bandwidth of 4(T/100)1/4.

1 kpss -1 levels

The KPSS statistics using automatic bandwidth selection results in:

T = 749
Lag truncation parameter = 6
Test statistic = 2.48632
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10% 5% 1%
Critical values: 0.348 0.462 0.743
P-value < .01

KPSS test for br

T = 749
Lag truncation parameter = 6
Test statistic = 2.85568

10% 5% 1%
Critical values: 0.348 0.462 0.743
P-value < .01

Both are significantly different from zero and the stationary null hypothesis is rejected at any
reasonable level of significance. Also note that the bandwidth was chosen to be 6.

Example 12.5 in POE5

Is GDP trend stationary? The data are from gdp5.gdt and we explore whether log-GDP is
stationary around a linear trend.

1 open "@workdir\data\gdp5.gdt"
2 adf 5 gdp --ct --test-down --verbose

We test down from a maximum of 5 lags and print the regression results using the --verbose
option to facilitate comparison with POE5.

The test results:

Augmented Dickey-Fuller test for gdp
testing down from 5 lags, criterion AIC
sample size 129
unit-root null hypothesis: a = 1

with constant and trend
including 2 lags of (1-L)gdp
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0330036
test statistic: tau_ct(1) = -1.99928
asymptotic p-value 0.6012
1st-order autocorrelation coeff. for e: -0.002
lagged differences: F(2, 124) = 13.639 [0.0000]
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The model selection rule chose 2 lags (same as POE5 ) and the test statistic for the ADF test is
−1.999. Its p-value is 0.6 and nonstationarity around the trend is not rejected at 5%.

The regression results:

Augmented Dickey-Fuller regression
OLS, using observations 1984:4-2016:4 (T = 129)
Dependent variable: d_gdp

coefficient std. error t-ratio p-value
-------------------------------------------------------
const 0.266100 0.114246 2.329 0.0215 **
gdp_1 0.0330036 0.0165078 1.999 0.6012
d_gdp_1 0.311502 0.0871190 3.576 0.0005 ***
d_gdp_2 0.201903 0.0883952 2.284 0.0241 **
time 0.00248604 0.00126186 1.970 0.0511 *

AIC: -328.068 BIC: -313.769 HQC: -322.258

Example 12.6 in POE5

Is wheat yield trend stationary? The data are from toody.gdt and we explore whether log-yield
is stationary around a linear trend.

1 open "@workdir\data\toody5.gdt"
2 logs y
3 adf 5 l_y --ct --test-down --verbose

The test results (with regression output suppressed) are:

1 Augmented Dickey-Fuller test for l_y
2 testing down from 5 lags, criterion AIC
3 sample size 47
4 unit-root null hypothesis: a = 1
5

6 with constant and trend
7 including 0 lags of (1-L)l_y
8 model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
9 estimated value of (a - 1): -0.745285

10 test statistic: tau_ct(1) = -5.23971
11 p-value 0.0004713
12 1st-order autocorrelation coeff. for e: -0.051
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The model selection rule chose 0 lags (same as POE5 ) and the test statistic for the ADF test
is −1.5297. Its p-value is 0.00047 < .05 and nonstationarity around the trend is rejected at 5%.
Notice that even with no lagged differences included in the model, the residual autocorrelation is
very small (−0.051).

12.5 Integration and Cointegration

Two nonstationary series are cointegrated if they tend to move together through time. For
instance, we have established that the levels of the fed funds rate and the 3-year bond are non-
stationary. In the next example we examine the stationarity of their differences using the ADF
test.

Example 12.7 in POE5

In example 12.4 we concluded that the two interest rate series ffr and br were nonstationary in
levels. In this example, we consider whether taking the series differences leads to stationarity.

The script is

1 open "@workdir\data\usdata5.gdt"
2 list levels = ffr br
3 adf 5 levels --c --test-down=BIC --difference --verbose

Notice that the --difference option is added. The results for the fed funds rate are:

test statistic: tau_c(1) = -17.7491
asymptotic p-value 1.237e-042
1st-order autocorrelation coeff. for e: -0.004

Augmented Dickey-Fuller regression
OLS, using observations 1954:11-2016:12 (T = 746)
Dependent variable: d_d_ffr

coefficient std. error t-ratio p-value
-------------------------------------------------------------
const 0.000202807 0.0170601 0.01189 0.9905
d_ffr_1 0.714831 0.0402742 17.75 1.24e-042 ***
d_d_ffr_1 0.156785 0.0362296 4.328 1.71e-05 ***

and for the 3-year bond:
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test statistic: tau_c(1) = -19.8239
asymptotic p-value 4.526e-047
1st-order autocorrelation coeff. for e: 0.009

Augmented Dickey-Fuller regression
OLS, using observations 1954:11-2016:12 (T = 746)
Dependent variable: d_d_br

coefficient std. error t-ratio p-value
------------------------------------------------------------
const 0.000249556 0.0117418 0.02125 0.9830
d_br_1 0.810547 0.0408873 19.82 4.53e-047 ***
d_d_br_1 0.234677 0.0356773 6.578 9.01e-011 ***

One lag was selected for both differenced series and both adf statistics are signigicant at 5%. The
differences appear to be stationary.

In the opaque language used in time-series literature, each series is said to be “integrated
of order 1” or I(1). If the two nonstationary series move together through time then we say
they are “cointegrated.” Economic theory would suggest that they should be tied together via
arbitrage, but that is no guarantee. In this context, testing for cointegration amounts to a test of
the substitutability of these assets.

The basic test is very simple. Regress one I(1) variable on another using least squares. If the
series are cointegrated, the residuals from this regression will be stationary. This is verified using
augmented Dickey-Fuller test, with a new set of critical values that take into account that the
series of residuals used in the test is estimated from data. Engle and Granger used simulations to
determine the correct critical values for the test and the test is named for them.

The null hypothesis is that the residuals are nonstationary, which implies that the series are
not cointegrated. Rejection of this leads to the conclusion that the series are cointegrated. The
coint function in gretl carries out each of the three steps in this test. First, it carries out a
Dickey-Fuller test of the null hypothesis that each of the variables listed has a unit root. Then it
estimates the cointegrating regression using least squares. Finally, it runs a Dickey Fuller test on
the residuals from the cointegrating regression. This procedure, referred to as the Engle-Granger
(EG) cointegration test and discussed in Chapter 12 of Hill et al. (2018), is the one done in gretl
by default. Gretl can also perform cointegration tests based on maximum likelihood estimation of
the cointegrating relationships proposed by Johansen and summarized in Hamilton (1994, chapter
20). The Johansen tests use the coint2 command, which is explained in gretl’s documentation
(Cottrell and Lucchetti, 2018, chapter 30).

Figure 12.11 shows the dialog box used to test cointegration in this way. To obtain it use
Model>Time series>Cointegration test>Engle-Granger from the main gretl window. In
the dialog box indicate how many lags are wanted in the initial Dickey-Fuller regressions on each of
the variables, which variables you want to include in the cointegrating relationship, and whether a
constant, trend, or quadratic trend is required in the regressions. Testing down from the maximum
lag order is chosen via a check-box. To select these additional modeling options click on the down
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arrow button indicated in Figure 12.11. This reveals the four choices:

The default, a model that contains a constant, is chosen. For the 3-year bond rate and the fed
funds rate series we get the result shown in Figure 12.12.

Since the --skip-df option is used, there are only two steps shown in the output. The first
is the outcome of the cointegrating regression. It is just a linear regression of ffr onto a constant
and br. The residuals are automatically generated and passed to step 2 that performs the EG test.
The model selection occurs because the --test-down option is used, which picks a model with
3 lags. The test statistic and its p-value are circled at the bottom. The statistic is −4.32 and it
is significant at the 5% level. The unit root null hypothesis is rejected and we conclude that the
series are cointegrated.

The syntax and options available for the Engle-Granger test are summarized:

coint

Arguments: order depvar indepvars
Options: --nc (do not include a constant)

--ct (include constant and trend)
--ctt (include constant and quadratic trend)
--skip-df (no DF tests on individual variables)
--test-down[=criterion] (automatic lag order)
--verbose (print extra details of regressions)
--silent (don’t print anything)

Examples:coint 4 y x1 x2
coint 0 y x1 x2 --ct --skip-df

If the specified lag order is positive all the Dickey-Fuller tests use that order, with this qualification:
if the --test-down option is used, the given value is taken as the maximum and the actual lag
order used in each case is obtained by testing down. This works just as it did with the adf
command. By default a series of t-tests on the last lag is used until the last one becomes significant
at 10% level.

The syntax for Engle-Granger tests from a script from the console follows

coint 2 br ffr --skip-df
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I chose to skip the Dickey-Fuller tests for stationarity of ffr and br since these have already been
done and discussed above.

The cointegrating regression is:

Cointegrating regression -
OLS, using observations 1954:08-2016:12 (T = 749)
Dependent variable: br

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 1.32769 0.0592746 22.40 2.08e-085 ***
ffr 0.832029 0.00970676 85.72 0.0000 ***

The Engle-Granger test results, which looks very similar to the ADF output, are:

Step 2: testing for a unit root in uhat

Augmented Dickey-Fuller test for uhat
including 2 lags of (1-L)uhat
sample size 746
unit-root null hypothesis: a = 1

model: (1-L)y = (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0817175
test statistic: tau_c(2) = -5.52613
asymptotic p-value 1.254e-005
1st-order autocorrelation coeff. for e: 0.004
lagged differences: F(2, 743) = 28.801 [0.0000]

The key difference is in how the p-value for the τ statistic is computed. The values are based on
the distribution of the Engle-Granger τ rather than that of the ADF.

The asymptotic p-value is very small and easily less than conventional a 5% threshold. This
suggests that the two series are indeed cointegrated.

12.6 Error Correction

Cointegration is a relationship between two nonstationary, I(1), variables. These variables share
a common trend and tend to move together in the long-run. In this section, a dynamic relationship
between I(0) variables that embeds a cointegrating relationship known as the short-run error
correction model is examined.
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Start with an ARDL(1,1)

yt = δ + θ1yt−1 + δ0xt + δ1xt−1 + vt (12.7)

after some manipulation (see POE5 for details)

∆yt = −(1− θ1)(yt−1 − β1 − β2xt−1) + δ0∆xt + vt (12.8)

The term in the second set of parentheses is a cointegrating relationship where the levels of y and x
are linearly related. Let α = (1−θ1) and the equation’s parameters can be estimated by nonlinear
least squares. It is an empirical matter as to how many lags of ∆xt and ∆yt to add as regressors.
In example 12.9 of POE5 the authors add two lags of ∆brt and four lags of ∆ffrt to the model.
Again, enough lags should be added to remove autocorrelation in the estimated residuals.

Example 12.9 in POE5

The error correction model to be estimated is:

∆brt = −α(brt−1 − β1 − β2ffrt−1) + γ1∆brt−1 + γ2∆brt−2

+ δ0∆ffrt + δ1∆ffrt−1 + δ2∆ffrt−2 + δ3∆ffrt−3 + δ4∆ffrt−4 + et

Nonlinear least squares requires starting values. The cointegrating regression is used to initialize
β1 and β2. Residuals are obtained and lagged to include in a linear regression to initialize the other
parameters. The error correction parameter is initialized at zero. The initialization is thus:

1 open "@workdir\data\usdata5.gdt"
2 diff br ffr
3 ols br const ffr
4 series res = $uhat
5

6 ols d_br res(-1) d_br(-1 to -2) d_ffr(0 to -4)
7 scalar g1 = $coeff(d_br_1)
8 scalar g2 = $coeff(d_br_2)
9 scalar d0 = $coeff(d_ffr)

10 scalar d1 = $coeff(d_ffr_1)
11 scalar d2 = $coeff(d_ffr_2)
12 scalar d3 = $coeff(d_ffr_3)
13 scalar d4 = $coeff(d_ffr_4)
14

15 ols br const ffr
16 scalar b1 = $coeff(const)
17 scalar b2 = $coeff(ffr)
18 scalar a = 0

Once stating values are obtained, a nls block is constructed to estimate the model above.

433



1 nls d_br=-a*(br(-1)-b1-b2*ffr(-1))+ g1*d_br(-1) + g2*d_br(-2) + \
2 d0*d_ffr + d1*d_ffr(-1) + d2*d_ffr(-2) + d3*d_ffr(-3) + \
3 d4*d_ffr(-4)
4 params a b1 b2 g1 g2 d0 d1 d2 d3 d4
5 end nls

Estimation yields:

Using numerical derivatives
Tolerance = 1.81899e-012
Convergence achieved after 34 iterations

Model 6: NLS, using observations 1955:01-2016:12 (T = 744)
d_br = -a*(br(-1)-b1-b2*ffr(-1))+ g1*d_br(-1) + g2*d_br(-2)
+ d0*d_ffr+d1*d_ffr(-1) + d2*d_ffr(-2) + d3*d_ffr(-3) + d4*d_ffr(-4)

estimate std. error t-ratio p-value
--------------------------------------------------------

a 0.0463811 0.0118836 3.903 0.0001 ***
b1 1.32333 0.385968 3.429 0.0006 ***
b2 0.832977 0.0634870 13.12 1.76e-035 ***
g1 0.272365 0.0374505 7.273 9.06e-013 ***
g2 -0.242108 0.0378320 -6.400 2.78e-010 ***
d0 0.341783 0.0240428 14.22 1.09e-040 ***
d1 -0.105320 0.0275191 -3.827 0.0001 ***
d2 0.0990586 0.0273312 3.624 0.0003 ***
d3 -0.0659749 0.0244972 -2.693 0.0072 ***
d4 0.0560408 0.0228173 2.456 0.0143 **

Mean dependent var -0.000430 S.D. dependent var 0.351277
Sum squared resid 58.72060 S.E. of regression 0.282844
R-squared 0.359525 Adjusted R-squared 0.351672
Log-likelihood -111.0891 Akaike criterion 242.1783
Schwarz criterion 288.2987 Hannan-Quinn 259.9561

GNR: R-squared = 0, max |t| = 7.54859e-008
Convergence seems to be reasonably complete

These match the results in POE5. The cointegration parameter estimates are very close to the ones
obtained by a simple regression of br onto ffr and a constant.

Finally, the estimated cointegration parameters β1 and β2 are used to compute residuals and
these are tested for stationarity (a.k.a. Engle-Granger). The coint command cannot be used
since it will not use the nonlinear least squares residuals for its computations. Instead, the adf
command is pressed into service and the test statistic has to be compared to the proper critical
value from Table 12.4 in POE5.
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The script to compute θ̂1 and the Engle-Granger statistic is:

1 scalar theta1 = 1-$coeff(a)
2 series ehat = br-$coeff(b1)-$coeff(b2)*ffr
3 adf 2 ehat --nc --verbose

Notice that the --nc constant switch is applied in order to suppress the constant in the adf
regression. The regression results are:

Augmented Dickey-Fuller regression
OLS, using observations 1954:11-2016:12 (T = 746)
Dependent variable: d_ehat

coefficient std. error t-ratio p-value
---------------------------------------------------------
ehat_1 0.0818818 0.0147997 5.533 5.34e-08 ***
d_ehat_1 0.223567 0.0355366 6.291 5.38e-010 ***
d_ehat_2 0.176794 0.0360954 4.898 1.19e-06 ***

The t-ratio on the lagged residual is -5.33. From Table 12.4 in POE5 the 5% critical value is
−3.37. Note, the cointegrating relationship contains an intercept. This determines which set of
critical values to use from Table 12.4. The conclusion is that the bond rate and fed funds rate are
cointegrated.

Example 12.10

When two series are difference stationary (e.g., I(1)) but not cointegrated, then estimating the
differenced equations separately is a useful strategy. In the next chapter, I consider how to estimate
these as a system using vector autoregression.

Example 12.10 examines the stationarity of consumption and income using the cons inc.gdt
data used first in Example 9.16. These quarterly data begin in 1959:3.

1 open "@workdir\data\cons_inc.gdt"
2 diff cons y

The consumption and income series are plotted to identify trends.

1 g6 <- scatters cons y --with-lines
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After some minor editing the plots are seen in Figure 12.13: Both series are trending upward. So,
a trend will be included in the ADF regression, which begins with observations in 1985:1 and is
indicated by the vertical line in the plots.

3 smpl 1985:1 2016:3
4 list vars = cons y
5 adf 1 vars --ct --verbose

The results are:

Augmented Dickey-Fuller test for cons
including one lag of (1-L)cons
sample size 127
unit-root null hypothesis: a = 1

with constant and trend
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0192737
test statistic: tau_ct(1) = -1.70241
asymptotic p-value 0.7505
1st-order autocorrelation coeff. for e: -0.024

Augmented Dickey-Fuller regression
OLS, using observations 1985:1-2016:3 (T = 127)
Dependent variable: d_cons

coefficient std. error t-ratio p-value
----------------------------------------------------------
const -1041.92 748.189 -1.393 0.1663
cons_1 -0.0192737 0.0113214 -1.702 0.7505
d_cons_1 0.244088 0.0864560 2.823 0.0055 ***
time 29.4330 14.5330 2.025 0.0450 **

Augmented Dickey-Fuller test for y
including one lag of (1-L)y
sample size 127
unit-root null hypothesis: a = 1

with constant and trend
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0409207
test statistic: tau_ct(1) = -2.14283
asymptotic p-value 0.5212
1st-order autocorrelation coeff. for e: -0.020

Augmented Dickey-Fuller regression
OLS, using observations 1985:1-2016:3 (T = 127)
Dependent variable: d_y
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coefficient std. error t-ratio p-value
-----------------------------------------------------------
const -3199.99 1949.26 -1.642 0.1032
y_1 -0.0409207 0.0190966 -2.143 0.5212
d_y_1 0.248436 0.0859090 2.892 0.0045 ***
time 80.0444 35.3259 2.266 0.0252 **

The ADF statistic is −1.70 in the consumption regression and the 5% critical value is 3.41, therefore
we cannot reject nonstationarity for consumption. For income the ADF statistic is 2.143 which is
also not significant. Both series are nonstationary in levels.

To determine whether the differenced series are stationary, repeat the ADF tests using the
--difference option. Recall that differencing a series that includes a constant and a linear
trend converts the trend to a constant.

6 adf 0 vars --verbose --difference

The τ statistics for d_cons and d_y are −8.13995 and −8.6799, respectively. Both are significant
and nonstationarity is rejected at 5%.

Next, check for cointegration using the Engle-Granger test. Include a constant and and a
deterministic linear trend; also suppress the ADF test steps the nonstationarity of the levels has
already been established.

7 coint 1 vars --ct --skip-df

The cointegrating regression is:

Cointegrating regression -
OLS, using observations 1985:1-2016:3 (T = 127)
Dependent variable: cons

coefficient std. error t-ratio p-value
-------------------------------------------------------------
const -19166.5 2311.83 -8.291 1.57e-013 ***
y 0.467725 0.022827 20.49 1.27e-041 ***
time 420.439 42.3988 9.916 2.02e-017 ***

and the test outcome is:
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Augmented Dickey-Fuller test for uhat
including one lag of (1-L)uhat
sample size 125
unit-root null hypothesis: a = 1

model: (1-L)y = (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.121072
test statistic: tau_ct(2) = -2.92971
asymptotic p-value 0.296
1st-order autocorrelation coeff. for e: -0.007

The p-value for the Engle-Granger τ is 0.296 which is not significantly different from zero at 5%.
Therefore, the series do not appear to be cointegrated. This means that the ARDL can be estimated
by least squares using the differenced data. A constant will be included since the levels series show
a trend.

8 m1 <- ols d_cons const d_cons(-1) d_y

̂d cons = 785.8
(127.6)

+ 0.2825
(0.08467)

d cons 1 + 0.05730
(0.02766)

d y

T = 127 R̄2 = 0.1138 F (2, 124) = 9.0906 σ̂ = 810.04

(standard errors in parentheses)

12.7 Script

1 set verbose off
2

3 open "@workdir\data\gdp5.gdt"
4 diff gdp
5 setinfo gdp -d "real US gross domestic product" -n "Real GDP"
6 setinfo d_gdp -d "= first difference of GDP" -n "D.GDP"
7

8 string title = "U.S. GDP and Change in GDP"
9 string xname = "Year"

10 string yname = "GDP $Trillion"
11 string y2name = "Change in Quarterly GDP"
12 list plotmat = gdp d_gdp
13 g1 <- plot plotmat
14 options time-series with-lines
15 printf "set title \"%s\"", title
16 printf "set xlabel \"%s\"", xname
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17 printf "set ylabel \"%s\"", yname
18 printf "set y2label \"%s\"", y2name
19 end plot --output=display
20

21 # summary statistics for subsamples and full sample
22 smpl 1984:2 2000:3
23 summary gdp d_gdp --simple
24 smpl 2000:4 2016:4
25 summary gdp d_gdp --simple
26 smpl full
27

28 GDP <- corrgm gdp 24 --plot=display
29 D_GDP <- corrgm d_gdp 24 --plot=display
30

31 open "@workdir\data\usdata5.gdt"
32 diff br infn ffr # take differences
33

34 # change series attributes
35 setinfo br -d "3-year Bond rate" -n "3-year Bond rate"
36 setinfo d_br -d "Change in the 3-year Bond rate" -n "D.bond rate"
37 setinfo infn -d "annual inflation rate" -n "inflation rate"
38 setinfo d_infn -d "Change in the annual inflation rate" -n "D.inflation"
39 setinfo ffr -d "federal funds rate" -n "Fed Funds Rate"
40 setinfo d_ffr -d "= first difference of f" -n "D.fed funds rate"
41

42 # multiple time series plots
43 g3 <- scatters infn d_infn br d_br ffr d_ffr --output=display
44

45 g4 <- gnuplot d_br --time-series --with-lines
46 # summary statistics for subsamples and full sample
47 list levels = infn ffr br
48 list diffs = d_infn d_ffr d_br
49 smpl 1954:8 1985:10
50 summary levels diffs --simple
51 smpl 1985:11 2016:12
52 summary levels diffs --simple
53 smpl full
54

55 # Example 12.2
56 open "@workdir\data\toody5.gdt"
57 logs y
58 square rain
59

60 Model_1 <- ols l_y const year
61 series l_yhat = $yhat
62 list yield = l_y l_yhat year
63

64 # Graph of series against lags
65 string title = "Wheat Yield"
66 string xname = "Year"
67 string yname = "ln(Yield)"
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68 g3 <- plot yield
69 options --with-lines
70 literal set linetype 1 lc rgb "black" pt 7
71 printf "set title \"%s\"", title
72 printf "set xlabel \"%s\"", xname
73 printf "set ylabel \"%s\"", yname
74 end plot --output=display
75

76 Model_2 <- ols rain const year
77 series l_yhat = $yhat
78 list rainfall = rain l_yhat year
79

80 # Graph of series against lags
81 string title = "Rainfall during growing season 1950-1997"
82 string xname = "Year"
83 string yname = "Rain"
84 g4 <- plot rainfall
85 options --with-lines
86 literal set linetype 1 lc rgb "black" pt 7
87 printf "set title \"%s\"", title
88 printf "set xlabel \"%s\"", xname
89 printf "set ylabel \"%s\"", yname
90 end plot --output=display
91

92 list xvars = const year rain sq_rain
93 Model_3 <- ols l_y xvars
94

95 # Detrend
96 ols l_y const t
97 series e_ly = $uhat
98 ols rain const t
99 series e_rain = $uhat

100 ols sq_rain const t
101 series e_rain2 = $uhat
102

103 Trend <- ols l_y xvars
104 scalar se_rain = $stderr(rain)
105 Detrend <- ols e_ly e_rain e_rain2
106 scalar se_e_rain = sqrt(46/44)*$stderr(e_rain)
107 print se_rain se_e_rain
108

109 # Example 12.3
110 # spurious regression
111 open "@workdir\data\spurious.gdt"
112 setobs 1 1 --special-time-series
113 Spurious <- gnuplot rw1 rw2 --with-lines --time-series
114 ols rw1 rw2 const
115

116 # Graph of series against lags
117 string title = "rw1 vs rw2 (with least sqaures fit)"
118 string xname = "Random Walk 2"
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119 string yname = "Random Walk 1"
120 list plotvars = rw1 rw2
121 Spurious_series <- plot plotvars
122 options --fit=linear
123 literal set linetype 1 lc rgb "black" pt 7
124 printf "set title \"%s\"", title
125 printf "set xlabel \"%s\"", xname
126 printf "set ylabel \"%s\"", yname
127 end plot --output=display
128

129 modtest 1 --autocorr
130

131 # Example 12.4
132 # adf tests
133 open "@workdir\data\usdata5.gdt" --preserve
134 diff br infn ffr # take differences
135 list levels = ffr br
136

137 adf 19 levels --c --test-down=BIC
138 adf 2 levels --c --verbose
139

140 adf 2 levels --c --gls
141 kpss -1 levels
142 scalar mlag = int(12*(($nobs+1)/100)ˆ(0.25))
143 print mlag
144

145 # Example 12.5
146 open "@workdir\data\gdp5.gdt"
147 adf 5 gdp --ct --test-down --verbose
148

149 # Example 12.6
150 open "@workdir\data\toody5.gdt"
151 logs y
152 adf 5 l_y --ct --test-down --verbose
153

154 # Example 12.7
155 open "@workdir\data\usdata5.gdt"
156 list levels = ffr br
157 adf 5 levels --c --test-down=BIC --difference --verbose
158

159 # Example 12.8
160 open "@workdir\data\usdata5.gdt"
161 ols br const ffr
162 series res = $uhat
163 diff res br ffr
164 ols d_res res(-1) d_res(-1 to -2)
165

166 coint 2 br ffr --skip-df
167

168 # Example 12.9
169 open "@workdir\data\usdata5.gdt"
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170 diff br ffr
171 ols br const ffr
172 series res = $uhat
173

174 ols d_br res(-1) d_br(-1 to -2) d_ffr(0 to -4)
175 scalar g1 = $coeff(d_br_1)
176 scalar g2 = $coeff(d_br_2)
177 scalar d0 = $coeff(d_ffr)
178 scalar d1 = $coeff(d_ffr_1)
179 scalar d2 = $coeff(d_ffr_2)
180 scalar d3 = $coeff(d_ffr_3)
181 scalar d4 = $coeff(d_ffr_4)
182

183 ols br const ffr
184 scalar b1 = $coeff(const)
185 scalar b2 = $coeff(ffr)
186 scalar a = 0
187 nls d_br=-a*(br(-1)-b1-b2*ffr(-1))+ g1*d_br(-1) + g2*d_br(-2)\
188 + d0*d_ffr+d1*d_ffr(-1) + \
189 d2*d_ffr(-2) + d3*d_ffr(-3) + d4*d_ffr(-4)
190 params a b1 b2 g1 g2 d0 d1 d2 d3 d4
191 end nls
192 scalar theta1 = 1-$coeff(a)
193 series ehat = br-$coeff(b1)-$coeff(b2)*ffr
194 adf 2 ehat --nc --verbose
195

196 # Example 12.10
197 open "@workdir\data\cons_inc.gdt"
198 diff cons y
199 g6 <- scatters cons y --with-lines
200

201 smpl 1985:1 2016:3
202 list vars = cons y
203 adf 1 vars --ct --verbose
204

205 adf 0 vars --verbose --difference
206 coint 1 vars --ct --skip-df
207 m1 <- ols d_cons const d_cons(-1) d_y
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Figure 12.9: The two independent random walk series appear to be related. The top graph is a
simple time-series plot and the bottom is an XY scatter with least squares fit.
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Figure 12.10: ADF test dialog box

Figure 12.11: The dialog box for the cointegration test.
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Figure 12.12: The results from the Engle-Granger test. The output from the Dickey-Fuller regres-
sions is suppressed using the the --skip-df option.
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Chapter 13

Vector Error Correction and Vector
Autoregressive Models

The vector autoregression model is a general framework used to describe the dynamic interre-
lationship between stationary variables. So, the first step in your analysis should be to determine
whether the levels of the data are stationary. If not, take the first differences of your data and try
again. Usually, if the levels (or log-levels) of your time series are not stationary, the first differences
will be.

If the time series are not stationary then the VAR framework needs to be modified to allow
consistent estimation of the relationships among the series. The vector error correction model
(VECM) is just a special case of the VAR for variables that are stationary in their differences (i.e.,
I(1)). The VECM can also take into account any cointegrating relationships among the variables.

13.1 Vector Error Correction and VAR Models

Consider two time-series variables, yt and xt. Generalizing the discussion about dynamic rela-
tionships in Chapter 9 to these two interrelated variables yield a system of equations:

yt =β10 + β11yt−1 + β12xt−1 + vyt (13.1)

xt =β20 + β21yt−1 + β22xt−1 + vxt (13.2)

The equations describe a system in which each variable is a function of its own lag, and the lag
of the other variable in the system. Together the equations constitute a system known as a vector
autoregression (VAR). In this example, since the maximum lag is of order one, we have a VAR(1).

If y and x are stationary, the system can be estimated using least squares applied to each
equation. If y and x are not stationary in their levels, but stationary in differences (i.e., I(1)), then
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take the differences and estimate:

∆yt =β11∆yt−1 + β12∆xt−1 + v∆y
t (13.3)

∆xt =β21∆yt−1 + β22∆xt−1 + v∆x
t (13.4)

using least squares. If y and x are I(1) and cointegrated, then the system of equations can be modi-
fied to allow for the cointegrating relationship between the variables. Introducing the cointegrating
relationship leads to a model known as the vector error correction (VEC) model.

In this example from POE5, we have macroeconomic data on real GDP for a large and a small
economy; usa is real quarterly GDP for the United States and aus is the corresponding series for
Australia. The data are found in the gdp.gdt dataset and have already been scaled so that both
economies have real GDP of 100 in the year 2000. A vector error correction model is used because
(1) the time series are not stationary in their levels but are in their differences and (2) the variables
are cointegrated.

The authors of POE5 don’t discuss how they determined the series were nonstationary in levels,
but stationary in differences. This is an important step and I will take some time here to explain
how one approaches this. There are several ways to do it in gretl.

13.1.1 Series Plots–Constant and Trends

Our initial impressions of the data are gained from looking at plots of the two series. The data
plots are obtained in the usual way after importing the dataset. The data on U.S. and Australian
GDP are found in the gdp.gdt file and were collected from 1970:1 - 2000:4.1 Open the data and
set the data structure to quarterly time series using the setobs 4 command, start the series at
1970:1, and use the --time-series option.

open "@workdir\data\gdp.gdt"
setobs 4 1970:1 --time-series

One purpose of the plots is to help determine whether the Dickey-Fuller regressions should contain
constants, trends or squared trends. The simplest way to do this is from a script or the console
using the scatters command.

3 g1 <- scatters usa diff(usa) aus diff(aus) --output=display

The scatters command produces multiple graphs, each containing one of the listed series. The
diff() function is used to take the differences of usa and aus, which appear in the graphs
featured in Figure 13.1 below.

1POE5 refers to these variables as U and A, respectively.
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Figure 13.1: The levels of Australian and U.S. GDP appear to be nonstationary and cointegrated.
The difference plots have a nonzero mean, indicating a constant in their ADF regressions.

This takes two steps from the pull-down menu. First, use the mouse to highlight the two series
and create the differences using Add>First differences of selected variables. Then, select
View>Multiple graphs>Time series. Add the variables to the selected list box to produce
Figure 13.1.

From the time-series plots it appears that the levels are mildly parabolic in time. The differences
have a small upward trend. This means that the augmented Dickey-Fuller (ADF) regressions may
require these elements.

13.1.2 Selecting Lag Length

The second consideration is the specification of lags for the ADF regressions. There are several
ways to select lags and gretl automates some of these. The basic concept is to include enough lags
in the ADF regressions to make the residuals white noise. These will be discussed presently.
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Testing Down

The first strategy is to include just enough lags so that the last one is statistically significant.
Gretl automates this using the --test-down=ttest option for the augmented Dickey-Fuller
regressions which was used in section 12.4. Start the ADF regressions with a generous number of
lags and gretl automatically reduces that number until the t-ratio on the longest remaining lag
is significant at the 10 percent level. For the levels series we choose the maximum number using
Schwert’s method as discussed in Chapter 12. The model includes a constant, trend, and trend
squared (--ctt option), and uses the --test-down option. When the ttest method is used the
USA series contains a very long significant lag twelve periods into the past. This seems unlikely to
be true, so we opt to test down using the more parsimonious BIC criterion in this example.

1 scalar mlag = int(12*(($nobs+1)/100)ˆ(0.25))
2 adf mlag usa --ctt --test-down=BIC --verbose
3 adf mlag aus --ctt --test-down=BIC --verbose

Using this criterion, the USA series contains only two lags and the Australian series has none.

Augmented Dickey-Fuller test for usa
testing down from 12 lags, criterion BIC
sample size 121
unit-root null hypothesis: a = 1

with constant, linear and quadratic trend
including 2 lags of (1-L)usa
model: (1-L)y = b0 + b1*t + b2*tˆ2 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0916804
test statistic: tau_ctt(1) = -2.97815
asymptotic p-value 0.3067
1st-order autocorrelation coeff. for e: -0.015
lagged differences: F(2, 115) = 7.744 [0.0007]

Augmented Dickey-Fuller test for aus
testing down from 12 lags, criterion BIC
sample size 123
unit-root null hypothesis: a = 1

with constant, linear and quadratic trend
including 0 lags of (1-L)aus
model: (1-L)y = b0 + b1*t + b2*tˆ2 + (a-1)*y(-1) + e
estimated value of (a - 1): -0.09385
test statistic: tau_ctt(1) = -2.49745
p-value 0.5637
1st-order autocorrelation coeff. for e: 0.081

The p-values of the ADF statistics are 0.3067 and 0.5637, both insignificant at the 5% or 10% level
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and indicating the series are nonstationary.

This is repeated for the differenced series using the commands:

adf mlag usa --ct --test-down=BIC --difference
adf mlag aus --ct --test-down=BIC --difference

Testing down selects models with no lags for both series and both ADF statistics are significant at
the 5% level and we conclude that the differences are stationary and that the series are I(1).

Augmented Dickey-Fuller test for d_usa
testing down from 12 lags, criterion BIC
sample size 122
unit-root null hypothesis: a = 1

with constant and trend
including 0 lags of (1-L)d_usa
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
estimated value of (a - 1): -0.770169

test statistic: τct(1) = -8.62481

p-value 6.209e-011

1st-order autocorrelation coeff. for e: -0.040

Augmented Dickey-Fuller test for d_aus
testing down from 12 lags, criterion BIC
sample size 122
unit-root null hypothesis: a = 1

with constant and trend
including 0 lags of (1-L)d_aus
model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
estimated value of (a - 1): -0.956746

test statistic: τct(1) = -10.1139

p-value 1.21e-013

1st-order autocorrelation coeff. for e: 0.002

Testing Up

The other strategy is to test the residuals from the augmented Dickey-Fuller regressions for
autocorrelation. Starting with a small model, test the residuals of the Dickey-Fuller regression for
autocorrelation using an LM (or LMF ) test. If the residuals are autocorrelated, add another lagged
difference of the series to the ADF regression and test the residuals again. Once the LM statistic is
insignificant, quit. This is referred to as testing-up. You will still need to start with a reasonable
number of lags in the model or the tests will not have desirable properties.
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To employ this strategy in gretl, you must estimate the ADF equations manually using the
ols command. Since the data series has a constant and quadratic trend, define a time trend (genr
time) and possibly trend squared (square time) to include in the regressions.2 Note this is one
of the cases (see page (17)) that requires genr instead of series. The genr time is a special
function for the genr command. Other cases include genr dummy and genr unitdum.

You also must generate the differences using diff. The script to add time, squares and differ-
ences to the data:

1 genr time
2 square time
3 diff usa aus

Now, estimate a series of augmented Dickey-Fuller regressions using ols. Follow each regression
with the LM test for autocorrelation of the residuals discussed in section 9.8. To reduce output, I
put the test results into a matrix that is printed once the loop finishes.

1 matrix mat = zeros(12,3)
2 loop i=1..12 --quiet
3 ols d_usa(0 to -i) usa(-1) const time sq_time --quiet
4 modtest 1 --autocorr --silent
5 mat[i,]= i ˜ $test ˜ $pvalue
6 endloop
7 cnameset(mat, " Lags LMF P-value " )
8 printf "%10.4g\n", mat

Only the LMF test statistic and p-value are returned from modtest, but those are sufficient for
our needs. Notice that the cnameset command is used to add proper names to the matrix columns
and that printing is handled by printf. Also, output is suppressed using --quiet flags for both
the loop and the regression. The --silent flag is peculiar to modtest. It suppresses everything
in this case.

The first ols regression in the loop is the ADF(1). It includes 1 lagged value of the d usa as a
regressor in addition to the lagged value of usa, a constant, a trend, and a squared trend. Gretl’s
variable(i to j) function creates a series of lags from i through j of variable. So in the
first regression, d usa(0 to -i) creates the contemporaneous value and a single lagged value of
d usa. Since the contemporaneous value, d usa, appears first in the variable list, it is taken as the
dependent variable. A printf statement is issued to remind us of which test we are performing.
Then the LM and other AR tests are conducted using modtest 1 --autocorr --silent. If
the p-value is greater than 0.10 then, this is your model. If not, consider the outcome of the next

2It was not apparent from the plots of the differenced series that a squared trend was required. However, the
squared trend was included in the model because it is statistically significant in each of the ADF regressions.
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loop which has added another lag of d usa to the model. Stop when the p-value is greater than
0.10.

The results are:

Lags LMF P-value
1 6.742 0.01064
2 0.4536 0.502
3 1.291 0.2582
4 0.07833 0.7801
5 0.5533 0.4586
6 0.5548 0.458
7 0.537 0.4653
8 4.387 0.03868
9 2.118 0.1487

10 0.84 0.3617
11 3.547 0.06268
12 0.03076 0.8612

The p-value for lag 1 is significant, but not for lag 2. This indicates that 2 lagged differences are
required for the ADF.

If you repeat this exercise for aus (as we have done in the script at the end of the chapter3) you
will find that testing up determines zero lags of d aus are required in the Dickey-Fuller regression;
this is the same result obtained by testing down based on the BIC model selection rule.

So which is better, testing down or testing up? I think the econometric consensus is that testing
down is safer. We’ll leave it for future study!

13.1.3 Cointegration Test

Given that the two series are stationary in their differences (i.e., both are I(1)), the next step
is to test whether they are cointegrated. In the discussion that follows, we return to reproducing
results from POE5. To do this, use least squares to estimate the following regression.

aust = βusat + et (13.5)

obtain the residuals, êt, and then estimate

∆êt = γêt−1 + ut (13.6)

This is the “case 1 test” of Hill et al. (2018) and from Table 12.4 the 5% critical value for the t-ratio
is −2.76. The following script estimates the model cointegrating regression, saves the residuals, and
estimates the regression required for the unit root test.

3Actually, the LM statistic for the ADF(1) was insignificant and a separate DF regression also had an insignificant
LM statistic, indicating no lags are needed. I made the loop a bit fancier in order to produce the DF statistic by
adding a conditional statement for when i=0 as we did earlier in the book.
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1 ols aus usa
2 series uhat = $uhat
3 ols diff(uhat) uhat(-1)

The result is:
∆êt = −0.127937

(0.044279)
êt−1 (13.7)

T = 123 R̄2 = 0.0640 F (1, 122) = 8.3482 σ̂ = 0.5985

(standard errors in parentheses)

The t-ratio is −0.1279/.0443 = −2.889 which lies in the rejection region for this test. Therefore,
you reject the null hypothesis of no cointegration.

13.1.4 VECM: Australian and U.S. GDP

Example 3.1 in POE5

You have two difference stationary series that are cointegrated. Consequently, an error cor-
rection model of the short-run dynamics can be estimated using least squares. A simple error
correction model is:

∆aust = β11 + β12êt−1 + v1t (13.8)

∆usat = β21 + β22êt−1 + v2t (13.9)

and the estimates

∆âust = 0.491706
(8.491)

+−0.0987029
(−2.077)

êt−1

∆ûsat = 0.509884
(10.924)

+ +0.0302501
(0.790)

êt−1

(t-statistics in parentheses)
which are produced using

1 ols diff(aus) const uhat(-1)
2 ols diff(usa) const uhat(-1)

The significant negative coefficient on êt−1 indicates that Australian GDP responds to a temporary
disequilibrium between the U.S. and Australia.

The U.S. does not appear to respond to a disequilibrium between the two economies; the t-ratio
on êt−1 is insignificant. These results support the idea that economic conditions in Australia depend
on those in the U.S. more than conditions in the U.S. depend on Australia. In a simple model of
two economy trade, the U.S. is a large closed economy and Australia is a small open economy.
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13.1.5 Using gretl’s vecm Command

The Australian/U.S. GDP example above was carried out manually in a series of steps in order
to familiarize you with the structure of the VEC model and how, at least in principle, they are
estimated. In most applications, you will probably use other methods to estimate the VECM;
they provide additional information that is useful and are usually more efficient. Gretl contains a
full-featured vecm command that estimates a VECM. Chapter 30 of Cottrell and Lucchetti (2018)
provides an excellent tutorial on estimating a VECM and includes some examples using gretl.
Before using the vecm command in gretl, this is required reading!

One feature of the example in POE5 that bothers me is that tests for autocorrelation in the error
correction models reject the no serial correlation hypothesis. That implies that the lag structure in
the error correction models probably needs more thought. Thus, lags are added to the model and
it is reestimated using gretl’s vecm command, the syntax for which is:

vecm

Arguments: order rank ylist [ ; xlist ] [ ; rxlist ]
Options: --nc (no constant)

--rc (restricted constant)
--uc (unrestricted constant)
--crt (constant and restricted trend)
--ct (constant and unrestricted trend)
--seasonals (include centered seasonal dummies)
--quiet (skip output of individual equations)
--silent (don’t print anything)
--impulse-responses (print impulse responses)
--variance-decomp (print variance decompositions)

Examples: vecm 4 1 Y1 Y2 Y3
vecm 3 2 Y1 Y2 Y3 --rc

vecm 3 2 Y1 Y2 Y3 ; X1 --rc

The order parameter to this command represents the lag order of the VAR system. The number
of lags in the VECM itself (where the dependent variable is given as a first difference) is one less
than order.

The rank parameter represents the cointegration rank, or in other words the number of cointe-
grating vectors. This must be greater than zero and less than or equal to (generally, less than) the
number of endogenous variables given in ylist.

After some experimentation I use a third order model with only 1 cointegrating vector. Since
there are only 2 series, the maximum and only number of cointegrating vectors is 1. The default,
‘case 3,’ which is an unrestricted constant, is used to model the deterministic components of the
model. Choosing the correct case is another part of the art of doing a VECM study and I am not
expert enough to give advice on how to do this. I will leave you to resolve this tricky issue.
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The model is estimated via a script:

1 vecm 3 1 aus usa
2 series ec_unrest = aus + $jbeta[2,1]*usa

The top portion of the results are:

VECM system, lag order 3
Maximum likelihood estimates, observations 1970:4-2000:4 (T = 121)
Cointegration rank = 1
Case 3: Unrestricted constant

beta (cointegrating vectors, standard errors in parentheses)

aus 1.0000
(0.00000)

usa -1.0268
(0.025994)

alpha (adjustment vectors)

aus -0.12186
usa 0.020795

This reveals important information. First, the VECM is estimated by maximum likelihood, and
not least squares as we have done previously. This is apparent in the estimation of the cointegrating
vector, which is normalized on Australia and estimates the USA coefficient to be 1.0268. This is
larger than the OLS estimate of .985.

Also, the output informs us of our choices: lag order of 3, a single cointegrating vector, and
an unrestricted constant in the VECM. Next are the estimates from the cointegrating equation.
The adjustment vectors are actually the coefficients on the lagged residuals from the cointegrating
relationship. Generally, these should have opposite signs in two variable models, otherwise the
adjustments to shocks may not be equilibrating. Finally, some model selection statistics (not
shown here) appear at the bottom that may be useful in determining the order of the VECM.

The remaining regression results appear in Figure 13.2. The error correction coefficient is
negative and different from zero for the USA. Autocorrelation in the residuals is not evident. For
Australia, the error correction term is not significantly different from zero and there is no remaining
autocorrelation.

One way to evaluate whether you have made adequate modeling choices is to look at various
statistics within the output to check for significance of lags, as well as the magnitudes and signs
of the coefficients. Even without the --verbose option, the command produces quite a bit of
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Figure 13.2: The output from the vecm 3 1 aus usa command. In the USA equation, the error
correction coefficient is negative and different from zero. Autocorrelation in the residuals is not
evident. For Australia, the error correction term is not significantly different from zero and there
is no remaining autocorrelation.

output. Check if unnecessary lags have been included in the model (insignificant t-ratios on the
longest lags), check the value of the Durbin-Watson statistic (it should be close to 2), and check
the signs and significance of the error correction terms. In this case the signs are as expected, and
only the Australian economy adjusts significantly to shocks in the short-run. Issuing a modtest
1 --autocorr after the vecm will produce some autocorrelation statistics. Check these to make
sure that no autocorrelation remains.

In this example, having 2 lagged differences in the U.S. equation appears to be warranted. The
second lag in the Australian equation is also significant at 10%. The signs on the error correction
terms make sense. I would conclude that this model is a worthy candidate for further use.

The dialog boxes are also useful. Choose Model>Time-Series>VECM to bring up the
appropriate dialog box shown in Figure 13.3. It allows you to add endogenous variables to the
VAR, exogenous variables (which must be I(0)), choose lags, number of cointegrating vectors, and
a model for the deterministic portion of the trend. One of the advantages of using the dialog is that
the model results appear, as usual, in a separate model window. The window gives you immediate
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Figure 13.3: The VECM dialog box

access to tests, plots, and additional tools for analysis. Furthermore, there is also a handy facility
that allows quick respecification of the model. From the menu bar of the model window choose
Edit>Revise specification brings up the VECM dialog box again for you to change settings.

One more thing is worth checking. Plot the error correction terms, which are shown in Figure
13.4. This plot shows that most of the disequilibrium is negative. Australia is constantly playing
catch-up to the U.S. I’m not sure I believe this. You will notice that the coefficient in the cointe-
grating equation is −1.025. The simple least squares estimation of it was −0.985. I suspect that
this parameter should be equal to −1 (these market economies are roughly comparable) and I test
for it, using a restrict statement.
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Figure 13.4: Plot of the error correction terms from the vecm 3 1 aus usa command.

1 vecm 3 1 aus usa
2 restrict --full
3 b[1]+b[2]=0
4 end restrict
5 series ec_rest = $ec

Note, if β1 + β2 = 0 it implies that usa − aus = 0. Also, the residuals are saved as a series using
the accessor $ec. Gretl performs a likelihood ratio test that is distributed χ2(1) if the restriction
is true. The result is:

1 Restrictions on beta:
2 b1 + b2 = 0
3

4 Unrestricted loglikelihood (lu) = -179.93953
5 Restricted loglikelihood (lr) = -180.13562
6 2 * (lu - lr) = 0.392178
7 P(Chi-square(1) > 0.392178) = 0.531157
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Figure 13.5: Plots of the error correction terms from restricted and unrestricted VECMs estimated
by maximum likelihood. The restricted residuals (black) are fitted to a quadratic trend (green).
The restricted cointegrating relationship is aus = usa.

which is not significant at 5% (p-value is .53 > .05). The restriction is imposed and the plot recast
as shown in Figure 13.5 alongside the unrestricted plot (blue).

The plot command was used to control gnuplot. The script assumes that you have estimated
both versions of the VECM and saved the restricted and unrestricted error correction terms into
ec rest and ec unrest, respectively. Then a quadratic trend is fitted to the restricted residuals
and plotted.

1 string title = "Actual and fitted EC from restricted VECM"
2 string xlabel = "Year"
3 string ylabel = "Disequilibrium"
4 ols ec_rest const time sq_time
5 series ec_rest_fitted = $yhat
6 list plotvars = ec_rest ec_unrest ec_rest_fitted
7 g2 <- plot plotvars
8 options time-series with-lines
9 literal set linetype 1 lc rgb "black" pt 7

10 printf "set title \"%s\"", title
11 printf "set xlabel \"%s\"", xlabel
12 printf "set ylabel \"%s\"", ylabel
13 end plot --output=display

You can see that the error correction terms from the restricted model have the same basic
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shape as in Figure 13.4, but the now there are many more positive disequilibria. The regression
output from the restricted VECM appears below in Figure 13.6: The magnitude of the adjustment

Figure 13.6: Output from the restricted VECM model. The cointegrating relationship is
AUS=USA.

parameters have become more similar in magnitude. The coefficient for Australia (-0.096929) is
significant at 10% and the one for the U.S. is not.

Finally, there are some advantages of working with a script as well. Gretl has accessors for
some of the output from vecm. The $jbeta accessor stores the parameters from the cointegrat-
ing estimations. $vecGamma stores the coefficients on the lagged differences of the cointegrated
variables, and $ec stores the error correction terms. In the script, I compute the error correction
terms manually using $jbeta even though the $ec accessor is available. There are other accessors
for the vecm results. See the Gretl Users Guide for details.

Restricting the VECM and accessing some results
1 vecm 3 1 aus usa
2 restrict --full
3 b[1]+b[2]=0
4 end restrict
5

6 scalar a = $vecGamma
7 scalar b =$jbeta
8 series ec = aus + $jbeta[2,1]*usa
9 # error correction terms using the accessor

10 series ec = $ec
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13.2 Vector Autoregression

The vector autoregression model (VAR) is actually a little simpler to estimate than the VEC
model. It is used when there is no cointegration among the variables and it is estimated using time
series that have been transformed to their stationary values.

Example 13.2 in POE5

In the example from POE5, we have macroeconomic data on RPDI and RPCE for the United
States. The data are found in the fred.gdt dataset and have already been transformed into their
natural logarithms. In the dataset, y is the log of real disposable income and c is log of real
consumption expenditures. As in the previous example, the first step is to determine whether the
variables are stationary. If they are not, then you transform them into stationary time series and
test for cointegration.

The data need to be analyzed in the same way as the GDP series in the VECM example.
Examine the plots to determine possible trends and use the ADF tests to determine which form
of the data are stationary. These data are nonstationary in levels, but stationary in differences.
Then, estimate the cointegrating vector and test the stationarity of its residuals. If stationary, the
series are cointegrated and you estimate a VECM. If not, then a VAR treatment is sufficient.

Open the data and take a look at the time-series plots.

1 open "@workdir\data\fred5.gdt"
2 scatters c diff(c) y diff(y)

The plots appear in Figure 13.7. The levels series appear to be trending together. The differences
may be trending downward ever so slightly. The mean of the difference series appears to be greater
than zero, suggesting that a least a constant be included in the ADF regressions. Inclusion of a
trend could be tested using a t-test based on the regression output.

The other decision that needs to be made is the number of lagged differences to include in the
augmented Dickey-Fuller regressions. The principle to follow is to include just enough so that the
residuals of the ADF regression are not autocorrelated. The recommendation is to test down using
the --test-down option of the adf command.

1 list yvars = consn y
2 adf 12 yvars --ct --test-down=BIC --verbose

After some experimentation, the decision was made to leave a trend in the ADF regresions. The
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Figure 13.7: Natural logs of consumption and income and their differences.

term was significant for both series. The test-down procedure chose 3 lagged differences of c in
the first model and 1 lagged difference of y in the second. In both cases, the unit root hypothesis
could not be rejected at 10%. The first order autocorrelation coefficient for the residuals is very
small in both cases. See Figures 13.8 and 13.9. It is a good idea to confirm that the differences are
stationary, since VAR in differences will require this.

1 adf 12 yvars --c --test-down=BIC --difference

which produces, in part:

test with constant
including 2 lags of (1-L)d_consn
test statistic: tau_c(1) = -2.83728
asymptotic p-value 0.05311
1st-order autocorrelation coeff. for e: 0.033

test with constant
including 0 lags of (1-L)d_y
test statistic: tau_c(1) = -13.0482
p-value 3.021e-018
1st-order autocorrelation coeff. for e: 0.022

The p-value for d_consn is 0.053, which is significant at 10%.

If consumption and income are cointegrated then estimate a VECM. The Engle-Granger tests
reveals that they are not.
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Figure 13.8: ADF tests of ln(RPCE)

Figure 13.9: ADF tests of ln(RPDI)

1 coint 8 yvars --test-down=BIC --nc

This produces the result:

Augmented Dickey-Fuller test for uhat
testing down from 8 lags, criterion BIC
sample size 116
unit-root null hypothesis: a = 1

model: (1-L)y = (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0923617
test statistic: tau_nc(2) = -2.26548
asymptotic p-value 0.1481
1st-order autocorrelation coeff. for e: -0.006
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The p-value on the test statistic is 0.1481. We cannot reject the unit root hypothesis for the residuals
and therefore the series are not cointegrated. We are safe to estimate the VAR in differences.

The basic syntax for the var command appears below

var

Arguments: order ylist [ ; xlist ]
Options: --nc (do not include a constant)

--trend (include a linear trend)
--seasonals (include seasonal dummy variables)
--robust (robust standard errors)
--robust-hac (HAC standard errors)
--quiet (skip output of individual equations)
--silent (don’t print anything)
--impulse-responses (print impulse responses)
--variance-decomp (print variance decompositions)
--lagselect (show criteria for lag selection)

Examples: var 4 x1 x2 x3 ; time mydum
var 4 x1 x2 x3 --seasonals
var 12 x1 x2 x3 --lagselect

You specify the lag order, the series to place in the VAR, and any options you want. You can
choose HAC standard errors and ways to model deterministic trends in the model. Estimating the
VAR with the --lagselect option is useful in deciding how many lags of the two variables to
add to the model.

1 var 12 diff(c) diff(y) --lagselect

We’ve chosen that option here with the first few lines of the result:

VAR system, maximum lag order 12

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags loglik p(LR) AIC BIC HQC

1 781.15658 -14.764887 -14.613232* -14.703434*
2 786.28675 0.03626 -14.786414 -14.533656 -14.683992
3 791.93877 0.02335 -14.817881 -14.464020 -14.674490
4 796.37888 0.06416 -14.826264* -14.371300 -14.641904
5 796.91787 0.89775 -14.760340 -14.204273 -14.535011
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The BIC (SC ) and HQC pick the same number of lags, 1. That is what we’ve estimated so we are
satisfied. You can also issue a modtest p --autocorr command after the VAR to determine
if there is any remaining autocorrelation in the residuals. If there is, you probably need to add
additional lags to the VAR. When used here, the Ljung-Box Q statistics for both equations have
p-values above 0.10 and the null hypothesis of no autocorrelation is not rejected.

The model output is found below:

VAR system, lag order 1
OLS estimates, observations 1986:3–2015:2 (T = 116)

Equation 1: d consn
HAC standard errors, bandwidth 3 (Bartlett kernel)

Coefficient Std. Error t-ratio p-value

const 0.00367073 0.00122096 3.006 0.0033
d consn 1 0.348192 0.129414 2.691 0.0082
d y 1 0.131345 0.0497994 2.637 0.0095

Mean dependent var 0.006980 S.D. dependent var 0.005284
Sum squared resid 0.002534 S.E. of regression 0.004736
R2 0.210822 Adjusted R2 0.196854
F (2, 113) 8.351617 P-value(F ) 0.000414
ρ̂ −0.121496 Durbin–Watson 2.210652

F-tests of zero restrictions

All lags of d consn F (1, 113) = 7.23896 [0.0082]
All lags of d y F (1, 113) = 6.95635 [0.0095]

Equation 2: d y
HAC standard errors, bandwidth 3 (Bartlett kernel)

Coefficient Std. Error t-ratio p-value

const 0.00438419 0.00113034 3.879 0.0002
d consn 1 0.589538 0.124973 4.717 0.0000
d y 1 −0.290937 0.106648 −2.728 0.0074
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Mean dependent var 0.006580 S.D. dependent var 0.008786
Sum squared resid 0.007496 S.E. of regression 0.008145
R2 0.155517 Adjusted R2 0.140571
F (2, 113) 11.28591 P-value(F ) 0.000034
ρ̂ −0.051177 Durbin–Watson 2.101542

You can also get gretl to generate the VAR’s lag selection command through the dialogs. Select
Model >Time series>VAR lag selection from the pull-down menu. This reveals the VAR lag
selection dialog box. You can choose the maximum lag to consider, the variables to include in the
model, and whether the model should contain constant, trend, or seasonal dummies.

13.3 Impulse Response Functions and Variance Decompositions

Impulse response functions show the effects of shocks on the adjustment path of the variables.
Forecast error variance decompositions measure the contribution of each type of shock to the
forecast error variance. Both computations are useful in assessing how shocks to economic variables
reverberate through a system.

Impulse response functions (IRFs) and forecast error variance decompositions (FEVD) can be
produced after using the var or vecm commands. The results can be presented in a table or a
graph.

Obtaining the impulse responses after estimating a VAR is easy in gretl. The first step is
to estimate the VAR. From the main gretl window choose Model >Time series>Vector Au-
toregression. This brings up the dialog, shown in Figure 13.10. Set the lag order to 1, and add
the differenced variables to the box labeled Endogenous Variables. Make sure the Include a
constant box is checked and click OK. Also, choose HAC standard errors if desired.

Impulse responses can be generated by selecting Analysis>Impulse responses from the re-
sults window. An impulse response dialog appears that allows you to specify the forecast horizon
and to change the ordering of the variables. Using 12 periods with d_c ordered first produces the
results shown in Figure 13.3.

Graphs can also be generated from the results window by selecting Graphs>Impulse re-
sponses (combined) from the pull-down menu. This brings up a dialog that allows you to choose
how the graph will be constructed. The dialog is shown in Figure 13.11. which yields the graph
shown in Figure 13.12. The forecast error variance decompositions (FEVD) are obtained similarly.
Select Analysis>Forecast variance decomposition from the vector autoregression model win-
dow to obtain the result shown in Table 13.6.

To generate IRFs and the FEVDs using a script, add the options --impulse-responses
and --variance-decomp to the var command. These can be used with the vecm command as
well.
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Figure 13.10: From the main gretl window, choose Model>Time series>Vector Autogregres-
sion to bring up the VAR dialog box.

1 var 1 diff(c) diff(y) --impulse-responses --variance-decomp
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Figure 13.11: Select Graphs>Impulse responses (combined) from the VAR results window
brings up this dialog box.

13.4 Script

1 set verbose off
2

3 open "@workdir\data\gdp.gdt"
4 setobs 4 1970:1 --time-series
5 # plot multiple time-series
6 g1 <- scatters usa diff(usa) aus diff(aus) --output=display
7

8 # ADF tests with test down
9 scalar mlag = int(12*(($nobs+1)/100)ˆ(0.25))

10 coint 0 aus usa --nc
11

12 # ADF tests with test down
13 scalar mlag = int(12*(($nobs+1)/100)ˆ(0.25))
14 adf mlag usa --ctt --test-down=BIC --verbose
15 adf mlag aus --ctt --test-down=BIC --verbose
16

17 adf mlag usa --ct --test-down=BIC --difference
18 adf mlag aus --ct --test-down=BIC --difference
19

20 # manually testing down based on LM tests
21 # USA
22 genr time
23 square time
24 diff usa aus
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Figure 13.12: U.S. ln(RDPI) and ln(RPCE) impulse responses

25 matrix mat = zeros(12,3)
26 loop i=1..12 --quiet
27 ols d_usa(0 to -i) usa(-1) const time sq_time --quiet
28 modtest 1 --autocorr --silent
29 mat[i,]= i ˜ $test ˜ $pvalue
30 endloop
31 cnameset(mat, " Lags LMF P-value " )
32 printf "%10.4g\n", mat
33 # Australia
34 loop i=1..12
35 ols d_aus(0 to -i) aus(-1) const time sq_time --quiet
36 modtest 1 --autocorr --quiet
37 mat[i,]= i ˜ $test ˜ $pvalue
38 printf "%10.4g\n", mat
39 endloop
40 cnameset(mat, " Lags LMF P-value " )
41 printf "%10.4g\n", mat
42

43 # Example 13.1 in POE5
44 ols aus usa
45 series ehat = $uhat
46 ols diff(ehat) ehat(-1)
47 ols diff(aus) const ehat(-1)
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48 modtest 1 --autocorr
49 ols diff(usa) const ehat(-1)
50 modtest 1 --autocorr
51

52 ols aus usa
53 series ehat = $uhat
54

55 string title = "Actual and fitted EC from VECM--OLS"
56 string xlabel = "Year"
57 string ylabel = "Disequilibrium"
58 ols ehat const time sq_time
59 series fitted = $yhat
60 list plotvars = ehat fitted
61 g1 <- plot plotvars
62 options time-series with-lines
63 literal set linetype 1 lc rgb "black" pt 7
64 printf "set title \"%s\"", title
65 printf "set xlabel \"%s\"", xlabel
66 printf "set ylabel \"%s\"", ylabel
67 end plot --output=display
68

69

70 # Engle-Granger test
71 coint 8 aus usa --test-down --nc
72

73 # restricted VECM
74 vecm 3 1 aus usa
75 series ec_unrest = aus + $jbeta[2,1]*usa
76 restrict --full
77 b[1]+b[2]=0
78 end restrict
79 series ec_rest = $ec
80

81 # collecting error correction terms from restricted model
82 matrix a = $vecGamma
83 matrix b =$jbeta
84 printf "\nCoefficients on the lagged differences of the cointegrated\
85 variables:\n%10.3g\n", a
86 printf "\nThe cointegration matrix:\n %.3f\n", b
87

88 string title = "Actual and fitted EC from restricted VECM"
89 string xlabel = "Year"
90 string ylabel = "Disequilibrium"
91 ols ec_rest const time sq_time
92 series ec_rest_fitted = $yhat
93 list plotvars = ec_rest ec_unrest ec_rest_fitted
94 g2 <- plot plotvars
95 options time-series with-lines
96 literal set linetype 1 lc rgb "black" pt 7
97 printf "set title \"%s\"", title
98 printf "set xlabel \"%s\"", xlabel
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99 printf "set ylabel \"%s\"", ylabel
100 end plot --output=display
101

102 # VAR estimation
103 open "@workdir\data\fred5.gdt"
104 g1 <- scatters consn diff(consn) y diff(y) --output=display
105

106 list yvars = consn y
107 adf 12 yvars --ct --test-down=BIC
108 adf 12 yvars --c --test-down=BIC --difference
109

110 # Engle-Granger test
111 coint 8 yvars --test-down=BIC --nc
112

113 # If not cointegrated estimate var of differences
114 m1 <- var 12 diff(consn) diff(y) --lagselect
115 m2 <- var 1 diff(consn) diff(y) --robust-hac
116 modtest 1 --autocorr
117

118 m3 <- var 1 diff(consn) diff(y) --impulse-responses --variance-decomp
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Responses to a one-standard error shock in d consn

period d consn d y
1 0.00467417 0.00208478
2 0.00190133 0.00214907
3 0.000944298 0.000495666
4 0.000393900 0.000412492
5 0.000191332 0.000112210
6 8.13583e–005 8.01513e–005
7 3.88558e–005 2.46448e–005
8 1.67662e–005 1.57369e–005
9 7.90483e–006 5.30590e–006

10 3.44930e–006 3.11651e–006
11 1.61036e–006 1.12678e–006
12 7.08710e–007 6.21543e–007

Responses to a one-standard error shock in d y

period d consn d y
1 0.000000 0.00776375
2 0.00101973 −0.00225876
3 5.83843e–005 0.00125833
4 0.000185605 −0.000331675
5 2.10620e–005 0.000205918
6 3.43799e–005 −4.74922e–005
7 5.73292e–006 3.40855e–005
8 6.47313e–006 −6.53697e–006
9 1.39529e–006 5.71800e–006

10 1.23686e–006 −8.41003e–007
11 3.20203e–007 9.73856e–007
12 2.39403e–007 −9.45591e–008

Table 13.3: Impulse response functions (IRF)
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Decomposition of variance for d consn

period std. error d consn d y
1 0.00467417 100.0000 0.0000
2 0.00514809 96.0764 3.9236
3 0.0052343 96.1922 3.8078
4 0.00525238 96.0935 3.9065
5 0.00525591 96.0971 3.9029
6 0.00525665 96.0939 3.9061
7 0.0052568 96.0940 3.9060
8 0.00525683 96.0939 3.9061
9 0.00525684 96.0939 3.9061

10 0.00525684 96.0939 3.9061
11 0.00525684 96.0939 3.9061
12 0.00525684 96.0939 3.9061

Decomposition of variance for d y

period std. error d consn d y
1 0.00803879 6.7257 93.2743
2 0.00862222 12.0587 87.9413
3 0.00872764 12.0917 87.9083
4 0.00874367 12.2700 87.7300
5 0.00874682 12.2776 87.7224
6 0.00874732 12.2846 87.7154
7 0.00874742 12.2851 87.7149
8 0.00874743 12.2854 87.7146
9 0.00874744 12.2854 87.7146

10 0.00874744 12.2854 87.7146
11 0.00874744 12.2854 87.7146
12 0.00874744 12.2854 87.7146

Table 13.6: Forecast Error Variance Decompositions (FEVD)
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Chapter 14

Time-Varying Volatility and ARCH
Models

In this chapter several models in which the variance of the dependent variable changes over time
are estimated. These are broadly referred to as ARCH (autoregressive conditional heteroskedastic-
ity) models and there are many variations upon the theme.

Example 14.1 in POE5

First the problem is examined graphically using data on stock returns. The data are stored in
the gretl dataset returns5.gdt. The data contain four monthly stock price indices: U.S. Nasdaq
(nasdaq), the Australian All Ordinaries (allords), the Japanese Nikkei (nikkei) and the U.K. FTSE
(ftse). The data are recorded monthly beginning in 1988:01 and ending in 2015:12. Notice that
with monthly data, the suffix has two digits, that is 1988:01 is January (01) in the year 1988.

Simple scatter plots appear below. To make the plots more informative, a set of graph labels
was added to the series. In preceding examples of this, a simple syntax was used by invoking the
-n switch of setinfo. In this example, the long-form syntax is used, which is marginally more
informative of what it does that the -n switch. The plots can also be generated using the GUI as
described on page 407, or using the scatters command.

1 setinfo allords --graph-name="Australia: All Ordinaries"
2 setinfo nasdaq --graph-name="United States: Nasdaq"
3 setinfo ftse --graph-name="United Kingdom: FTSE"
4 setinfo nikkei --graph-name="Japan: Nikkei"
5 scatters nasdaq allords ftse nikkei --output=display
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This yields Figure 14.1. It is pretty clear that there are periods of low and high volatility in these

Figure 14.1: Times series of stock indices

series.

Next, the histograms are plotted using the freq command. The output is sent to .png bitmap
graphics files and later combined using the commercial software, Snagit.

1 freq nasdaq --normal --plot=f1.png
2 freq allords --normal --plot=f2.png
3 freq ftse --normal --plot=f3.png
4 freq nikkei --normal --plot=f4.png

These plots appear in Figure 14.2.

Relative to the normal distribution, the series tend to have more observations around the mean
and in the extremes of the tails. This is referred to as being leptokurtotic.

Summary statistics found below confirm this.
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Figure 14.2: Histograms of stock indices.

1 list indices = nasdaq allords ftse nikkei
2 summary indices

Std. Dev. C.V. Skewness Ex. kurtosis
nasdaq 6.3027 6.2196 -0.42162 1.5034
allords 3.9025 7.9057 -0.42852 0.44463
ftse 4.1472 8.7934 -0.26929 0.51427
nikkei 6.1077 40.220 -0.28338 0.69405

The skewness of each is negative, with the Nasdaq and Allords being being more skewed than the
others. The Nasdaq also is the most leptokurtotic (1.50 > 0). Recall that the excess kurtosis is
measured as µ̂4 − 3 so positive numbers imply that the series are leptokurtotic.
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14.1 ARCH and GARCH

The ARCH(1) model can be expressed as:

yt = β + et (14.1)

et|It−1 ∼ N(0, ht) (14.2)

ht = α0 + α1e
2
t−1 (14.3)

α0 > 0, 0 ≤ α1 < 1

The first equation describes the behavior of the mean of the time series. In this case, equation
(14.1) indicates that the time series varies randomly about its mean, β. If the mean of the time
series drifts over time or is explained by other variables, add these elements to the equation just
as you would a regular regression model. The second equation indicates that the error of the
regression, et, are normally distributed and heteroskedastic. The variance of the current period’s
error depends on information that is available from the preceding period, i.e., It−1. The variance
of et is given the symbol ht. The final equation describes how the variance behaves. Notice that
ht depends on the error in the preceding time period. The parameters in this equation have to be
positive to ensure that the variance, ht, is positive. Notice also that α cannot be greater than one;
if it were, the variance would be unstable.

The ARCH(1) model can be extended to include more lags of the errors, et−q. In this case,
q refers to the order of the ARCH model. For example, ARCH(2) replaces (14.3) with ht =
α0 + α1e

2
t−1 + α2e

2
t−2. When a regression model has ARCH errors you must specify this order.

ARCH is treated as a special case of a more general model called GARCH. GARCH stands for
generalized autoregressive conditional heteroskedasticity and it adds lagged values of the variance
itself, ht−p, to (14.3). The GARCH(1,1) model is:

yt = β + et

et|It−1 ∼ N(0, ht)

ht = δ + α1e
2
t−1 + β1ht−1 (14.4)

The difference between ARCH (14.3) and its generalization (14.4) is the term β1ht−1, a function
of the lagged variance. In higher order GARCH(p, q) models, q refers to the number of lags of et
and p refers to the number of lags of ht to include in the regression’s variance.

Example 14.2 in POE5

In this example two simulated samples are created and compared. One has constant variance,
ht = 1. The second has ARCH(1) errors with ht = α0 + α1e

2
t−1 = 1 + 0.8e2

t−1.

Gretl generates these series easily as shown below.
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1 nulldata 200
2 setobs 1 1 --special-time-series
3

4 set seed 1010198
5 series e_arch = 0
6 series e = normal(0,1)
7 series e_arch= e*sqrt(1 + .8*(e_arch(-1))ˆ2)
8

9 series y = e
10 series y_arch = e_arch

The nulldata command creates an empty dataset with the given number (200) observations.
These are set as time series using setobs. A seed for the pseudo-random number generator is
given and a series of zeros is created to initialize the contents of the ARCH errors.

The errors for the constant variance errors are generated in line 6 and the ARCH(1) errors with
the desired parameters in line 7. Notice that both are constructed using the same random draw
from the normal, e. Since the ARCH for the simulation has zero mean, the y variables are simply
equal to their respective errors.

Scatter plots of the two series are created and the plots appear in Figure 14.3. Histograms
(Figure 14.4) are also generated using the freq command.

1 f5 <- freq y --normal --plot=display
2 f6 <- freq y_arch --normal --plot=display

At 5%, the constant variance series is not significantly non-normal, but the ARCH series is. Also
the ARCH series appears to be leptokurtotic.

14.2 Testing for ARCH

Example 14.3 in POE5

This example uses byd.gdt data on a hypothetical company called Brighten Your Day Lighting.
There are 500 observations. These are loaded and the setobs command is used to structure them
as time series.

First plot the returns and their histograms. Then examine the summary statistics for evidence
of leptokurtosis.
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Figure 14.3: Simulated examples of constant and time-varying variance.

1 open "@workdir\data\byd.gdt"
2 setobs 1 1 --special-time-series
3

4 gnuplot r time --output=display --with-lines
5 freq r --normal --plot=display
6 summary r

The --special-time-series switch which identifies the series as being sequential only. It is
a catch-all used when observations occur regularly in time, but not in standard frequencies like
weeks, months, or years. The first number identifies the time period of the first observation and
the second is the periodicity of the data. Our set starts at 1 and increments by 1 from there.

The series plot appears in Figure 14.5. It certainly appears that the variance is evolving over
time.

The histogram of BYD returns is shown in Figure 14.6. Relative to the normal distribution,
there appears to be more observations than expected around the mean of 1 as well as a few very
large outliers in the right tail. The summary statistics confirm this:

Summary statistics, using the observations 1 - 500

480



Figure 14.4: Histograms for simulated examples of constant and time-varying variance.

for the variable ’r’ (500 valid observations)

Mean 1.0783
Median 1.0293
Minimum -2.7686
Maximum 7.0089
Standard deviation 1.1850
C.V. 1.0990
Skewness 0.40117
Ex. kurtosis 1.4701
5% percentile -0.71215
95% percentile 3.2728
Interquartile range 1.3941
Missing obs. 0

The data are positively skewed and have substantial excess kurtosis.
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Figure 14.5: Returns for BYD Lighting

Testing for the presence of ARCH in the errors of a model is straightforward. In fact, there are
at least two ways to proceed. The first is to estimate the regression portion of your model using
least squares from the GUI. Then choose the Tests>ARCH from the model’s pull-down menu.
This opens a dialog box that allows you to enter the desired number of ARCH lags to include in
the alternative hypothesis.

Choose a lag order of 1 and click OK to produce:

1 Test for ARCH of order 1
2

3 coefficient std. error t-ratio p-value
4 ---------------------------------------------------------
5 alpha(0) 0.908262 0.124401 7.301 1.14e-012 ***
6 alpha(1) 0.353071 0.0419848 8.410 4.39e-016 ***
7

8 Null hypothesis: no ARCH effect is present
9 Test statistic: LM = 62.1595

10 with p-value = P(Chi-square(1) > 62.1595) = 3.16735e-015

The LM statistic is 62.1595 and its p-value is well below 5%. We conclude that the model’s errors
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Figure 14.6: Returns for BYD Lighting

exhibit ARCH(1).

This test can be executed from a script using the modtest command. The test for ARCH(q)
is

1 modtest q --arch

where q is the number of lags for H1. This yields the same output as obtained using the GUI.

Manually, the first step is to estimate the regression

rt = β + et (14.5)

using least squares. The residuals are saved in ehat, and the squared residuals saved as ehat2.
Next, estimate the regression

êt = α1 + α2êt−1 + ut (14.6)

Take TR2 from least squares estimation of this regression as your test statistic, which has a χ2(1)
if the errors do not have ARCH.

The script to carry this out manually is straightforward. Estimate the model, save the squared
residuals to a series and then regress these on their lagged value and a constant.
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ols r const --quiet
series ehat2 = $uhatˆ2
arch_test <- ols ehat2 const ehat2(-1)
printf "LM = %.4f with p-value = %.3f\n", $trsq, pvalue(X,1,$trsq)

Recall that ehat2(-1) lags ehat2 by one period. Everything is combined in the final line which
prints the statistic and its p-value from the χ2(1) distribution.

The result:

LM = 62.1595 with p-value = 0.000

which matches the results from modtest exactly.

Example 14.4 in POE5

Esimating ARCH models is relatively straightforward in gretl. Once the data are loaded open
the dialog for estimating ARCH or GARCH in gretl using Model>Time series>GARCH from
the main gretl window.1 This reveals a dialog box where the model is specified (Figure 14.7). To
estimate the ARCH(1) model, place the time-series r into the dependent variable box and set q=1
and p=0.

ARCH(1), using observations 1–500
Dependent variable: r

Standard errors based on Hessian

Coefficient Std. Error z p-value

const 1.06394 0.0399241 26.65 0.0000

α0 0.642139 0.0648195 9.907 0.0000
α1 0.569347 0.0913142 6.235 0.0000

Mean dependent var 1.078294 S.D. dependent var 1.185025
Log-likelihood −740.7932 Akaike criterion 1489.586
Schwarz criterion 1506.445 Hannan–Quinn 1496.202

Unconditional error variance = 1.49108

1gretl also contains a simpler ARCH option. You can use this as well, but the answer you get will be slightly
different due to differences in the method used to estimate the model.
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Figure 14.7: Estimating ARCH using the dialog box in gretl .

Notice that the coefficient estimates and standard errors for the ARCH(1) and GARCH(1, 1)
models are quite close to those in Chapter 14 of POE5. To get closer to these, change the default
variance-covariance computation using set garch_vcv op before running the script. Although
this gets you closer, using the set garch_vcv op is not usually recommended. To restore the
gretl default, use set garch_vcv unset.

In fact, gretl gives you other methods for estimating the variance-covariance matrix. And, as
expected, the choice yields different standard errors and t-ratios. The set garch_vcv command
allows you to choose among five alternatives: unset–which restores the default, hessian (the
default), im (information matrix), op (outer product of gradient matrix), qml (QML estimator),
or bw (Bollerslev-Wooldridge). If the --robust option is given for the garch command, QML
is used.

With maximum likelihood, the model’s parameters are estimated using numerical optimization
techniques. All of the techniques should produce the same parameter estimates, i.e., those that
maximize the likelihood function; but, they do so in different ways. Each numerical algorithm
arrives at the solution iteratively based on reasonable starting values and the method used to
measure the curvature of the likelihood function at each round of numerical procedure. Once the
algorithm finds the maximum of the function, the curvature measure is often reused as an estimate
of the variance covariance matrix. Since curvature can be measured in slightly different ways, the
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routine will produce slightly different estimates of standard errors.

garch

Arguments: p q ; depvar [ indepvars ]
Options: --robust (robust standard errors)

--verbose (print details of iterations)
--vcv (print covariance matrix)
--nc (do not include a constant)
--stdresid (standardize the residuals)
--fcp (use Fiorentini, Calzolari, Panattoni algorithm)
--arma-init (initial variance parameters from ARMA)

Examples: garch 1 1 ; y
garch 1 1 ; y 0 x1 x2 --robust

The series are characterized by random, rapid changes and are considered volatile. The volatil-
ity seems to change over time as well. For instance the U.S. stock returns index (NASDAQ) experi-
ences a relatively sedate period from 1992 to 1996. Then, stock returns become much more volatile
until early 2004. Volatility increases again at the end of the sample. The other series exhibit similar
periods of relative calm followed by increased volatility.

Example 14.5 in POE5

Once the model is estimated, the behavior of the variance, ht, can be plotted. The forecasted
variances are stored in memory and accessed using the accessor, $h. Then plot them using gnuplot
:

1 m2_arch <- garch 0 1; r const
2 series ht = $h
3 g_arch <- gnuplot ht time --output=display --with-lines

After a little editing, the result is shown in Figure 14.8. To modify the graph, right-click on the
graph and choose Edit. You can add labels, change the colors or line style, add titles, and more.

14.3 GARCH

Example 14.6 in POE5

A GARCH(1,1) model as shown in equation (14.4) includes a lag of the variance in the model
of ht. Its parameter is labeled β1. In this example a single GARCH term is added and the model
estimated via maximum likelihood. The estimated average return and variance are plotted.
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Figure 14.8: Plot of the variances after estimating the ARCH(1) using the BrightenYourDay returns.
Right click on the graph to bring up the menu shown. Then choose edit to modify the graph.

The script used is:

1 GARCH_11 <- garch 1 1 ; r const
2 series yhat = $yhat
3 series ht = $h
4

5 gnuplot ht time --with-lines --output=display
6 gnuplot yhat time --with-lines --output=display

The estimated GARCH model is:

r̂ = 1.050
(0.03950)

σ̂2
t = 0.40105

(0.08438)
+ 0.4910

(0.08589)
ε2
t−1 + 0.2380

(0.09046)
σ2
t−1

T = 500 lnL = −736.0281 σ̂ = 1.2166

(standard errors in parentheses)

These results are very close to the ones from POE5.

Although the plain gnuplot plots are functional, I took a little extra time to dress it up a little
and to combine predicted mean and variance into a single plot.
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1 list vars = Return Variance
2 string title = "GARCH(1,1)"
3 string xname = "Time"
4 string yname = "Return"
5 string y2name = "Variance"
6 g3 <- plot vars
7 options with-lines time-series
8 literal set linetype 1 lc rgb "black" pt 7
9 printf "set title \"%s\"", title

10 printf "set xlabel \"%s\"", xname
11 printf "set ylabel \"%s\"", yname
12 printf "set y2label \"%s\"", y2name
13 end plot --output=display

This effort yielded Figure 14.9: The average return is constant and equal to β̂ = 1.05; the graph

Figure 14.9: Predicted returns and variance from a GARCH(1,1)

scale for this is on the left y-axis. The variance is measured on the right and plotted in blue. There
is an obvious large increase in variance between observations 350 and 400. This is characteristic of
GARCH and ARCH.

14.4 Threshold ARCH
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Example 14.7 un POE5

The threshold ARCH model replaces the variance equation (14.3) with

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.7)

dt =

{
1 if et < 0
0 otherwise

(14.8)

The model’s parameters are estimated by finding the values that maximize its likelihood. Maximum
likelihood estimators are discussed in appendix C of Hill et al. (2018).

Gretl provides a fairly easy way to estimate via maximum likelihood that can be used for a wide
range of estimation problems (see Chapter 16 for other examples). To use gretl’s mle command,
a log-likelihood function must be specified. Also, any parameters contained in the function must
be given reasonable starting values for the routine to work properly. Parameters can be declared
and given starting values (using the scalar command).

Numerical optimization routines use the partial derivatives of the objective function (e.g., the
log-likelihood) to iteratively find the minimum or maximum of the function. If desired, the analyti-
cal derivatives of the log-likelihood function with respect to each of the parameters can be specified;
if analytical derivatives are not supplied, gretl tries to compute a numerical approximation. The
actual results depend on many things, including whether analytical derivatives are used and the
starting values.

For the threshold GARCH model, open a new script file and type (or copy and paste) in the
program that appears in Figure 14.10.

Lines 4-8 of the script give starting values for the model’s parameters. This is essential and
picking good starting values increases the chances of success. At the very least, you must start
the numerical optimization at a feasible point. For instance, you cannot start the model with a
negative variance.

The second part of the script, starting on line 10, contains the the algebraic expression of the
log-likelihood function. Line 10 ll = -0.5*(log(h) + (ê 2)/h) is what is called the kernel
of the normal probability density function. Recall that the errors of the ARCH model are assumed
to be normally distributed and this is reflected in the kernel.

Next, we have to specify an initial guess for the variances of the model, and these are set to
the empirical variance of the series using var(r). Then, the errors are generated, squared, and
the threshold term is created using series e2m = e2 * (e<0); the expression (e<0) takes
the value of 1 for negative errors, e, and is zero otherwise. Then in lines 15 and 16, which use
the line continuation command, the heteroskedastic function ht is specified. The parameters of the
model are given at the end using the params statement. This is required since we are going to
let gretl try to maximize this function using numerical derivatives. The mle loop is ended with
end mle. The output appears in Figure 14.11. The coefficient estimates are very close to those
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1 open "@workdir\data\byd.gdt"
2 setobs 1 1 --special-time-series
3

4 scalar mu = 0.5 # Starting values
5 scalar omega = .5
6 scalar alpha = 0.4
7 scalar delta = 0.1
8 scalar beta = 0
9

10 mle ll = -0.5*(log(h) + (eˆ2)/h) # Log-likelihood function
11 series h = var(r) # Initialization of variances
12 series e = r - mu # Model’s residuals
13 series e2 = eˆ2 # Squared resiguals
14 series e2m = e2 * (e<0) # Create the threshold
15 series h = omega + alpha*e2(-1)\
16 + delta*e2m(-1) + beta*h(-1) # TARCH variance
17 params mu omega alpha delta beta # Parameters
18 end mle

Figure 14.10: Threshold GARCH script

printed in POE5, and the standard errors and corresponding t-ratios are similar. As discussed
above it is common for estimates produced by different software to produce this kind of variation
when estimating nonlinear models numerically. Different software may use different algorithms to
numerically maximize the log-likelihood function. Most will offer some options that may get you
closer. What is amazing here is that gretl does such a fine job without having to specify the
analytic derivatives of the log-likelihood. It is very impressive.

Gretl offers a new set of functions that estimate various kinds of GARCH models. Choose
Models >Time-series>GARCH variants from the pull-down menu to reveal the following
dialog box:
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Figure 14.11: Threshold ARCH results

The GJR model type is equivalent to the TARCH discussed above. Estimating it with the OPG2

covariance estimator yields very similar results to the ones in POE5. This module offers several
other variants of GARCH, but you will have to use the gretl documentation to be sure of what you

2OPG stands for outer product of the gradient.
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are estimating. For instance, the TARCH option does not estimate the TARCH model specified in
POE5. It pays to examine the actual algebraic form of the model being estimated, since different
authors use different terms to abbreviate the model’s name or purpose. There are also different
parameterizations use by different authors that further obscure things for the user.

Model: GJR(1,1) [Glosten et al.] (Normal)*
Dependent variable: r
Sample: 1-500 (T = 500), VCV method: OPG

Conditional mean equation

coefficient std. error z p-value
-------------------------------------------------------
const 0.995450 0.0429312 23.19 6.15e-119 ***

Conditional variance equation

coefficient std. error z p-value
------------------------------------------------------
omega 0.356106 0.0900902 3.953 7.73e-05 ***
alpha 0.476221 0.102614 4.641 3.47e-06 ***
gamma 0.256974 0.0873509 2.942 0.0033 ***
beta 0.286913 0.115495 2.484 0.0130 **

(alt. parametrization)

coefficient std. error z p-value
------------------------------------------------------
delta 0.356106 0.0900902 3.953 7.73e-05 ***
alpha 0.262915 0.0804612 3.268 0.0011 ***
gamma 0.489506 0.203966 2.400 0.0164 **
beta 0.286913 0.115495 2.484 0.0130 **

Llik: -730.58891 AIC: 1471.17783
BIC: 1492.25087 HQC: 1479.44686

In point of fact, notice that in gig 2.22 α and γ refer to two different ways to parameterize the
model. The alternative parameterization is the one discussed in POE5.

The gig package will produce graphs as well. Below in Figure 14.12 is a plot of the unanticipated
return and estimated standard error based on TARCH estimates. The return in this model is
constant and equal to .9954, so a negative residual means that actual returns fell below average.
This is what I’m referring to as unanticipated, which is probably a misnomer but conventional in
econometric practice.
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Figure 14.12: Plot produced by gig for TARCH residuals and ±
√
ĥt
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14.5 Garch-in-Mean

Example 14.8 in POE5

The Garch-in-mean (MGARCH) model adds the equation’s variance to the regression function.
This allows the average value of the dependent variable to depend on the volatility of the underlying
asset. In this way, more risk (volatility) can lead to higher average return. The equations are listed
below:

yt = β0 + θht + et (14.9)

ht = δ + α1e
2
t−1 + γdt−1e

2
t−1 + β1ht−1 (14.10)

Notice that the threshold term remains in the model. The errors are normally distributed with
zero mean and variance ht.

The parameters of the model can be estimated using gretl, though the recursive nature of the
likelihood function makes it a bit more difficult. In the script below (Figure 14.13) notice that a
function is used to populate the log-likelihood.3 The function is called gim_filter, it returns
a matrix when called, and it contains eight arguments. The first argument is the time-series, y.
Then, each of the parameters is listed (mu, theta, delta, alpha, gam, and beta) as scalars.
The final argument is a placeholder for the variance, h, that is computed within the function.

Once the function is named and its arguments defined, initiate a series for the variances and
the errors; these have been called lh and le, respectively. The log-likelihood function is computed
using a loop that runs from the second observation through the last. The length of the series can
be obtained using the saved result $nobs, which is assigned to the variable T.

Gretl’s loop syntax is very straightforward, though as we have shown in previous chapters, there
are several variations. In this example the loop is controlled using the special index variable, i.
In this case you specify starting and ending values for i, which is incremented by one each time
round the loop. In the MGARCH example the loop syntax looks like this:

loop for i=2..T --quiet
[Things to compute]

endloop

The first line start the loop using an index variable named i. The first value of i is set to 2. The
index i will increment by 1 until it reaches T, which has already been defined as being equal to
$nobs. The endloop statement tells gretl the point at which to return to the top of the loop
and advance the increment i. As usual, the --quiet option reduces the amount of output that is
written to the screen.

3Actually, the is a very slightly modified version of one provided by gretl genius Professor ‘Jack’ Lucchetti, whose
help is very much appreciated!
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Within the loop itself, lag the index and create an indicator variable that takes the value of 1
when the news is bad (et−1 < 0) and is zero otherwise. The next line squares the residual. lh[i]
uses the loop index to place the variance computation from the iteration into the ith row of lh.
The line that begins le[i]= works similarly for the errors of the mean equation.

The variances are collected in h and the residuals in le. Both are combined and place into a
matrix that is returned when the function is called. The function is closed using end function.

If this looks too complicated, highlight the code with your cursor, copy it using Ctrl-C, and
paste it into a gretl script file (or use the scripts provided with this book).

Once the function is defined, initialize each parameter just as done in TGARCH. The series
that will eventually hold the variances also must be initialized. The latter is done using series
h, which creates the empty series h. The missing values for observations 2 through T are replaced
as the function loops.

Next, the built-in mle command is issued and the normal density kernel is specified just as it
was in the TGARCH example. Then, use the predefined E=gim_filter( ) function, putting in
the variable r for the time-series, the initialized parameters, and &h as a pointer to the variances
that will be computed within the function. Since E returns both residuals and variances, pull the
residuals out and place them into a series as in line 27. This series is used by the normal kernel in
line 25. Issue the params statement to identify the parameters and have them print to the screen.
Close the loop and run the script. The results appear below.

Tolerance = 1.81899e-012

Function evaluations: 82
Evaluations of gradient: 22

Model 1: ML, using observations 1-500
ll = -0.5*(log(2*pi) + log(h) + (eˆ2)/h)
QML standard errors

estimate std. error z p-value
-----------------------------------------------------
mu 0.814459 0.0677497 12.02 2.74e-033 ***
theta 0.200802 0.0610726 3.288 0.0010 ***
delta 0.370791 0.0658589 5.630 1.80e-08 ***
alpha 0.296681 0.0735687 4.033 5.51e-05 ***
gam 0.313665 0.128547 2.440 0.0147 **
beta 0.279001 0.0544579 5.123 3.00e-07 ***

Log-likelihood 724.4610 Akaike criterion 1460.922
Schwarz criterion 1486.210 Hannan-Quinn 1470.845

This is a difficult likelihood to maximize and gretl may take a few seconds to compute the
estimates. A better set of starting values will reduce the number of warnings that the script throws

495



1 function matrix gim_filter(series y, \
2 scalar mu, scalar theta, scalar delta, scalar alpha, \
3 scalar gam, scalar beta, series *h)
4

5 series lh = var(y) # initialize the variance series
6 series le = y - mu # initialize the residual series
7 scalar T = $nobs # Number of Observations
8 loop for i=2..T --quiet
9 scalar ilag = $i - 1

10 scalar d = (le[ilag]<0) # Create the negative threshold
11 scalar e2lag = le[ilag]ˆ2 # Square the residual
12 lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag] # ht
13 le[i] = le[i] - theta*lh[i] # residual
14 endloop
15

16 scalar mu = 0.8 # set starting values for parameters
17 scalar theta = 0.1
18 scalar delta = .5
19 scalar alpha = 0.4
20 scalar gam = .1
21 scalar beta = 0
22

23 series h # initialize the series h
24

25 mle ll = -0.5*(log(2*pi) + log(h) + (eˆ2)/h)
26 matrix E = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)
27 series e = E[,1] # First column of E contains residuals
28 params mu theta delta alpha gam beta
29 end mle --robust

Figure 14.13: The MGARCH mle script includes a function to computes the residuals and variances
for the log-likelihood.

off the first time it runs. Still, it is quite remarkable that we get so close using a free piece of
software and the numerical derivatives that it computes for us.

The gim_filter function was written so that it returns both the estimated residuals and
variances for the model. This allows plotting as shown in Figure 14.14.

To generate this plot I created series from the matrix return of gim_filter and added de-
scriptions that can be used by plot. The series are put into a list and titles and labels added.

1 series Residual = E[,1]
2 series Variance = E[,2]
3 setinfo Residual -d "Unanticipated Return" -n "Unanticipated Return"
4 setinfo Variance -d "GARCH-in-mean variance" -n "GARCH-in-mean variance"
5 list vars = Residual Variance
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Figure 14.14: Estimated mean and variances of GARCH-in-mean that includes a threshold.

6 string title = "GARCH in mean with threshold"
7 string xname = "Time"
8 string yname = "Unanticipated Return"
9 string y2name = "Variance"

10 g3 <- plot vars
11 options with-lines time-series
12 literal set linetype 1 lc rgb "black" pt 7
13 printf "set title \"%s\"", title
14 printf "set xlabel \"%s\"", xname
15 printf "set ylabel \"%s\"", yname
16 printf "set y2label \"%s\"", y2name
17 end plot --output=display

The plot produced is quite interesting. A negative residual suggests an unanticipated negative
return. Thus, from the plot we see that when the unexpected return is negative, this coincides or
precedes slightly a high level of volatility.

Summary statistics reveal that the average return is negative, but the median return is positive.
A few large negative returns are impacting the average performance of this security.

Mean Median Minimum Maximum
Residual -0.011339 0.026203 -4.6153 4.7090
Variance 1.3732 0.88071 0.51772 16.672

Std. Dev. C.V. Skewness Ex. kurtosis
Residual 1.1582 102.15 -0.23591 1.3303
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Variance 1.5066 1.0972 5.0876 35.330

5% perc. 95% perc. IQ range Missing obs.
Residual -1.8748 1.8701 1.3797 0
Variance 0.54209 3.6103 0.76726 0

Also, the returns are negatively skewed and leptokurtotic.

14.6 Script

1 open "@workdir\data\returns5.gdt"
2 set verbose off
3

4 # Example 14.1
5 setinfo allords --graph-name="Australia: All Ordinaries"
6 setinfo nasdaq --graph-name="United States: Nasdaq"
7 setinfo ftse --graph-name="United Kingdom: FTSE"
8 setinfo nikkei --graph-name="Japan: Nikkei"
9 scatters nasdaq allords ftse nikkei --output=display

10

11 freq nasdaq --normal --plot=f1.png
12 freq allords --normal --plot=f2.png
13 freq ftse --normal --plot=f3.png
14 freq nikkei --normal --plot=f4.png
15

16 list indices = nasdaq allords ftse nikkei
17 summary indices
18

19 # Example 14.2
20 # Simulating returns
21 nulldata 200
22 setobs 1 1 --special-time-series
23

24 set seed 1010198
25 series e_arch = 0
26 series e = normal(0,1)
27 series e_arch= e*sqrt(1 + .8*(e_arch(-1))ˆ2)
28

29 series y = e
30 series y_arch = e_arch
31 setinfo y --graph-name="Constant Variance: h(t)=1"
32 setinfo y_arch --graph-name="ARCH(1): h(t)=1 + 0.8 eˆ2(t-1) "
33 scatters y y_arch --output=display --with-lines
34

35 f5 <- freq y --normal --plot=display
36 f6 <- freq y_arch --normal --plot=display
37
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38 garch 0 1; y
39 garch 0 1; y_arch
40

41 # Example 14.3
42 open "@workdir\data\byd.gdt"
43 setobs 1 1 --special-time-series
44

45 # Intial Plots and summary statistics
46 gnuplot r time --output=display --with-lines
47 freq r --normal --plot=display
48 summary r
49

50 # arch(1) LM test
51 m_ols <- ols r const
52 modtest 1 --arch
53

54 # LM test manually
55 ols r const --quiet
56 series ehat2 = $uhatˆ2
57 arch_test <- ols ehat2 const ehat2(-1)
58 printf "LM = %.4f with p-value = %.3f\n", $trsq, pvalue(X,1,$trsq)
59

60 # Example 14.4
61 # arch(1) Using built in command for arch
62 m1_arch <- arch 1 r const
63 # garch(0,1)=arch(1)
64 # set garch_vcv op # OPG vcv: Uncomment to match POE5
65 set garch_vcv unset # Resets the vcv to default
66 GARCH_11 <- garch 1 1 ; r const
67

68 # Example 14.5
69 m2_arch <- garch 0 1; r const
70 series ht = $h
71 g_arch <- gnuplot ht time --output=display --with-lines
72

73 # Example 14.6
74 garch 1 1 ; r const
75 series Return = $yhat
76 series Variance = $h
77 list vars = Return Variance
78 string title = "GARCH(1,1)"
79 string xname = "Time"
80 string yname = "Return"
81 string y2name = "Variance"
82 g3 <- plot vars
83 options with-lines time-series
84 literal set linetype 1 lc rgb "black" pt 7
85 printf "set title \"%s\"", title
86 printf "set xlabel \"%s\"", xname
87 printf "set ylabel \"%s\"", yname
88 printf "set y2label \"%s\"", y2name
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89 end plot --output=display
90

91 gnuplot Variance time --with-lines --output=display
92 gnuplot Return time --with-lines --output=display
93

94 # threshold arch
95 open "@workdir\data\byd.gdt"
96 setobs 1 1 --special-time-series
97

98 scalar mu = 0.5
99 scalar omega = .5

100 scalar alpha = 0.4
101 scalar delta = 0.1
102 scalar beta = 0
103

104 mle ll = -0.5*(log(h) + (eˆ2)/h) # Log-likelihood function
105 series h = var(r) # Initialization of variances
106 series e = r - mu # Model’s residuals
107 series e2 = eˆ2 # Squared resiguals
108 series e2m = e2 * (e<0) # Create the threshold
109 series h = omega + alpha*e2(-1)\
110 + delta*e2m(-1) + beta*h(-1) # TARCH variance
111 params mu omega alpha delta beta # Parameters
112 end mle
113

114 # GIG GJR(1,1) You may have to initialize this through the GUI
115 include gig.gfn
116 d=GUI_gig(r, 3, 1, 1, null, 1, 0, null, 0, 0, 1) # contents to bundle
117

118 # garch-in-mean
119 open "@workdir\data\byd.gdt"
120 setobs 1 1 --special-time-series
121

122 # garch-in-mean -- means and variances
123

124 function matrix gim_filter(series y, \
125 scalar mu, scalar theta, scalar delta, scalar alpha, \
126 scalar gam, scalar beta, series *h)
127

128 series lh = var(y) # initialize the variance series
129 series le = y - mu # initialize the residual series
130 scalar T = $nobs # Number of Observations
131 loop for i=2..T --quiet
132 scalar ilag = $i - 1
133 scalar d = (le[ilag]<0) # Create the negative threshold
134 scalar e2lag = le[ilag]ˆ2 # Square the residual
135 lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag] # ht
136 le[i] = le[i] - theta*lh[i] # residual
137 endloop
138

139 series h = lh # Puts ht into series h (pointer in function)

500



140 matrix matvar = { le, h} # The matrix return
141 return matvar
142 end function
143

144

145 scalar mu = 0.8
146 scalar theta = 0.1
147 scalar delta = .5
148 scalar alpha = 0.4
149 scalar gam = .1
150 scalar beta = 0
151

152 series h
153

154 mle ll = -0.5*(log(2*$pi) + log(h) + (eˆ2)/h)
155 matrix E = gim_filter(r, mu, theta, delta, alpha, gam, beta, &h)
156 series e = E[,1]
157 params mu theta delta alpha gam beta
158 end mle --robust
159

160 series Residual = E[,1]
161 series Variance = E[,2]
162 setinfo Residual -d "Unanticipated Return" -n "Unanticipated Return"
163 setinfo Variance -d "GARCH-in-mean variance" -n "GARCH-in-mean variance"
164 list vars = Residual Variance
165 string title = "GARCH in mean with threshold"
166 string xname = "Time"
167 string yname = "Unanticipated Return"
168 string y2name = "Variance"
169 g3 <- plot vars
170 options with-lines time-series
171 literal set linetype 1 lc rgb "black" pt 7
172 printf "set title \"%s\"", title
173 printf "set xlabel \"%s\"", xname
174 printf "set ylabel \"%s\"", yname
175 printf "set y2label \"%s\"", y2name
176 end plot --output=display
177

178 summary vars
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Chapter 15

Pooling Time-Series and
Cross-Sectional Data

A panel of data consists of a group of cross-sectional units (people, firms, states or countries)
that are observed over time. Following Hill et al. (2018) we will denote the number of cross-sectional
units by n and the number of time periods we observe them as T.

In order to use the predefined procedures for estimating models using panel data in gretl you
must be sure that your data have been properly structured in the program. The dialog boxes for
assigning panel dataset structure using index variables is shown below in Figure 15.1. To use
this method, the data must include variables that identify each individual and time period. Select
the Panel option using the radio button and gretl will then be able to work behind the scenes
to accurately account for the time and individual dimensions. The datasets that come with this
manual have already been setup this way, but if you use unstructured data you’ll want to to assign
the proper dataset structure to it so that all of the appropriate panel data procedures are available
for use.

Gretl provides easy access to a number of useful panel data sets via its database server.1 These
include the Penn World Table and the Barro and Lee (1996) data on international educational
attainment. These data can be installed using File>Databases>On database server from the
menu bar as shown in Figure 15.2 below. From here, select a database you want. In Figure 15.3 the
entry for the Barro-Lee panel is highlighted. To its right, you are given information about whether
that dataset is installed on your computer. Double click on barro lee and a listing of the series
in this database will appear in a new window. From that window you can search for a particular
series, display observations, graph a series, or import it. This is a VERY useful utility, both for
teaching and research and I encourage you to explore what is available on the gretl server. You
will notice the 3 icons at the top of the window

1Your computer must have access to the internet to use this.
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Figure 15.1: The data structure wizard for panel data. If the dataset contains variables that identify
time and individual, the best choice is to select Use index variables. Otherwise, select Stacked time
series or Stacked cross sections, depending on how the data are arranged in the datafile.

The first icon from the left is the list series icon. Clicking it will bring up the list of series in a
particular database as shown below in Figure 15.4. The icon that looks like a floppy disk (remember
those?) will install the database. The clicking the next icon will show which databases are installed
on your computer.

Figure 15.4 shows a portion of the series list window for the Barro and Lee data from the
database server. From here you can display the values contained in a series, plot the series, or add
a series to your dataset. Highlight the particular series you want and click on the appropriate icon
at the top.
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Figure 15.2: Accessing data from the database server via the pull-down menus

15.1 A Basic Model

The most general expression of linear regression models that have both time and unit dimensions
is seen in equation 15.1 below.

yit = β1it + β2itx2it + β3itx3it + eit (15.1)

where i = 1, 2, . . . , n and t = 1, 2, . . . , T . If we have a full set of time observations for every
individual then there will be nT total observations in the sample. The panel is said to be balanced
in this case. It is not unusual to have some missing time observations for one or more individuals.
When this happens, the total number of observation is less than nT and the panel is unbalanced.

The biggest problem with equation (15.1) is that even if the panel is balanced, the model
contains 3 times as many parameters as observations (nT)! To be able to estimate the model, some
assumptions must be made in order to reduce the number of parameters. One of the most common
assumptions is that the slopes are constant for each individual and every time period; also, the
intercepts vary only by individual. This model is shown in equation (15.2).

yit = β1i + β2x2it + β3x3it + eit (15.2)

This specification, which includes n+2 parameters, includes dummy variables that allow a separate
intercept for each individual. Such a model implies that there are no substantive changes in the
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Figure 15.3: Installing a data from the database server via the pull-down menus

regression function over short time periods. Obviously, the longer the time dimension, the more
likely this assumption will be false.

In equation (15.2) the parameters that vary by individual are called individual fixed effects
and the model is referred to as one-way fixed effects. The model is suitable when the individuals
in the sample differ from one another in a way that does not vary over time. It is a useful way to
avoid unobserved differences among the individuals in the sample that would otherwise have to be
omitted from consideration. Remember, omitting relevant variables may cause least squares to be
biased and inconsistent; a one-way fixed effects model, which requires the use of panel data, can be
very useful in mitigating the bias associated with time invariant, unobservable effects.

For longer panels where the regression function is shifting over time, T−1 time dummy variables
can be added to the model. The model becomes

yit = β1i + β1t + β2x2it + β3x3it + eit (15.3)

where either β1i or β1t must be omitted in order to avoid perfect collinearity. This model contains
n + (T − 1) + 2 parameters which is generally fewer than the nT observations in the sample.
Equation (15.3) is called the two-way fixed effects model because it contains parameters that
will be estimated for each individual and each time period.

Example 15.1 in POE5

This example lists observations on several variables in a microeconometric panel of individuals.
The nls panel.gdt dataset Hill et al. (2018) includes a subset of National Longitudinal Survey which
is conducted by the U.S. Department of Labor. The database includes observations on women, who
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Figure 15.4: This shows a portion of the series list window for the Barro and Lee data from the
database server. Using the icons at the top of the window a series can be displayed, plotted, or
added to the dataset. A right-click of the mouse will also reveal the available choices.

in 1968, were between the ages of 14 and 24. It then follows them through time, recording various
aspects of their lives annually until 1973 and bi-annually afterwards. The sample consists of 716
women observed in 5 years (1982, 1983, 1985, 1987 and 1988). The panel is balanced and there are
3580 total observations.

1 open "@workdir\data\nls_panel.gdt"
2 list xvars = educ south black union exper exper2 tenure tenure2 const
3 print id year lwage xvars --byobs

This syntax shows that variable names and lists can be used together to produce the desired results.
Also, the --byobs option prints the listed series by observation. If not used, the variables print
all observations separately. For instance, the first series, id, would simply list the identification
number for every observation. Once printed, it then prints every yearly observation and so on.

id year lwage educ south

1:1 1 82 1.808289 12 0
1:2 1 83 1.863417 12 0
1:3 1 85 1.789367 12 0
1:4 1 87 1.846530 12 0
1:5 1 88 1.856449 12 0
2:1 2 82 1.280933 17 0
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2:2 2 83 1.515855 17 0
2:3 2 85 1.930170 17 0
2:4 2 87 1.919034 17 0
2:5 2 88 2.200974 17 0
3:1 3 82 1.814825 12 0
3:2 3 83 1.919913 12 0
3:3 3 85 1.958377 12 0
3:4 3 87 2.007068 12 0
3:5 3 88 2.089854 12 0

When data are arranged in this way, they are sorted as stacked time series. The first five observa-
tions contain all time periods for the first individual.

15.2 Estimation

Example 15.2 in POE5

Estimation of models using panel data is relatively straightforward, though there are many
variants one can consider. In fact, entire courses are devoted to the possibilities. In this chapter, a
few estimators are discussed and data from two sets used in estimation and testing.

The first set of models is based on the presence of fixed effects in the regression function as
shown in equation (15.2). When there are only two time periods, the data can be time-differenced
and OLS used to estimate the slopes of all time-varying regressors. Time-invariant variables and
the intercept drop out of the model upon differencing.

This is illustrated in Example 15.2 in POE5. The data are included in the chemical2.gdt dataset.
This dataset contains sales, capital, and labor inputs for Chinese chemical firms. There are 3 years
of observations on 200 firms. The model to be estimated is a log-log model of sales:

ln(salesit) = β1i + β2 ln(capitalit) + β3 ln(laborit) + eit

The years considered are T = 2005, 2006. Taking the time difference yields:

∆ ln(salesit) = β2∆ ln(capitalit) + β3∆ ln(laborit) + ∆eit

where ∆ ln(xit) = ln(xi,2006)− ln(xi,2005), with x = sales, capital, labor.

The gretl script to estimate this model is:

1 open "@workdir\data\chemical2.gdt"
2 dummify year
3 smpl (Dyear_2005 ==1 || Dyear_2006 ==1) --restrict
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4 list xvars = const lcapital llabor
5 diff xvars lsales
6 m1 <- ols d_lsales d_lcapital d_llabor
7 m2 <- ols lsales xvars

This is our second use of dummify (see page 247) and, though not strictly needed here, can be
useful in creating time fixed effects. This command creates a set of indicator variables for the
distinct values of the variables list. In this example, there are three years and three indicators will
be created. There are options available for this command that allow one to drop either the first
or last of the indicators. The smpl command is used to limit observations to the years 2005 and
2006. From there a list is created that contains the series and the diff command is used to
generate the differences. The regression results are:

̂d lsales = 0.03837
(0.05072)

d lcapital + 0.3097
(0.07547)

d llabor

T = 200 R̄2 = 0.0759 F (2, 198) = 8.6759 σ̂ = 0.35299

(standard errors in parentheses)

The pooled model is also estimated which specifies a common intercept and slopes for the two
years. This regression produces:

̂lsales = 5.8745
(0.2107)

+ 0.2536
(0.03545)

lcapital + 0.4264
(0.05760)

llabor

T = 400 R̄2 = 0.5017 F (2, 397) = 201.87 σ̂ = 0.84831

(standard errors in parentheses)

The difference in estimates is quite pronounced. The elasticity of sales with respect to capital is
0.38 in the fixed effects model and nearly 10 times larger in the pooled regression.

Example 15.2 in POE5

The difference estimator is used to estimate a simple wage regression based on the nls panel.gdt
data. The model is

ln(wageit) = β1i + β2educi + β3experit + eit

Taking a two period time difference causes the intercept and the time-invariant years of schooling
to drop from the model. The script is:

1 open "@workdir\data\nls_panel.gdt"
2 smpl (year==87 || year==88) --restrict
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3 diff lwage exper
4 ols d_lwage d_exper

The sample is restricted to 1987 and 1988 and the differenced regression yields:

̂d lwage = 0.02184
(0.007141)

d exper

T = 716 R̄2 = 0.0129 F (1, 715) = 9.3546 σ̂ = 0.25332

(standard errors in parentheses)

This matches the results from POE5.

Example 15.4 in POE5

In this example the within transformation is used to estimate a two-period fixed effects model
of Chinese chemical firms. The data are loaded, a variable list created and the sample restricted to
the years 2005 and 2006. The option --replace replaces the existing data and --permanent
makes the changes permanent.2

1 open "@workdir\data\chemical2.gdt"
2 list xvar = lsales lcapital llabor
3 smpl year !=2004 --restrict --replace --permanent
4

5 loop foreach j xvar --quiet # The within transformation
6 series dm_$j = $j - pmean($j)
7 endloop

The most interesting feature of this script starts in line 5. A foreach loop is initiated that
will quietly demean each variable (j = lsales, lcapital, llabor) in xvar. The pmean function is a
special panel operator that computes the time mean for each individual in the sample. The values
are repeated for each period. The series created will have a dm_ prefix as shown in variables 12-14
in the list below.

2Permanent at least in terms of this session. If the data are not saved to a file in this state, then reopening the
dataset will repopulate the entire sample.
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Using these variables the within estimator is computed:

1 list allvar = dm_lsales dm_lcapital dm_llabor
2 scalar NT = $nobs
3 scalar N = rows(values(firm))
4 scalar k = nelem(allvar)-1
5

6 m4_within <- ols allvar
7 scalar correct = sqrt((NT-k)/(NT-N-k))
8 scalar correct_se_c = correct*$stderr(dm_lcapital)
9 scalar correct_se_l = correct*$stderr(dm_llabor)

The values function is used to create a vector that contains each of the unique elements of the series
firm (and sorts them in ascending order). The number of rows will equal the number of firms, n,
contained in the sample. The regression is estimated in line 6 and the results are:

̂dm lsales = 0.03838
(0.03577)

dm lcapital + 0.3097
(0.05323)

dm llabor

T = 400 R̄2 = 0.0783 F (2, 398) = 17.439 σ̂ = 0.24897

(standard errors in parentheses)

The biggest problem here is that the standard errors are not computed with the correct degrees of
freedom. Lines 7-9 of the script correct that.

Replaced scalar correct_se_c = 0.0507193
Replaced scalar correct_se_l = 0.0754665
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which match the correct ones shown in POE5 and from the difference estimation. The commands:

1 diff allvar
2 m4_diff <- ols d_dm_lsales d_dm_lcapital d_dm_llabor

produce:

̂d dm lsales = 0.03838
(0.05072)

d dm lcapital + 0.3097
(0.07547)

d dm llabor

T = 200 R̄2 = 0.0759 F (2, 198) = 8.6759 σ̂ = 0.35299

(standard errors in parentheses)

Example 15.5 in POE5

In this example, the within transformation is used on the sample with T = 3 years worth of
data. The data need to be reloaded so as to include all years available. The within transformation
that uses pmean to compute and add the firm level means to the data must be computed with all
three years of data.

1 open "@workdir\data\chemical2.gdt"
2 list allvar = lsales lcapital llabor
3

4 loop foreach j allvar --quiet
5 series dm_$j = $j - pmean($j)
6 endloop
7

8 ols dm_lsales dm_lcapital dm_llabor

This yields:

̂dm lsales = 0.08887
(0.02709)

dm lcapital + 0.3522
(0.04134)

dm llabor

T = 600 R̄2 = 0.1238 F (1, 598) = 85.615 σ̂ = 0.24002

(standard errors in parentheses)

To correct the standard errors for degrees of freedom add:
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1 scalar NT = $nobs
2 scalar N = rows(values(firm))
3 scalar k = nelem(allvar)-1
4 scalar correct = sqrt((NT-k)/(NT-N-k))
5 scalar correct_se_c = correct*$stderr(dm_lcapital)
6 scalar correct_se_l = correct*$stderr(dm_llabor)

which gives us:

Generated scalar correct_se_c = 0.0332076
Generated scalar correct_se_l = 0.05067

which is correct.

An equivalent way to estimate this model is using the least squares dummy variable estimator
(LSDV). Here, an indicator variable is created for each individual in the sample. These are added
to the model (dropping the intercept) and estimated by least squares.

There is a special operator that is used to generate indicators for each of the units in a panel.
This function is unitdum, which must be used with genr.3

1 open "@workdir\data\chemical2.gdt"
2 genr unitdum

To estimate this fixed effects model with the LSDV estimator create a list that includes the wildcard
and run a regression with this list added to the model.

1 list xvars = const lcapital llabor
2 list d = du_*
3 list d -= du_1
4 ols lsales xvars d
5 omit d --test-only

Notice that unitdum created an entire set of 200 indiators, one for each firm. To facilitate a
hypothesis test that the fixed effects are equal, the model was reparameterized to include an overall
intercept and one of the indicators was dropped to avoid the dummy variable trap. The unitdum
function creates a prefix that is added to the variables that begins as du_. This enables one to use
a wildcard du_* to include all of them in a list, d. The third line removes du_1 from that list.

3There is also a timedum function that does the same thing for the time dimension variable. These were introduced
in section 1.3.4.
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Then, the model is estimated by OLS and the omit command is used to test the null hypothesis
that all of the indicators parameters are equal zero.

There is a good reason why this formulation of the fixed effects model is not used more often.
It produces a ton of output. Since there are 200 firms in the data, 200 lines of extra output will be
sent to the screen (or table). Still, it works beautifully.

The abbreviated is:

Model 2: Pooled OLS, using 600 observations
Included 200 cross-sectional units
Time-series length = 3
Dependent variable: lsales

coefficient std. error t-ratio p-value
--------------------------------------------------------------
const 8.06546 0.455529 17.71 3.74e-052 ***
lcapital 0.0888719 0.0332076 2.676 0.0078 ***
llabor 0.352244 0.0506700 6.952 1.49e-011 ***
du_2 0.856350 0.252770 3.388 0.0008 ***
du_3 1.19589 0.242080 4.940 1.15e-06 ***
du_4 1.64249 0.240741 6.823 3.34e-011 ***
du_5 1.03144 0.264892 3.894 0.0001 ***
du_6 0.287830 0.243447 1.182 0.2378
du_7 0.504913 0.258221 1.955 0.0512 *
du_8 2.00044 0.248468 8.051 9.59e-015 ***
.
.
.
.
du_199 0.513052 0.246341 2.083 0.0379 **
du_200 0.914785 0.257840 3.548 0.0004 ***

Mean dependent var 9.868877 S.D. dependent var 1.191621
Sum squared resid 34.45147 S.E. of regression 0.294213
R-squared 0.959495 Adjusted R-squared 0.939040
F(201, 398) 46.90566 P-value(F) 2.1e-198
Log-likelihood 5.850284 Akaike criterion 392.2994
Schwarz criterion 1280.479 Hannan-Quinn 738.0500
rho 0.301384 Durbin-Watson 1.551848

The joint test reveals:

Test statistic: F(199, 398) = 22.7093, p-value 7.28428e-141

The hypothesis that the fixed effects are equal to one another is rejected at 5%.

The best way to estimate fixed effects models in gretl is using the panel command. This is
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the built-in command for estimating various types of panel models. The syntax for this important
command is:

panel

Arguments: depvar indepvars
Options: --vcv (print covariance matrix)

--fixed-effects (estimate with group fixed effects)
--random-effects (random effects or GLS model)
--nerlove (use the Nerlove transformation)
--between (estimate the between-groups model)
--robust (robust standard errors; see below)
--time-dummies (include time dummy variables)
--unit-weights (weighted least squares)
--iterate (iterative estimation)
--matrix-diff (compute Hausman test via matrix difference)
--unbalanced=method (random effects only, see below)
--quiet (less verbose output)
--verbose (more verbose output)

All of the basic panel data estimators are available. Fixed effects, two-way fixed effects, random
effects, between estimation and (not shown) pooled least squares.

The fixed effects option (--fixed-effects) is used to estimate the Chinese chemical sales
function:

1 open "@workdir\data\chemical2.gdt"
2 list xvars = lcapital llabor
3 p1 <- panel lsales xvars const --fixed-effects

This produces:

p1: Fixed-effects, using 600 observations
Included 200 cross-sectional units
Time-series length = 3
Dependent variable: lsales

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 7.578 0.3523 21.51 1.22e-068 ***
lcapital 0.08887 0.03321 2.676 0.0078 ***
llabor 0.3522 0.05067 6.952 1.49e-011 ***

Mean dependent var 9.868877 S.D. dependent var 1.191621
Sum squared resid 34.45147 S.E. of regression 0.294213
LSDV R-squared 0.959495 Within R-squared 0.125239
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LSDV F(201, 398) 46.90566 P-value(F) 2.1e-198
Log-likelihood 5.850284 Akaike criterion 392.2994
Schwarz criterion 1280.479 Hannan-Quinn 738.0500
rho 0.301384 Durbin-Watson 1.551848

Joint test on named regressors -
Test statistic: F(2, 398) = 28.4908
with p-value = P(F(2, 398) > 28.4908) = 2.72879e-012

Test for differing group intercepts -
Null hypothesis: The groups have a common intercept
Test statistic: F(199, 398) = 22.7093
with p-value = P(F(199, 398) > 22.7093) = 7.28428e-141

The slopes are equivalent to those from the LSDV model and printing the (199) fixed effects is
suppressed. Furthermore, the joint test that the fixed effects are equal is automatically produced
and a joint test that the slopes are equal zero is performed. The relationship between the within
estimator and LSDV is no secret since several LSDV statistics are printed in the output. The LSDV
F tests the hypothesis that only a common intercept belongs in the model; all the 199 indicator
coefficients and 2 slopes are jointly zero.

Before moving on, a pooled regression is estimated using panel robust standard errors. This
model imposes the restriction that β1i = β1 for all individuals. All individuals share the same
intercept. Applying pooled least squares in a panel is restrictive in a number of ways. First, to
estimate the model using least squares violates at least one assumption that is used in the proof of
the Gauss-Markov theorem. It is almost certain that errors for an individual will be correlated. If
Johnny isn’t the sharpest marble in the bag, it is likely that his earnings given equivalent education,
experience, tenure and so on will be on the low side of average for each year. He has low ability
and that affects each year’s average wage similarly.

It is also possible that an individual may have smaller of larger earnings variance compared to
others in the sample. The solution to these specification issues is to use robust estimates of the
variance covariance matrix. Recall that least squares is consistent for the slopes and intercept (but
not efficient) when errors are correlated or heteroskedastic, but that this changes the nature of the
variance-covariance.

Robust covariances in panel data take into account the special nature of these data. Specifically
they account for autocorrelation within the observations on each individual and they allow the
variances for different individuals to vary. Since panel data have both a time series and a cross-
sectional dimension one might expect that, in general, robust estimation of the covariance matrix
would require handling both heteroskedasticity and autocorrelation (the HAC approach).

Gretl currently offers two robust covariance matrix estimators specifically for panel data. These
are available for models estimated via fixed effects, pooled OLS, and pooled two-stage least squares.
The default robust estimator is that suggested by Arellano (2003), which is HAC provided the panel
is of the “large n, small T” variety (that is, many units are observed in relatively few periods).
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In cases where autocorrelation is not an issue, however, the estimator proposed by Beck and
Katz (1995) and discussed by Greene (2003, Chapter 13) may be appropriate. This estimator takes
into account contemporaneous correlation across the units and heteroskedasticity by unit.

Using the data in chemical3.gdt, which contains data on 1000 Chinese chemical firms, a log-log
sales model is proposed and estimated:

1 open "@workdir\data\chemical3.gdt"
2 list xvars = const lcapital llabor
3 OLS <- ols lsales xvars
4

5 set pcse off
6 Cluster <- ols lsales xvars --robust

First, notice is that the model is estimated by least squares with only a common intercept and two
variables. In line 3, which is without a robust option, the usual OLS covariance is estimated. In
line 6, the covariance of least squares is estimated using the --robust option. This uses the fact
that errors for each firm are correlated with one another. Each firm is a cluster and these errors in
each cluster are correlated with one another. On the other hand, clusters with each other. Firm 1
may have positive errors and firm 2 negative. But the errors of firms themselves are not correlated
with other firms.4 In summary, when panel data are loaded the --robust option defaults to an
special version of the HAC covariance (see section 9.9.3) that is robust with respect to some forms
of heteroskedasticity and autocorrelation due to the data’s panel structure.

Setting pcse off ensures that the Arellano standard errors are computed. When this is on,
gretl computes the Beck and Katz standard errors. It should be off by default. The cluster robust
results appear below. Notice that gretl refers to the standard errors as HAC, but these are the
Arellano cluster robust standard errors in parentheses.

Cluster: Pooled OLS, using 3000 observations
Included 1000 cross-sectional units

Time-series length = 3
Dependent variable: lsales

Robust (HAC) standard errors

Coefficient Std. Error t-ratio p-value

const 5.541 0.1424 38.90 0.0000
lcapital 0.3202 0.02731 11.72 0.0000
llabor 0.3948 0.03903 10.12 0.0000

4For large n, knowing that the errors of firm 1 are negative and positively correlated with one another tells me
nothing about whether the errors in firm 2 are negative or positive. They are independent.
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To force gretl to produce the HCCME (inconsistent in this case) standard errors one must
perform some trickery on the data. The data must be redefined as a cross-section in order for the
HCCME standard errors to be computed for this OLS regression. That is done here:

1 setobs 1 1 --cross-section
2 Het_HC3 <- ols lsales xvars --robust

Be sure to restore the data to its proper format before estimating any more models with these data.

The results for OLS with ‘usual,’ HC3, and cluster standard errors is shown here:

Pooled OLS estimates
Dependent variable: lsales

OLS Het HC3 Cluster

const 5.5408∗∗ 5.5408∗∗ 5.5408∗∗

(0.0828) (0.0890) (0.1424)

lcapital 0.3202∗∗ 0.3202∗∗ 0.3202∗∗

(0.0153) (0.0179) (0.0273)

llabor 0.3948∗∗ 0.3948∗∗ 0.3948∗∗

(0.0225) (0.0258) (0.0390)

n 3000 3000 3000
R̄2 0.5578 0.5578 0.5578
` −3837 −3837 −3837

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The cluster standard errors tend to be quite a bit larger than the inconsistent ones in columns (1)
and (2). This is a typical result.

Example 15.8 in POE5

Finally, cluster robust standard errors can also be used with the fixed effects estimator. The
results:

517



Fixed-effects estimates
Dependent variable: lsales

FE FE-Cluster

const 7.9463∗∗ 7.9463∗∗

(0.2143) (0.3027)

lcapital 0.1160∗∗ 0.1160∗∗

(0.0195) (0.0273)

llabor 0.2689∗∗ 0.2689∗∗

(0.0307) (0.0458)

n 3000 3000
R̄2 0.0582 0.0582
` −681.9 −681.9

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Again, the cluster robust standard errors are 50% larger. Each of the coefficients remains significant
though, so hypothesis tests are not being substantively impacted.

As long as omitted effects (e.g., individual differences) are uncorrelated with any of the regres-
sors, these estimates are consistent. If the individual differences are correlated with regressors, then
you can estimate the model’s parameters consistently using fixed effects.

15.3 Random Effects

The random effects estimator treats the individual differences as being randomly assigned to
the individuals. Rather than estimate them as parameters as we did in the fixed effects model, here
they are incorporated into the model’s error, which in a panel will have a specific structure. The
β1i term in equation 15.3 is modeled:

β1i = β̄1 + ui (15.4)

where the ui are random individual differences that are the same in each time period.

yit = β̄1 + β2x2it + β3x3it + (eit + ui) (15.5)

= β̄1 + β2x2it + β3x3it + vit (15.6)

where the combined error is
vit = ui + eit

the key property of the new error term is that it is homoskedastic

σ2
v = var (vit) = var (ui + eit) = σ2

u + σ2
e (15.7)
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and serially correlated. For individual i, that covariance among his errors is

cov (vit, vis) = 0

for t 6= s. Also, the covariance between any two individuals is zero. One of the key advantages of
the random effects model is that parameters on time invariant regressors can be estimated. That
means that coefficients on black and educ can be estimated. Not so with fixed effects.

The parameter estimates are actually obtained through feasible generalized least squares. Equa-
tion 15.7 contains two parameters that describe the variances and covariances in the model. These
are estimated and used to perform FGLS. The process is described in some detail in POE5 and
will not be discussed in much detail here. However, when gretl estimates the model as specified,
it refers to the results as ‘GLS’.

The transformation that is used on the variables of the model is sometimes referred to as
quasi-demeaning. It is based on the computation of

θ = 1− σe√
Tσ2

u + σ2
e

(15.8)

This parameter θ is estimated from the data and the transformation are

y∗it = yit − θ ȳi, x∗1it = 1− θ, x∗2it = x2it − θ x̄2i, x∗3it = x3it − θ x̄3i (15.9)

The bars over the variables indicate means for the ith individual taken over the available time
periods. Gretl estimates θ and the variances.

Example 15.9 in POE5

For the 1000 Chinese chemical firms the fixed effects, random effects, and random effects with
cluster standard errors are estimated as:

1 open "@workdir\data\chemical3.gdt"
2 list xvars = const lcapital llabor
3 FE <- panel lsales xvars --fixed-effects
4 FGLS <- panel lsales xvars --random-effects
5 FGLS_cluster <- panel lsales xvars --random-effects --robust

The estimates are compared below:

Fixed-effects estimates
Dependent variable: lsales
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FE FGLS FGLS cluster

const 7.9463∗∗ 6.1718∗∗ 6.1718∗∗

(0.2143) (0.1142) (0.1428)

lcapital 0.1160∗∗ 0.2393∗∗ 0.2393∗∗

(0.0195) (0.0147) (0.0221)

llabor 0.2689∗∗ 0.4140∗∗ 0.4140∗∗

(0.0307) (0.0220) (0.0327)

n 3000 3000 3000
R̄2 0.0582
` −681.9 −3867 −3867

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The estimates match those from POE5 nicely. The estimated value of α in the random effects
estimator is 0.73529. Gretl calls this ‘theta.’

Example 15.10 in POE5

In this example we return to the wage model visited earlier and estimated using the nls panel.gdt
data. In this example the model is estimated using both fixed- and random-effects. To revisit a
technique used earlier in this manual, the results are assembled into a model table using a script
(as opposed to the GUI, which I’ve been using liberally).

The model considered is found in equation (15.3) below.

ln(wage)it = β1i + β2educi + β3experit + β4exper2
it + β5tenureit

+β6tenure2
it + β7southit + β8unionit + β9blacki + eit (15.10)

The gretl script used is:

1 open "@workdir\data\nls_panel.gdt"
2 list xvars = educ exper exper2 tenure tenure2 south union black
3 FE <- panel lwage xvars const --fixed-effects
4 modeltab add
5 RE <- panel lwage xvars const --random-effects
6 modeltab add
7 Pooled <- panel lwage xvars const --pooled --robust
8 modeltab add
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9 modeltab show
10 modeltab free

Recall that modeltab add adds the results of the preceding regression to a model table. modeltab
show displays the table, and modeltab free clears the table. The results from this set of re-
gressions is shown below:

Dependent variable: lwage

Pooled FE RE
Pooled OLS Within GLS

const 0.4766∗∗ 1.4500∗∗ 0.5339∗∗

(0.0846) (0.0401) (0.0799)

educ 0.0714∗∗ 0.0733∗∗

(0.0055) (0.0053)

exper 0.0557∗∗ 0.0411∗∗ 0.0436∗∗

(0.0113) (0.0066) (0.0064)

exper2 −0.0011∗∗ −0.0004 −0.0006∗∗

(0.0005) (0.0003) (0.0003)

tenure 0.0150∗∗ 0.0139∗∗ 0.0142∗∗

(0.0071) (0.0033) (0.0032)

tenure2 −0.0005 −0.0009∗∗ −0.0008∗∗

(0.0004) (0.0002) (0.0002)

south −0.1060∗∗ −0.0163 −0.0818∗∗

(0.0271) (0.0361) (0.0224)

union 0.1322∗∗ 0.0637∗∗ 0.0802∗∗

(0.0271) (0.0143) (0.0132)

black −0.1167∗∗ −0.1167∗∗

(0.0281) (0.0302)

n 3580 3580 3580
R̄2 0.3241 0.1430
` −1630 1174 −1649

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the time-invariant variables educ and black cannot be estimated using fixed effects.
Also, the pooled OLS with cluster robust standard errors are reasonably close in magnitude to the
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FGLS random effects estimates. As usual, the cluster standard errors are larger than the others.
The similarity of the FE and RE estimates sometimes suggest that the unobserved components
may not be correlated with regressors. This makes the RE estimator efficient. A test for this is
explored below.

Wisely, gretl has omitted the R2 for the random effects model. Recall that R2 is only suitable
for linear models estimated using OLS, which is the case for one-way fixed effects.

15.4 Specification Tests

There are a couple of key specification tests one should do before relying on the between,
random effects, or pooled least squares estimators. For consistency all require that the unobserved
heterogeneity be uncorrelated with the model’s regressors. This is tested using a version of a
Hausman test. The other test is for the presence of random effects. This test is an LM test that
is sometimes referred to as Breusch-Pagan, although there are tests of other hypotheses that go by
the latter.

15.4.1 Breusch-Pagan Test

The Breusch Pagan test statistic is based on a Lagrange multiplier and is computed

LM =

√
nT

2 (T − 1)


n∑
i=1

(
T∑
t=1

êit

)2

n∑
i=1

T∑
t=1

ê2
it

− 1

 (15.11)

The null hypothesis is H0: σ2
u = 0 against the alternative that H1: σ2

u ≥ 0. Under the null,
LM ∼ N(0, 1) and the best idea would be to perform a one-sided test. Unfortunately, gretl and
most other pieces of software report LM 2 and use the χ2(1) which makes the alternative H1: σ2

u 6= 0.

The good news is that at least gretl computes LM 2 by default whenever you estimate a ran-
dom effects model. Rejection of the null means that the individual (and in this model, random)
differences have variance. If you fail to reject then you probably want to use pooled least squares.

To compute equation (15.11) we use:

1 ols lsales xvars
2 series ehat = $uhat
3 scalar sse = $ess
4 scalar NT = $nobs
5 scalar N = rows(values(firm))
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6 scalar T = rows(values(year))
7

8 series sm = psum(ehat)
9 matrix mti = pshrink(sm)

10 scalar Sum = sum(mti.ˆ2)
11

12 scalar LM = sqrt(nT/(2*(T-1)))*((Sum/sse)-1)
13 printf "The LM test statistic = %.3f with p-value = %.3f\n", \
14 LM, pvalue(z,LM)

This script uses the values function to identify the unique firms and years within the data.
Counting the rows of these produces n and T for the computations. Also, two other panel functions
are used to compute LM. The first is psum. This command computes the sum of the time series
for each individual and places this value as a variable in the data. The next command, pshrink,
shrinks this nT vector into an n vector that contains only a single sum for each observation. The
sum-of-squares of these is used in the computation of LM. The advantage of this calculation is that
it offers the possibility of conducting a one-sided test using the N(0, 1) distribution.

For the Chinese chemical firms the result is

The LM test statistic = 44.064 with p-value = 0.000

’Between’ variance = 0.612725
’Within’ variance = 0.138509
theta used for quasi-demeaning = 0.73529
corr(y,yhat)ˆ2 = 0.556365

These match the ones in POE5 exactly.

If the random individual effects are correlated with regressors, then the random effects estimator
will not be consistent. A statistical test of this proposition should be done whenever this estimator
is used in order to reduce the chance of model misspecification.

To estimate the parameters of this model in gretl is easy. Simply specify the model you want
to estimate and choose the random effects option.

1 open "@gretldir\data\poe\nls_panel.gdt"
2 setobs id year --panel-vars
3 list x1 = educ exper exper2 tenure tenure2 union black south
4 panel lwage x1 --random-effects

The results from FGLS estimation of the random effects model are shown in Table 15.6.
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15.4.2 Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis
is that these estimates are consistent–that is, that the requirement of orthogonality of the model’s
errors and the regressors is satisfied. The test is based on a measure, H, of the “distance” between
the fixed-effects and random-effects estimates, constructed such that under the null it follows the
χ2 distribution with degrees of freedom equal to the number of time-varying regressors, J . If the
value of H is “large” this suggests that the random effects estimator is not consistent and the
fixed-effects model is preferable.

There are two ways of calculating H, the matrix-difference (or contrasts) method and the
regression method. The procedure for the matrix-difference method is this:

• Collect the fixed-effects estimates in a vector, β̃, and the corresponding random-effects esti-
mates in β̂, then form the difference vector (β̃ − β̂)

• Form the covariance matrix of the difference vector as var(β̃ − β̂) = var(β̃) − var(β̂) = Ψ.
The two variance covariance matrices are estimated using the sample variance matrices of the
fixed- and random-effects models respectively.

• Compute the quadratic form H = (β̃ − β̂)′Ψ̂−1(β̃ − β̂) ∼ χ2(J) if the errors and regressors
are not correlated.

Given the relative efficiencies of β̃ and β̂, the matrix Ψ̂ “should be” positive definite, in which case
H is positive, but in finite samples this is not guaranteed and of course a negative χ2 value is not
admissible.

The regression method avoids this potential problem. The procedure is:

• Treat the random-effects model as the restricted model, and record its sum of squared residuals
as SSRr.

• Estimate via OLS an unrestricted model in which the dependent variable is quasi-demeaned
y and the regressors include both quasi-demeaned X (as in the RE model) and the demeaned
variants of all the time-varying variables (i.e. the fixed-effects regressors); record the sum of
squared residuals from this model as SSRu.

• Compute H = n(SSRr− SSRu)/SSRu, where n is the total number of observations used. On
this variant H cannot be negative, since adding additional regressors to the RE model cannot
raise the SSR. See chapter 16 of the Gretl Users Guide for more details.

By default gretl computes the Hausman test via the regression method, but it uses the matrix
difference method if you pass the option --matrix-diff to the panel command.

In the wage example, the Hausman test results are:
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Hausman test -
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: Chi-square(6) = 20.5231
with p-value = 0.00223382

The p-value is less than 5% which suggests that the random effects estimator is inconsistent. The
conclusion from these tests is that even though there is evidence of random effects (LM rejects),
the random effects are not independent of the regressors; the FGLS estimator will be inconsistent
and you’ll have to use the fixed effects estimator of a model that excludes education and race.

Example 15.12 in POE5

In this example a special case of the matrix difference approach is applied to the chemical
firms data. In this example a single contrast is taken for the estimation of β2, the coefficient on
ln(capital). The t-difference is

t =
bFE,2 − bRE,2

[se(bFE,2)2 − se(bRE,2)2]1/2

The script to compute this is:

1 open "@workdir\data\chemical3.gdt"
2 list xvars = const lcapital llabor
3 RE <- panel lsales xvars --random-effects
4 scalar b_c = $coeff(lcapital)
5 scalar v_c = $stderr(lcapital)ˆ2
6

7 FE <- panel lsales xvars --fixed-effects
8 scalar b_c_f = $coeff(lcapital)
9 scalar v_c_f = $stderr(lcapital)ˆ2

10

11 scalar t_stat = (b_c_f-b_c)/sqrt(v_c_f-v_c)
12 printf "Hausman t-stat = %.3f with p-value = %.3f\n",\
13 t_stat, 2*pvalue(n,abs(t_stat))

The RE and FE estimators are computed and the coefficient on lcapital and its estimated
standard error are saved as scalars. The contrast is computed in line 11 and the results printed to
the screen. The outcome is:

Hausman t-stat = -9.555 with p-value = 0.000

It is significant at 5% and we reject the exogeneity of the random effect. The RE estimator is
inconsistent and the FE estimator is preferred.
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To perform the contrasts test based on the entire set of slopes, use the hausman --matrix-diff
command after estimating the model by OLS. The data must be structured as a panel in order for
this to work.

1 open "@workdir\data\chemical3.gdt"
2 list xvars = const lcapital llabor
3 ols lsales xvars
4 hausman --matrix-diff

The output shows the pooled, FE, and RE estimates as well as the results of the two-sided LM
test and the Hausman test. The Hausman result (--matrix-diff option) is:

Hausman test statistic:
H = 98.8166 with p-value = prob(chi-square(2) > 98.8166) = 3.48535e-022

(A low p-value counts against the null hypothesis that the random effects
model is consistent, in favor of the fixed effects model.)

The result matches the one reported in POE5 and the exogeneity null is rejected at 5%.

Finally, it is worth noting that the regression based version of the Hausman test is printed by
default whenever a RE regression is estimated.

Example 15.13 in POE5

In this exercise the t-based contrast test is computed for each of the coefficients of the wage
equation estimated using nls panel.gdt. Since there are six coefficients that can be estimated by
both FE and RE a loop is employed. A key to making this work is to order the variables so that
the time-invariant ones (which cannot be estimated by FE) are listed after the others. The script
follows:

1 open "@workdir\data\nls_panel.gdt"
2 list xvars = exper exper2 tenure tenure2 south union black educ
3 list TV_vars = exper exper2 tenure tenure2 south union
4 list TIV_vars = black educ
5 FE <- panel lwage TV_vars const --fixed-effects
6

7 matrix b_fe = $coeff
8 matrix var_fe = diag($vcv)
9

10 RE <- panel lwage TV_vars TIV_vars const --random-effects
11 matrix b = $coeff
12 matrix b_re = b[1:7]
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13 matrix vars = diag($vcv)
14 matrix var_re = vars[1:7]
15

16 loop i=2..7
17 scalar t_stat = (b_fe[i]-b_re[i])/sqrt(var_fe[i] - var_re[i])
18 printf "\n Hausman t-stat = %.3f with p-value = %.3f\n",\
19 t_stat, 2*pvalue(n,abs(t_stat))
20 endloop

This crude program appears to work. Several of the individual t-ratios are significant at 5%.
According to the results these include union, south, tenure2 and exper2.

Hausman t-stat = -1.373 with p-value = 0.170
Hausman t-stat = 2.004 with p-value = 0.045
Hausman t-stat = -0.290 with p-value = 0.772
Hausman t-stat = -2.110 with p-value = 0.035
Hausman t-stat = 2.309 with p-value = 0.021
Hausman t-stat = -3.093 with p-value = 0.002

The statistics in iterations 2, 4, 5, and 6 fall within the rejection region. There is really no reason
to do a series of these tests. The preferred procedure it to test endogeneity jointly using the χ2(6)
statistic obtained using the hausman command.

The joint Hausman test is also significant at 5%.

Hausman test statistic:
H = 20.7252 with p-value = prob(chi-square(6) > 20.7252) = 0.00205521

(A low p-value counts against the null hypothesis that the random effects
model is consistent, in favor of the fixed effects model.)

15.5 Between Estimator

Before discussing such tests, another estimator of the model’s parameters deserves mention.
The between estimator is also used in some circumstances. The between model is

ȳi = β̄1 + β2x̄2i + β3x̄3i + ui + ēi (15.12)

where the ȳi is the average value of y for individual i, and x̄ki is the average value of the kth regressor
for individual i. Essentially, the observation in each group (or an individual) are averaged over time.
The parameters are then estimated by least squares. The variation between individuals is being
used to estimate parameters. The errors are uncorrelated across individuals and homoskedastic and
as long as individual differences are not correlated with regressors, the between estimator should
be consistent for the parameters.
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To obtain the between estimates, simply use the --between option of panel as shown below:

1 open "@workdir\data\nls_panel.gdt"
2 setobs id year --panel-vars
3 list xvars = educ exper exper2 tenure tenure2 union black south
4 panel lwage xvars --between

The results for each of the estimators, in tabular form, are in Table 15.6.

15.5.1 Mundlak Approach

Mundlak proposed that if unobservable heterogeneity is correlated with the explanatory vari-
ables then the random effects may be correlated with the time averages of the explanatory variables.
To test for endogeneity, he adds the time averages to the model and tests their joint significance
using an F -test. His test statistic is never negative (as the Hausman contrast test can be) and
Mundlak’s F can be made robust with respect to autocorrelation and heteroskedasticity using
cluster robust covariance estimation.

Example 15.14 in POE5

Mundlak’s approach is used to determine whether the unobserved heterogeneity in the chemical
plants is correlated with capital and labor. The pmean function is used to add the time means of
ln(capital) and ln(labor) to the data. A regression is estimated and the coefficients on the time
means are jointly tested for significance.

The code is:

1 open "@workdir\data\chemical3.gdt"
2 list allvar = lsales lcapital llabor
3

4 loop foreach j allvar --quiet
5 series $j_bar = pmean($j)
6 endloop
7

8 OLS <- ols allvar const lcapital_bar llabor_bar --robust
9 omit lcapital_bar llabor_bar --chi-square

10 RE <- panel allvar const lcapital_bar llabor_bar --random-effects
11 omit lcapital_bar llabor_bar --chi-square
12 Cluster <- panel allvar const lcapital_bar llabor_bar\
13 --random-effects --robust
14 omit lcapital_bar llabor_bar --chi-square
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Dependent variable: lwage

(1) (2) (3) (4)
Within FGLS Between Pooled OLS

const 1.45∗∗ 0.534∗∗ 0.417∗∗ 0.477∗∗

(36.1) (6.68) (3.07) (5.65)

exper 0.0411∗∗ 0.0436∗∗ 0.0662∗∗ 0.0557∗∗

(6.21) (6.86) (2.82) (4.93)

exper2 −0.000409 −0.000561∗∗ −0.00161 −0.00115∗∗

(−1.50) (−2.14) (−1.61) (−2.33)

tenure 0.0139∗∗ 0.0142∗∗ 0.0166 0.0150∗∗

(4.24) (4.47) (1.36) (2.10)

tenure2 −0.000896∗∗ −0.000755∗∗ −0.000495 −0.000486
(−4.35) (−3.88) (−0.704) (−1.19)

south −0.0163 −0.0818∗∗ −0.105∗∗ −0.106∗∗

(−0.452) (−3.65) (−3.62) (−3.92)

union 0.0637∗∗ 0.0802∗∗ 0.156∗∗ 0.132∗∗

(4.47) (6.07) (4.39) (4.89)

educ 0.0733∗∗ 0.0708∗∗ 0.0714∗∗

(13.7) (13.1) (13.0)

black −0.117∗∗ −0.122∗∗ −0.117∗∗

(−3.86) (−3.84) (−4.16)

n 3580 3580 716 3580
R̄2 0.824 0.358 0.324
` 1.17e+003 −1.65e+003 −240 −1.63e+003

t-statistics in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Table 15.6: Fixed Effects (Within), Random Effects (FGLS), Between, and Pooled OLS with robust
standard errors.
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Notice that in lines 4-6 a loop is used to add the time means of all variables to the dataset. The
new variables are recognized as varname_bar in the main gretl window.

In the example the model is estimated by pooled least squares with cluster standard errors, by
RE with conventional FGLS standard errors, and by RE with cluster standard errors. The results
are shown below:

Dependent variable: lsales

(1) (2) (3)
Pooled OLS GLS GLS-Cluster

const 5.455∗∗ 5.455∗∗ 5.455∗∗

(0.1484) (0.1371) (0.1484)

lcapital 0.1160∗∗ 0.1160∗∗ 0.1160∗∗

(0.02735) (0.01955) (0.02735)

llabor 0.2689∗∗ 0.2689∗∗ 0.2689∗∗

(0.04582) (0.03067) (0.04582)

lcapital bar 0.2223∗∗ 0.2223∗∗ 0.2223∗∗

(0.04125) (0.03338) (0.04125)

llabor bar 0.1095∗ 0.1095∗∗ 0.1095∗

(0.06220) (0.05010) (0.06220)

n 3000 3000 3000
R̄2 0.5614
` −3824 −3824 −3824

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

It is interesting that the pooled OLS and GLS-RE coefficient estimates are equivalent. The cluster
standard errors are larger than the conventional FGLS ones. The joint test of significance can be
conducted using each regression. The omit statements do this. The results are:

OLS with Robust
Null hypothesis: the regression parameters are zero for the variables

lcapital_bar, llabor_bar
Wald test: Chi-square(2) = 56.5859, p-value 5.15854e-013
(LR test: Chi-square(2) = 26.3213, p-value 1.92492e-006)

GLS -- Conventional
Null hypothesis: the regression parameters are zero for the variables
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lcapital_bar, llabor_bar
Wald test: Chi-square(2) = 96.9967, p-value 8.65817e-022
(LR test: Chi-square(2) = 86.266, p-value 1.85173e-019)

GLS -- Cluster
Null hypothesis: the regression parameters are zero for the variables

lcapital_bar, llabor_bar
Wald test: Chi-square(2) = 56.5859, p-value 5.15854e-013
(LR test: Chi-square(2) = 86.266, p-value 1.85173e-019)

The OLS and GLS cluster results are identical, matching those found in POE5.

Example 15.16 in POE5

The Mundlak regressions and tests are repeated for the wage equation. The script is:

1 open "@workdir\data\nls_panel.gdt"
2 list xvars = exper exper2 tenure tenure2 south union black educ
3

4 loop foreach j xvars --quiet
5 series bar_$j = pmean($j)
6 endloop
7

8 list barvars = bar*
9 list barvars -= bar_black bar_educ

10 OLS <- ols lwage const xvars barvars --robust
11 omit barvars --chi-square --test-only
12 RE <- panel lwage const xvars barvars --random-effects
13 omit barvars --chi-square --test-only
14 Cluster <- panel lwage const xvars barvars --random-effects --robust
15 omit barvars --chi-square --test-only
16 FE <- panel lwage const xvars --fixed-effects --robust

The regressors include experience, experience-squared, tenure, tenure-squared, south, black, union,
and education. With so many variables to find time means for, a loop is most convenient. In
this example I added the bar_ prefix so that I could unambiguously employ a wildcard to make
a list. This appears in line 8 where the list barvars is constructed. In the following line two
of the means are removed. These are time-invariant and their means are perfectly collinear with
the constant. Otherwise the estimation is very similar to the preceding example. RE is used with
FGLS standard errors, RE with cluster standard errors and fixed-effects results are added. I omit
OLS with clusters since we’ve already seen that they are the same as RE with clusters. The results
are:

Random-effects (GLS) estimates

531



Dependent variable: lwage

(1) (2) (3)

const 0.4167∗∗ 0.4167∗∗ 1.450∗∗

(0.1358) (0.1101) (0.05503)

exper 0.04108∗∗ 0.04108∗∗ 0.04108∗∗

(0.006620) (0.008250) (0.008240)

exper2 −0.0004091 −0.0004091 −0.0004091
(0.0002733) (0.0003303) (0.0003299)

tenure 0.01391∗∗ 0.01391∗∗ 0.01391∗∗

(0.003278) (0.004220) (0.004215)

tenure2 −0.0008962∗∗ −0.0008962∗∗ −0.0008962∗∗

(0.0002059) (0.0002498) (0.0002495)

south −0.01632 −0.01632 −0.01632
(0.03615) (0.05855) (0.05848)

union 0.06370∗∗ 0.06370∗∗ 0.06370∗∗

(0.01425) (0.01688) (0.01686)

black −0.1216∗∗ −0.1216∗∗

(0.03166) (0.02842)

educ 0.07077∗∗ 0.07077∗∗

(0.005387) (0.005565)

bar exper 0.02511 0.02511
(0.02437) (0.02228)

bar exper2 −0.001197 −0.001197
(0.001037) (0.0009587)

bar tenure 0.002649 0.002649
(0.01263) (0.01367)

bar tenure2 0.0004014 0.0004014
(0.0007323) (0.0007718)

bar south −0.08899∗ −0.08899
(0.04641) (0.06523)

bar union 0.09204∗∗ 0.09204∗∗

(0.03822) (0.04152)

n 3580 3580 3580
R̄2 0.1430
` −1621 −1621 1174

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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The Hausman tests reveal:

RE -- FGLS standard errors
Null hypothesis: the regression parameters are zero for the variables

bar_exper, bar_exper2, bar_tenure, bar_tenure2, bar_south, bar_union
Wald test: Chi-square(6) = 20.4371, p-value 0.00231433
(F-form: F(6, 3565) = 3.40618, p-value 0.00235946)

RE -- Cluster standard errors
Null hypothesis: the regression parameters are zero for the variables

bar_exper, bar_exper2, bar_tenure, bar_tenure2, bar_south, bar_union
Wald test: Chi-square(6) = 17.2626, p-value 0.00836519
(F-form: F(6, 715) = 2.8771, p-value 0.00890482)

The statistic falls within the rejection region of a 5% test in both versions. The p-value for cluster
robust test is .008 < .05. The exogeneity of the random effects is rejected.

15.5.2 Hausman-Taylor

The Hausman-Taylor estimator is an instrumental variables estimator applied to a random
effects model. The instrumental variables enable one to avoid inconsistency caused by correlation
between random effects and some of the model’s explanatory variables. The estimator requires one
to separate the regressors into groups: time-varying exogenous, time-varying endogenous, time-
invariant exogenous, and time-invariant endogenous. There must be at least as many time-varying
exogenous regressors as time-invariant endogenous ones.

The routine to estimate this is somewhat complicated. It involves at least five steps and several
regressions, including a FE regression, a 2SLS regression using augmented data, and another FGLS
estimation. The standard error computation involves one more step. Given the complexity of
this, I chose to use a beta version of a package written by Allin Cottrell. Allin was kind enough
to let me use this provided that none of us hold him responsible for the results. That said, the
package replicates the Baltagi example and the POE5 example used below. Whatever the perceived
deficiencies, they pale compared to what I would produce if I had to do this from scratch.

First, you must place the files included in the package, which includes the gretl function

hausman_taylor.gfn

into your gretl functions directory so that they will be found when by the include statement.5

Then, open the dataset and define the lists of time-varying and time-invariant series. Finally, use
the hausman_taylor function as shown, which will write output to a bundle called b. Be careful

5On my Windows machine this location is C:\Users\leead\AppData\Roaming\gretl\functions.
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to order the lists in the function properly. First is time-varying exogenous, second is time-varying
endogenous (both of these are in the regression function). Next come the time-varying exogenous
and finally the time-invariant endogenous variable(s). The output from the bundle will appear as
a session icon. Navigate to the icon view window and click on the folder labeled b.

1 include hausman_taylor.gfn
2

3 open nls_panel.gdt --quiet
4

5 # List definitions TV=time-varying; TIV=time-invariant
6 list X1 = exper exper2 tenure tenure2 union # TV exogeneous
7 list Z1 = black # Time-invariant exogeneous
8 list X2 = south # TV endogenoeus
9 list Z2 = educ # TIV endogenoeus

10

11 bundle b = hausman_taylor(lwage, X1, X2, Z1, Z2)

The results are shown below.

1 Hausman-Taylor estimates for lwage
2 using 3580 observations (n = 716, T = 5)
3

4 coefficient std. error z p-value
5 -----------------------------------------------------------
6 const -0.750769 0.586236 -1.281 0.2003
7 exper 0.0399079 0.00647453 6.164 7.10e-010 ***
8 exper2 -0.000391341 0.000267634 -1.462 0.1437
9 tenure 0.0143257 0.00315970 4.534 5.79e-06 ***

10 tenure2 -0.000852561 0.000197405 -4.319 1.57e-05 ***
11 union 0.0719692 0.0134545 5.349 8.84e-08 ***
12 south -0.0317122 0.0348474 -0.9100 0.3628
13 black -0.0359136 0.0600681 -0.5979 0.5499
14 educ 0.170508 0.0444628 3.835 0.0001 ***
15

16 sigma_u = 0.44986996
17 sigma_e = 0.19490590
18 theta = 0.80978255
19

20 Hausman test: chi-square(6) = 5.71023 [0.4564]
21 Sargan over-identification test: chi-square(4) = 7.33465 [0.1192]

These match what I get in Stata as well as the output in Table 15.8 or POE5. Thanks Allin!
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15.6 Script

1 set echo off
2 open "@workdir\data\nls_panel.gdt"
3 # pooled least squares
4 list xvars = const educ south black union exper exper2 tenure tenure2
5

6 # Example 15.1
7 print id year lwage xvars --byobs
8

9 panel lwage xvars --pooled --robust
10

11 # Example 15.2
12 open "@workdir\data\chemical2.gdt"
13 dummify year
14 smpl (year == 2005 || year == 2006) --restrict
15 list xvars = const lcapital llabor
16 diff xvars lsales
17 ols lsales xvars
18 m1 <- ols d_lsales d_lcapital d_llabor
19 m2 <- ols lsales xvars
20 # Example 15.3
21 open "@workdir\data\nls_panel.gdt"
22 smpl (year==87 || year==88) --restrict
23 diff lwage exper
24 m3 <- ols d_lwage d_exper
25

26 # Example 15.4
27 open "@workdir\data\chemical2.gdt"
28 list xvar = lsales lcapital llabor
29 smpl year !=2004 --restrict --replace --permanent
30

31 loop foreach j xvar --quiet # The within transformation
32 series dm_$j = $j - pmean($j)
33 endloop
34

35 summary lsales --by=firm # Produces lots of output
36

37 # smpl year !=2004 --restrict --replace
38 scalar NT = $nobs
39 scalar N = rows(values(firm))
40 scalar k = 2
41

42 list allvar = dm_lsales dm_lcapital dm_llabor
43 diff allvar
44 m4_diff <- ols d_dm_lsales d_dm_lcapital d_dm_llabor
45

46 # Within estimator
47 scalar NT = $nobs
48 scalar N = rows(values(firm))
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49 scalar k = nelem(allvar)-1
50

51 m4_within <- ols allvar
52 scalar correct = sqrt((NT-k)/(NT-N-k))
53 scalar correct_se_c = correct*$stderr(dm_lcapital)
54 scalar correct_se_l = correct*$stderr(dm_llabor)
55

56 # Example 15.5
57 # The Within transformation
58 open "@workdir\data\chemical2.gdt"
59 list allvar = lsales lcapital llabor
60

61 loop foreach j allvar --quiet
62 series dm_$j = $j - pmean($j)
63 endloop
64

65 m5_within <- ols dm_lsales dm_lcapital dm_llabor
66

67 scalar NT = $nobs
68 scalar N = rows(values(firm))
69 scalar k = nelem(allvar)-1
70 scalar correct = sqrt((NT-k)/(NT-N-k))
71 scalar correct_se_c = correct*$stderr(dm_lcapital)
72 scalar correct_se_l = correct*$stderr(dm_llabor)
73

74 # Example 15.6 Fixed Effects
75 open "@workdir\data\chemical2.gdt"
76 list xvars = lcapital llabor
77 p1 <- panel lsales xvars const --fixed-effects
78

79 # fixed effects and lsdv
80 genr unitdum
81 list xvars = const lcapital llabor
82 list d = du_*
83 list d -= du_1
84 ols lsales xvars d
85 omit d --test-only
86

87 panel lsales xvars --fixed-effects
88

89 # fe, re, between, and pooled comparison
90 open "@workdir\data\chemical3.gdt"
91 list xvars = const lcapital llabor
92 OLS <- ols lsales xvars
93 set pcse off
94 Cluster <- ols lsales xvars --robust
95

96 setobs 1 1 --cross-section
97 Het_HC3 <- ols lsales xvars --robust
98

99 # Example 15.8
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100 setobs firm year --panel
101 p1 <- panel lsales xvars --fixed-effects
102 p2 <- panel lsales xvars --fixed-effects --robust
103

104 # Example 15.9
105 open "@workdir\data\chemical3.gdt"
106 list xvars = const lcapital llabor
107 FE <- panel lsales xvars --fixed-effects
108 FGLS <- panel lsales xvars --random-effects
109 FGLS_cluster <- panel lsales xvars --random-effects --robust
110

111 # Example 15.10
112 open "@workdir\data\nls_panel.gdt"
113 list xvars = educ exper exper2 tenure tenure2 south union black
114 FE <- panel lwage xvars const --fixed-effects
115 modeltab add
116 RE <- panel lwage xvars const --random-effects
117 modeltab add
118 Pooled <- panel lwage xvars const --pooled --robust
119 modeltab add
120 modeltab show
121 modeltab free
122

123 # Example 15.11
124 open "@workdir\data\chemical3.gdt"
125 list xvars = const lcapital llabor
126 ols lsales xvars
127 series ehat = $uhat
128 scalar sse = $ess
129 scalar NT = $nobs
130 scalar N = rows(values(firm))
131 scalar T = rows(values(year))
132

133 series sm = psum(ehat)
134 matrix mti = pshrink(sm)
135 scalar Sum = sum(mti.ˆ2)
136

137 scalar LM = sqrt(NT/(2*(T-1)))*((Sum/sse)-1)
138 printf "The LM test statistic = %.3f with pvalue = %.3f\n",\
139 LM, pvalue(z,LM)
140

141 # Between Estimator
142 open "@workdir\data\nls_panel.gdt"
143 setobs id year --panel-vars
144 list xvars = const educ exper exper2 tenure tenure2 union black south
145 panel lwage xvars --between
146

147 # Example 15.12
148 open "@workdir\data\chemical3.gdt"
149 list xvars = const lcapital llabor
150 RE <- panel lsales xvars --random-effects
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151 scalar b_c = $coeff(lcapital)
152 scalar v_c = $stderr(lcapital)ˆ2
153

154 FE <- panel lsales xvars --fixed-effects
155 scalar b_c_f = $coeff(lcapital)
156 scalar v_c_f = $stderr(lcapital)ˆ2
157

158 scalar t_stat = (b_c_f-b_c)/sqrt(v_c_f-v_c)
159 printf "Hausman t-stat = %.3f with p-value = %.3f\n",\
160 t_stat, 2*pvalue(n,abs(t_stat))
161

162 open "@workdir\data\chemical3.gdt"
163 list xvars = const lcapital llabor
164 ols lsales xvars
165 hausman --matrix-diff
166

167 # Example 15.13
168 open "@workdir\data\nls_panel.gdt"
169 list xvars = exper exper2 tenure tenure2 south union black educ
170 ols lwage xvars const
171 hausman --matrix-diff
172

173 list TV_vars = exper exper2 tenure tenure2 south union
174 list TIV_vars = black educ
175

176 FE <- panel lwage TV_vars const --fixed-effects
177 matrix b_fe = $coeff
178 matrix var_fe = diag($vcv)
179

180 RE <- panel lwage TV_vars TIV_vars const --random-effects
181 matrix b = $coeff
182 matrix b_re = b[1:7]
183 matrix vars = diag($vcv)
184 matrix var_re = vars[1:7]
185

186 loop i=2..7
187 scalar t_stat = (b_fe[i]-b_re[i])/sqrt(var_fe[i] - var_re[i])
188 printf "Hausman t-stat = %.3f with p-value = %.3f\n",\
189 t_stat, 2*pvalue(n,abs(t_stat))
190 endloop
191 # Example 15.4
192 # Mundlak
193 open "@workdir\data\chemical3.gdt"
194 list allvar = lsales lcapital llabor
195

196 loop foreach j allvar --quiet
197 series $j_bar = pmean($j)
198 endloop
199

200 OLS <- ols allvar const lcapital_bar llabor_bar --robust
201 omit lcapital_bar llabor_bar --chi-square
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202 RE <- panel allvar const lcapital_bar llabor_bar --random-effects
203 omit lcapital_bar llabor_bar --chi-square
204 Cluster <- panel allvar const lcapital_bar llabor_bar\
205 --random-effects --robust
206 omit lcapital_bar llabor_bar --chi-square
207

208 # Example 15.15
209 open "@workdir\data\nls_panel.gdt"
210 list xvars = exper exper2 tenure tenure2 south union black educ
211

212 loop foreach j xvars --quiet
213 series bar_$j = pmean($j)
214 endloop
215

216 list barvars = bar*
217 list barvars -= bar_black bar_educ
218 OLS <- ols lwage const xvars barvars --robust
219 omit barvars --chi-square --test-only
220 RE <- panel lwage const xvars barvars --random-effects
221 omit barvars --chi-square --test-only
222 Cluster <- panel lwage const xvars barvars --random-effects --robust
223 omit barvars --chi-square --test-only
224 FE <- panel lwage const xvars --fixed-effects --robust
225

226 # Example 15.16
227 include hausman_taylor.gfn
228

229 open nls_panel.gdt --quiet
230

231 # List definitions TV=time-varying; TIV=time-invariant
232 list X1 = exper exper2 tenure tenure2 union # TV exogeneous
233 list Z1 = black # Time-invariant exogeneous
234 list X2 = south # TV endogenoeus
235 list Z2 = educ # TIV endogenoeus
236

237 bundle b = hausman_taylor(lwage, X1, X2, Z1, Z2)
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Chapter 16

Qualitative and Limited Dependent
Variable Models

16.1 Introduction

There are many things in economics that cannot be meaningfully quantified. How you vote in an
election, whether you go to graduate school, whether you work for pay, or what college major you
choose has no natural way of being quantified. Each of these expresses a quality or condition that
you possess. Models of how these decisions are determined by other variables are called qualitative
choice or qualitative variable models.

Choices can be between two (binary) or more (multinomial) alternatives. Multinomial choices
can be made from a hierarchy (ordered) or they may not. For instance, a choice from a satisfaction
scale is ordered and the choice of whether to walk, drive, or ride the bus to work is not.

A limited dependent variable is continuous, but its range of values is constrained in some way.
Some of the values of the dependent variable are unobserved or, if all are observed, some are
constrained to the same value if the actual value exceeds (or falls below) some threshold. Simple
versions of both types of model are considered below.

We start with binary decisions and then move to multinomial choice models. Models for count
data are estimated and censored and truncated regressions are considered. When computing these
estimators and related statistics there is a trade-off between using very generalized and complex
programs, which require significant investments in time to write and debug, and using simpler
single-purpose functions and programs that work for a particular example, but not necessarily for
others. One-off programs are frequently used by actual econometricians who frequently work on
different problems using different methods. These examples are targeted to this group.

That said, the principles used in the construction of these examples can provide a template
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for other examples that one may consider. For instance, obtaining standard errors for marginal
effects using the delta method is fairly routine. The main unique input required is a function that
computes the desired probability or nonlinear function for which a derivative is required.

Also, we will turn to some user written functions and programs that are available on gretl’s
function package server. One of these was used in Chapter 14 to estimate a GARCH model.1 In this
chapter, the HIP.gfn2 and Claudia Pigini and lp-mfx.gfn3 packages are used is several examples.

16.2 Linear Probability

In a binary choice model, the decision to model has only two possible outcomes (see sections
7.7 and 8.6). An artificial number is assigned to each outcome before further empirical analysis can
be done. In a binary choice model it is conventional to assign ‘1’ to the variable if it possesses a
particular quality or if a condition exists and ‘0’ otherwise. Thus, the dependent variable is

yi =

{
1 if individual i has the quality
0 if not.

The linear probability model, first considered in section 7.3, models the probability that yi = 1
as a linear function of the independent variables.

Example 16.1 in POE5

In this example, which was also considered in section 7.3, a binary decision is made about
whether to drive by automobile or to take public transportation.

autoi =

{
1 if individual i chooses auto
0 if public transportation is chosen

(16.1)

This is estimated as a function of the commuting time differential between the two alternatives.
That is dtime = (bustime− autotime)/10. In a linear probability model this becomes

autoi = β1 + β2dtimei + ei (16.2)

The data are found in the transport.gdt dataset. These are loaded and simple summary statistics
are computed.

1 open "@workdir\data\transport.gdt"
2 summary --simple

1The gig.gfn bundle written by Jack Lucchetti and Stefano Balietti.
2Heteroskedastic Instrumental variables Probit written by Jack Lucchetti
3Marginal effects for various qualitative choice models written by Allin Cottrell.
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which yields:

Mean Median S.D. Min Max
autotime 49.35 51.40 32.43 0.2000 99.10
bustime 48.12 38.00 34.63 1.600 91.50
dtime -0.1224 -0.7000 5.691 -9.070 9.100
auto 0.4762 0.0000 0.5118 0.0000 1.000

The proportion of people who drive around 47.6% and the average time differential is around
−.12, with average bustime being less than autotime.

The model is estimated by least squares using the --robust option since a binary dependent
variable is heteroskedastic. A new series is computed that takes the value 1 if the predicted
probability of taking auto is above 50%. Incorrect prediction is also measured when the model
predicts auto and the individual takes the bus. The mean of this series measures the relative
frequency of incorrect predictions.

1 m1 <- ols auto const dtime --robust
2 series y_pred = $yhat>0.5
3 series incorrect = abs(auto-y_pred)
4 summary incorrect --by=auto --simple
5

6 scalar correct = $nobs-sum(abs(auto-y_pred))
7 printf "The number correct predictions =\
8 %g out of %g commuters\n", correct, $nobs
9 t_interval_m($coeff,$vcv,$df,.95)

The estimated probit model from line 1 is:

m1: OLS, using observations 1–21
Dependent variable: auto

Heteroskedasticity-robust standard errors, variant HC1

Coefficient Std. Error t-ratio p-value

const 0.484795 0.0712037 6.809 0.0000
dtime 0.0703099 0.00850764 8.264 0.0000

R2 0.611326 Adjusted R2 0.590869

The coefficient on dtime is positive (significantly so at 5%), which indicates that the larger the
time differential, the more likely a person is to take a trip by automobile. The simple summary
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statistics are computed using the --by=auto option, which allows one to determine if incorrect
predictions are similarly distributed across the choices.

auto = 0 (n = 11):
Mean 0.090909
Minimum 0.00000
Maximum 1.0000
Standard deviation 0.30151
Missing obs. 0

auto = 1 (n = 10):
Mean 0.10000
Minimum 0.00000
Maximum 1.0000
Standard deviation 0.31623
Missing obs. 0

From these we can determine that only 1 of 11 bus riders (1/11 = 0.090909) and 1 of 10 auto riders
(1/10 = 0.10000) were incorrectly predicted.

The total number of correct predictions is computed in line 6 and equals 19/21. Finally, a
95% confidence interval for the coefficients is computed using a new user written function called
t_interval_m, which is shown below.

The 95% confidence intervals (t-distribution)
Lower Estimate Upper

b1 0.3358 0.4848 0.6338
b2 0.0525 0.0703 0.0881

The t_interval_m function uses accessors from an estimated model to construct confidence
intervals for the parameters. It is a generalization of the t_interval function (see section 3.1)
that has been heavily used in this manual. The function is:

1 function matrix t_interval_m (matrix b "Coefficients",
2 matrix v "Variance-covariance matrix",
3 int df "Degrees-of-freedom",
4 scalar p "Coverage probability for CI")
5

6 scalar alpha = (1-p) # Convert p to alpha
7 matrix c = critical(t,df,alpha/2) # alpha/2 critical value
8 matrix se = sqrt(diag(v)) # standard errors
9 matrix lb = b - c*se # lower bound

10 matrix ub = b + c* se # upper bound
11 matrix result = b ˜ se ˜ lb ˜ ub # put into matrix
12

13 cnameset(result, "Estimate StdErr (Lower, Upper) ")
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14 rnameset(result, "b")
15 printf "\nThe %2g%% confidence intervals\
16 (t-distribution)\n%10.4f\n", p*100, result
17 return result
18 end function

It takes four arguments. The first is a matrix that contains the model’s estimates. Next is a
matrix containing the estimated variance-covariance. Then, the available degrees-of-freedom for
the t-ratio, and finally, the desired coverage probability for the intervals. Output is printed to the
screen and saved as a matrix for further manipulation, if desired. One possible improvement would
be to use the actual variable names for the parameters, but I’ll save this for later.

From the output, the 95% confidence interval for β2 is (0.0525, 0.0881). This function does not
replace the univariate t_interval function entirely. There are still times when one has a single
statistic for which a confidence interval is desired. This is where t_interval comes in handy.

Finally, the probability of driving is computed based on a 10 minute time differential.

1 scalar pr = $coeff(const)+$coeff(dtime)*1
2 printf "\n The predicted probability of auto travel if public\
3 transportation\n takes 10 minutes longer = %.4f \n", pr

The result is:

The predicted probability of auto travel if public transportation
takes 10 minutes longer = 0.5551

The goodness-of-fit in a linear model is measured by R2.

1 printf "\n R2 = %.4f \n", $rsq

which in this model is 0.59.

16.3 Probit and Logit

In this section other binary choice models are examined and include probit and logit. Using
examples the models are estimated and their margnial effects are considered. Also, routines for
calculating the standard errors of the marginal effects are offered in a succession of increasing
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generality. The pentulitmate versions are based on a gretl function package called lp-mfx that is
written by gretl’s own Allin Cottrell and available through the gretl function package server.

The probit statistical model expresses the probability p that yi = 1 as a function of the
independent variables.

P [(yi|xi2, xi3) = 1] = Φ(β1 + β2xi2 + β3xi3) (16.3)

where Φ is the cumulative normal probability distribution (cdf). The argument inside Φ is linear
in the parameters and is called the index function. Φ maps values of the index function to the
0 to 1 interval. Estimating this model using maximum likelihood is very simple since the MLE of
the probit model is already programmed into gretl.

The syntax for a script uses the same format as for linear regression except the probit com-
mand replaces ols.

Example 16.3 in POE5

This example is somewhat contrived to demonstrate algebraically how maximum likelihood
works. A three observation dataset is created. The data have two variables, y and x and is shown
below:

obs y x

1 1 1.5
2 1 0.6
3 0 0.7

To create this in gretl is simple. Create an empty dataset with three observations. Then initialize
the two series as in line 2.

1 nulldata 3
2 series y x

Then, populate the observations using index commands as shown below:

3 series y[1]=1
4 series y[2]=1
5 series y[3]=0
6 series x[1]=1.5
7 series x[2]=.6
8 series x[3]=.7
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Now estimate the parameters of

P [(yi|xi = 1] = Φ(β1 + β2xi)

using probit. Be sure to include a constant.

9 probit y const x

The results are:

Model 2: Probit, using observations 1–3
Dependent variable: y

Standard errors based on Hessian

Coefficient Std. Error z Slope∗

const −1.15254 2.34506 −0.4915
x 1.89162 2.91513 0.6489 0.625394

Log-likelihood −1.593971 ∗Evaluated at the mean

Number of cases ‘correctly predicted’ = 1 (33.3 percent)
Likelihood ratio test: χ2(1) = 0.631 [0.4269]

The MLE of β2 = 1.891 which is not significantly different from zero at 5%. The log-likelihood is
−1.594 and only one of the three cases was correctly predicted by the estimated model.

Example 16.4 in POE5

In this example, maximum likelihood is used to estimate the parameters of a probit model of
the decision to travel by car or bus. As in the LPM model in equation 16.2, the difference in travel
time between bus and auto affects the probability of driving a car. The dependent variable (auto)
is equal to 1 if travel is by car, and dtime is (bustime− autotime).

Pr[autoi = 1] = Φ(β1 + β2dtimei) (16.4)

1 open "@workdir\data\transport.gdt"
2 list xvars = const dtime
3 m2 <- probit auto xvars
4 t_interval_m($coeff,$vcv,$df,.95)
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The probit MLE is computed in line 3 using a variables list that includes the regressors (from
line 2). The t_interval_m command is used to obtain 95% confidence intervals for both the
constant, β1, and β2. The results appear below:

âuto = −0.06443
(0.3992)

+ 0.3000
(0.1029)

dtime

T = 21 R̄2 = 0.4381 σ̂ = 0.32734

(standard errors in parentheses)

The confidence intervals are:

The 95% confidence intervals (t-distribution)
Estimate StdErr (Lower, Upper)

b1 -0.0644 0.3992 -0.9001 0.7712
b2 0.3000 0.1029 0.0847 0.5153

The interval for β2, which is centered at 3.000 is (0.0847, 0.5153) and does not include zero.

Next, the predicted value of the index when the time differential is 20 minutes is computed and
the predicted probability of driving an auto is computed. Also, the marginal effect of increasing
the time differential by 10 minutes (dtime=3) is computed, based on the assumption that dtime is
continuous.4 The cnorm function in line 5 computes the value of the cumulative standard normal
distribution, Φ(·), evaluated at its argument and the dnorm function in line 6 computes the pdf of
the standard normal distribution, φ(·), evaluated at its argument.

5 scalar p1=cnorm($coeff(const))
6 scalar i_20 = $coeff(const)+$coeff(dtime)*2
7 scalar d_20 = dnorm(i_20)*$coeff(dtime)
8 printf "\n The value of the index for dtime = 20 minutes is %6.4f\n\
9 The predicted probability of driving is = %6.4f\n\

10 The marginal effect on probability of driving is %6.4f \n",\
11 i_20, cnorm(i_20), d_20

which produces:

The value of the index for dtime = 20 minutes is 0.5355
The predicted probability of driving is = 0.7039
The marginal effect on probability of driving is 0.1037

The probability of using an auto when its 20 minutes faster is estimated to be 0.704. The marginal
effect on the probability of increasing that by 10 minutes, computed in line 3 of the script above,
is 0.1037.

4∂p/∂dtime = φ(β1 + β2dtime) ∗ β2
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Finally, to compare the marginal effect computed based on calculus with one based on a discrete
change, the probability of choosing auto if the time differential increases to 30 minutes is computed.

12 scalar i_30 = $coeff(const)+$coeff(dtime)*3
13 printf "\n The predicted probability of driving if dtime = 30\
14 minutes is %6.4f\n", cnorm(i_30)
15 printf "\n The difference in probability is %6.4f\n",\
16 cnorm(i_30)-cnorm(i_20)

which produces:

The predicted probability of driving if dtime = 30 minutes is 0.7983
The difference in probability is 0.0944

The probability increased by 0.7983 − 0.704 = 0.0944, which is slightly less than 0.1037 predicted
under the assumption that dtime is continuous.

Of course, the probit MLE can be summoned from the pull-down menus using Model>Limited
dependent variable>Probit>Binary. The dialog box (Figure 16.1) looks very similar to the
one for linear regression, except it has more options, e.g., to view the details of the iterations. Fill
in the boxes for the dependent and independent variables, select the desired options, and click OK.

16.3.1 Marginal Effects and Average Marginal Effects

Example 16.5 in POE5

The marginal effect of a change in xij on the probability of the choice, Pi, is

∂Pi
∂xij

= φ(β1 + β2xi2 + β3xi3)βj (16.5)

where φ(·) is the standard normal probability density. That means that the marginal effect depends
on all of the parameters of the model as well as the values of the variables themselves. In the travel
example from the preceding section the marginal effect of increasing public transportation time
by one unit was computed. Given that travel via public transport currently takes 20 (dtime=2)
minutes longer than auto, the estimated marginal effect was

∂Pi
∂dtimei

= φ(β̂1 + β̂2dtimei) = φ(−0.0644 + 0.3000× 2)(0.3000) = 0.1037 (16.6)

Marginal effects for indicator variables require a different approach. For an indicator regressor,
the probability is computed for each of its states (1 and 0), holding the values of the other variables
constant at selected values. The other variables may be evaluated at their sample means or at
representative points. More will be said about this shortly.
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Figure 16.1: Use Model>Limited dependent variable>Probit>Binary to open the Probit
model’s dialog box.

Average Marginal Effects (AME) A popular approach is to evaluate marginal effects at each
sample point and to average them. These are referred to as average marginal effects. The
average marginal effect of a change in xij on Pi is

̂AMEj =
1

N

N∑
i=1

φ(β̂1 + β̂2xi2 + β̂3xi3)β̂j (16.7)

It is also common to evaluate the marginal effects at the means of the data. That would be

M̂Ej = φ(β̂1 + β̂2x̄2 + β̂3x̄3)β̂j (16.8)

These are computed and reported by gretl and labeled ‘slope’ in the output. The biggest dis-
advantage of using these is that the average values of the variables may not be representative of
anyone in the sample. This is especially true if one or more of the variables is an indicator. For this
reason, I generally favor the use of the AME, unless there are specific cases that I want to consider.
You can get a good idea of the (average) marginal effects by looking at the estimated slopes from
a linear probability model.

Below is a simple script to compute the average marginal effects (AME) for the travel example.
The model has only one regressor and a constant. To compute the AME for an increase in travel
time:
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1 open "@workdir\data\transport.gdt"
2 list x = const dtime
3 probit auto x
4 matrix b = $coeff
5 series me = dnorm(lincomb(x,b))*b[2]
6 scalar amf = mean(me)
7 printf "\n The average marginal effect for change in dtime =\
8 %6.4f\n", amf
9 summary me --simple

The data are loaded and a list of independent variables is created. The model is estimated via
probit. Note, it is possible to add the --robust option to probit, but there is some debate
about what this accomplishes. What it does not do is to make the MLE robust to heteroskedas-
ticity, but may make is robust with respect to choice of likelihood function. This is referred to as
quasi-maximum likelihood (QML).

A more general version of this technique is provided below. This simple one is used to illustrate
what is being done to compute an AME. Line 5 is general in one sense. It generates marginal effects
for xi2 from any probit model that contains at least one variable other than a constant. The index
2 in b[2] refers to the element of b for which a marginal effect is desired. The average of these is
computed in line 6 and the result printed from lines 7 and 8.

The average marginal effect for change in dtime = 0.0484

Simple summary statistics reveal that the average of the marginal effects in the sample is 0.0484.
The smallest is 0.0024738 and the largest 0.11526. That is a fairly large range, suggesting that our
measurement is imprecise.

To facilitate the computation of the AMEs, I have written a function that will compute them for
an arbitrary probit or logit model. The function is called ame_binary and it requires three inputs
to compute the marginal effects. First, it needs the logit or probit parameter estimates. Then,
it needs the list of explanatory variables from the model. Finally, it must include an indicator of
whether the model was estimated by logit or probit. The dist argument is used to determine the
latter. It can be read from the model’s accessor using the $command. It should be equal to 2 for
probit (line 5) and 1 for logit. The function will print the average marginal effects and output a
n × k matrix that contains each of the marginal effects for every observation and variable. The
obvious problem with this particular function is that a marginal effect is computed for the constant,
which doesn’t make sense. We address this below by using a more sophisticated function from the
gretl function package server called lp-mfx.

1 function matrix ame_binary(matrix *b "parameter estimates",
2 list x "Variables list",
3 int dist[1:2:2] "distribution" )
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4

5 matrix p = lincomb(x, b) # The index function
6 matrix d = (dist==1) ? exp(-p)./(1.+exp(-p)).ˆ2 : dnorm(p)
7 matrix ame_matrix = d*b’
8 cnameset(ame_matrix, x) # add column names
9 matrix amfx = meanc(ame_matrix) # find the means

10 cnameset(amfx, x) # add the column names to amfx
11 printf "\n Average Marginal Effects (AME):\
12 \n Variables: %s\n%12.4g \n", varname(x), amfx
13 return amfx
14 end function

The function is quite simple and make only four computations. However, it is made slightly more
complicated by using a pointer. The asterisk in front of b, i.e., *b, identifies b as a pointer; it
is not necessary to use a pointer in this case and removing it will have no effect on the results,
provided the corresponding & used to retrive its contents is removed as well. It is introduced here
merely to illustrate its use. Pointers are often used to save precious computer memory or to make
functions more modular.

Since a pointer identifies the parameter vector in the function (matrix *param), an am-
persand (&) must be place in front of the parameter matrix being passed into the function, i.e.,
ame_binary(&b, x, dist). Thus, pointers require a pair of markers, * and &, when used.
The * tells gretl to use the memory address of what follows rather than make a copy of the object
to pass through the function. The & tells gretl to retrieve the object using its memory address
when called. Using pointers reduces the number of objects that are stored in memory, and it also
means that whatever is getting passed around in this fashion can be modified in the process. That
may not sound like a great idea, but it can make programs more modular.5 See section 13.4 of the
Gretl Users Guide Cottrell and Lucchetti (2018) for more details.

Returning to the script, line 5 uses the lincomb function, which takes a linear combination
of its arguments. The first argument should be a list that contains the desired series, the second
argument is a vector of coefficients to use with the variables in the list. The result from lincomb
can be a series, or in this case, a matrix. So for instance, suppose X is n×k and contains variables
and β is a k×1 parameter vector. The linear combination Xβ is n×1. Line 6 computes the matrix
that contains all of the marginal effects. The meanc function in line 9 computes the column means
of the matrix (AME), which gets printed in lines 11 and 12. The entire matrix of marginal effects
is returned when the function is called.

Once the function is loaded (highlight it and run it) it is ready to be used. Create the variable
list, estimate the probit (or logit) model, and save the coefficients using matrix coef=$coeff.
Line 4 uses the accessor $command to determine whether the preceding regression was estimated
by probit or logit. Given the variable list and the parameter estimates, you can call the function
as in line 6 of the script below.

5If you do not want what is being pointed at to change, you can declare it to be a constant using const.
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1 open "@workdir\data\transport.gdt"
2 list x = const dtime
3 probit auto x --quiet
4 matrix b = $coeff
5 scalar dist = ($command == "logit")? 1 : 2
6 matrix me_probit = ame_binary(&b, x, dist)

The function could be further refined for error checking and to remove the constant from the output.
Still, it serves our purpose in this manual.

The function ame_binary(&coef, x, dist) in line 6 prints the AME to the screen. To
save the matrix output from the function, use:

matrix me_probit = ame_binary(&coef, x, dist)

and the result will be saved to me_probit. The result for the travel time example is:

Average Marginal Effects (AME):
Variables: const,dtime

const dtime
-0.0104 0.04841

The average marginal effect of a 10 minute (dtime = 1) increase in travel time is 0.0484. The
AME of the constant is not very meaningful. Conceptually, this is how much β̂1 would change if
its variable were coded with a number infinitesimally larger than 1 instead of just 1. In a probit
model, doubling the constant variable to 2 reduces β̂1 by half.

16.3.2 Standard Errors and Confidence Intervals for Marginal Effects

Obtaining confidence intervals for the marginal effects (and the AME) is straightforward. To
estimate the standard error of the marginal effect, the delta method is used. This method to find
the variance of functions of parameters was discussed in section 5.6.1. Take a look at this section
again if a refresher is warranted (page 146).

Using the delta method means taking analytic or numerical derivatives of the marginal effect
or AME to be used in the computation of the standard error or variance of the statistic. The
analytic derivatives are not that hard to take, but why bother when numerical ones are available.
This is the approach taken in commercial software that includes the ability to estimate nonlinear
combinations of parameters and their standard errors.

The function in gretl that takes numeric derivatives is fdjac, which stands for first difference
Jacobian. The delta method requires the partial derivatives of the function in question with respect
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its parameters. Not surprisingly, the fdjac function requires two arguments: a function and a
vector of parameters.

The first step to use this method in gretl is to define the function to be differentiated. Then
apply fdjac to that function. Adding lines 7-9 to the script produces the AMEs based on the
function ame_binary is:

7 matrix jac = fdjac(b, ame_binary(&b, x , dist))
8 matrix variance = qform(jac, $vcv)
9 matrix se = sqrt(diag(variance))

10

11 printf "\n The average marginal effects:\n%10.4f\
12 delta estimated standard errors: \n%10.4f \n", amfx, se’
13

14 # confidence interval for average mfx
15 t_interval_m(amfx’,variance,$df,.95)

This produces:

The average marginal effects:
const dtime

-0.0104 0.0484
delta estimated standard errors:

0.0648 0.0034

The estimated standard error for the AME of dtime is 0.0034. The t_interval_m routine pro-
duces:

The 95% confidence intervals (t-distribution)
Estimate StdErr (Lower, Upper)

b1 -0.0104 0.0648 -0.1459 0.1251
b2 0.0484 0.0034 0.0413 0.0556

The first six lines of the script, found on page 552, are standard. The data are opened, the
variable list created, the probit model is estimated using probit, and a matrix is used to hold
the coefficients. Line 5 captures and evaluates the estimator used and the binary AMEs are created
using our ame_binary function.

Given a function that computes the AMEs, the fdjac function is used to obtain numerical
derivatives with respect to the parameters, b. Since we used pointers in the function, the ampersand
needs to precede the coefficient and scalar inputs. The quadratic form used in the delta method
is computed in line 8 using qform. qform(x,A) computes xAxT , which is used to compute the
variance expression in equation (5.15). The square roots of the diagonal are saved as standard
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errors, se. Thus, only three lines are used to compute standard errors for a nonlinear function like
ame_binary.

This script produces:

The average marginal effects:
const dtime

-0.0104 0.0484
delta estimated standard errors:

0.0648 0.0034

The average marginal effect of a 1 unit change in dtime = 0.0484 with standard error 0.0034. The
95% confidence interval for the AME can be computed using our t_interval_m function:

t_interval_m(amfx’,variance,$df,.95),

which yields:

The 95% confidence intervals (t-distribution)
Estimate StdErr (Lower, Upper)

b1 -0.0104 0.0648 -0.1459 0.1251
b2 0.0484 0.0034 0.0413 0.0556

The 95% confidence interval for β2 is centered at 0.0484 and is (0.0413, 0.0556).

Marginal effects at representative values (MER) An alternative to the AME is to evaluate
the marginal effect of a change in xj on the probability that y = 1 at as pecific point. It can be a
points of particular interest, the means of x, or quantiles of x. Of course, to make the MER more
useful, standard errors should be computed.

As seen in the preceding paragraphs, what is needed is a function that computes the MER. One
is provided in the script below:

1 function scalar me_at(matrix *param "parameter estimates",
2 matrix xx "Representative Point",
3 scalar q "Parameter of interest",
4 int modl[1:2:2] "distribution" )
5 # Marginal effects at a point -- continuous variables only
6 scalar idx = xx*param
7 scalar d = (modl==1)? (exp(-idx)./(1.+exp(-idx)).ˆ2)*param[q] :\
8 dnorm(idx)*param[q]
9 return d

10 end function
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This is a another simple function, consisting of only two computations. The inputs are 1) a matrix
of parameter estimates from a logit or probit model 2) a matrix (a vector actually) that contains
the representative point at which the marginal effect will be computed. It should have a dimension
that matches that of b, 1×k. 3) a scalar that identifies the number of the coefficient in b for which
the marginal effect is desired and 4) a scalar that identifies whether probit is used to estimate
the parameters. If modl = 1, then b is estimated by logit. If not, then the function assumes it was
estimated by probit. The function returns a scalar, which is the MER at point x. The useful
conditional assignment operator is used to determine whether to populate d with the probit or logit
MER based on the value of modl.

Once this function has been run, the standard errors and confidence interval is computed using
a function we call MER.

1 function void MER (matrix *b "parameter estimates",
2 matrix covmat "Covariance",
3 matrix x "Representative Point",
4 int q "Parameter of interest",
5 int df "Degrees of Freedom",
6 int modl[1:2:2] "distribution")
7 # Std errors for Marginal effects at a point -- continuous vars only
8 scalar p = me_at(&b, x, q, modl)
9 matrix jac = fdjac(b, me_at(&b, x , q, modl))

10 matrix variance = qform(jac,covmat)
11 matrix se = sqrt(diag(variance))
12 scalar crit = critical(t,df,0.025)
13 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
14 if modl == 1
15 printf "Logit:\n"
16 else
17 printf "Probit:\n"
18 endif
19 printf "95%% t(%.2g) confidence interval for b%.g at\n x =\
20 %9.2g \n", df, q, x
21 cnameset(results, " Lower ME Upper StdError" )
22 printf "%10.4f\n", results
23 end function

This function returns nothing (void) when called, but prints the confidence interval and the es-
timated standard error to the screen. It requires the same inputs as me_at, plus the estimated
covariance matrix from the model (matrix covmat), which is needed to use the the delta method,
and the degrees of degrees-of-freedom for the t critical value (scalar df) used to provide a suit-
able critical value. Line 8 computes the MER at x and line 9 computes its numerical derivative at
the same point. The variance is computed in line 10 using qform and the standard errors obtained
as the square roots of its diagonal elements in line 11.

Finally, the critical value from the t-distribution is obtained and used to accumulate the results
in a 1×4 matrix in line 13. Results include the CI lower bound, the center of the interval, the upper
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bound and the standard error. Feel free to exchange positions for these if desired (an alternative
format is considered below).

To use this function execute:

1 open "@workdir\data\transport.gdt"
2 list x = const dtime
3 m1 <- probit auto x --quiet
4 matrix bp = $coeff
5 matrix xi = { 1, 2 }
6 scalar dist = ($command == "logit")? 1 : 2
7 MER(&bp,$vcv,xi,2,$df,dist)

For a commute differential of 20 minutes, the representative point is xi = 1, 2. The constant and
dtime are hard coded in line 5. The coefficient input into MER is a pointer to the coefficient
estimates saved as bp in line 4, so use the & prefix. Also, set q=2 in the fourth argument of MER
since the desired marginal effect is for β2, the coefficient for dtime.

The results from this are:

Probit:
95% t(19) confidence interval for b2 at
x = 1.0000 2.0000

Lower ME Upper StdError
0.0354 0.1037 0.1720 0.0326

For a time differential of 20 minutes the estimated marginal effect (extra 10 minutes) on the
probability of choosing auto is 0.1037. The confidence interval is rather wide, (0.0354, 0.1720), but
excludes zero.

Marginal effects at the means If particular values of interest are difficult to identify, it is
common to use the sample means from the data to serve as the “representative point.” This requires
only that line 5be replaced by

5 matrix xi = { 1, mean(dtime) }

Calling the function as in line 7 produces:

Probit:
95% t(19) confidence interval for b2 at
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x = 1.0000 -0.1224

Lower ME Upper StdError
0.0333 0.1191 0.2049 0.0410

Notice that the average time differential is as found before, −0.1224, i.e., 1.2 minutes. The marginal
effect is estimated to be 0.1191, with the 95% confidence interval of (0.0333, 0.2049).

16.3.3 Using lp-mfx

There is also a very useful user written function that can be found on the gretl function package
server called lp-mfx.gfn. This set of routines, written by gretl’s own Allin Cottrell, calculates
marginal effects and associated statistics (standard errors, z -values and p-values) for logit and
probit models. It includes facilities for binary logit and probit, ordered logit and probit, and
multinomial logit.

The package provides a graphical interface that appears under the Analysis menu in gretl’s
model window; the GUI is hard-wired to produce marginal effects at the sample means of all the
regressors. However, the package includes a set of functions that can be used to calculate marginal
effects at any vector of regressor values. Thus, it includes a function similar to me_at that can
be coaxed into computing MER and their standard errors via out MER function. This will be
demonstrated below within the context of multinomial logit.

To illustrate the base output from this very useful set of functions, it is necessary to download
and install the function package. This can be done, provided your system is connected to the
internet, via the function package server. Choose File>Function Packages>On server to open
the list of available packages shown in Figure 16.2. The lp-mfx package is highlighted. To install
it, click on the diskette icon on the menu bar or right-click and choose install.

To estimate the marginal effects at the mean, use the following script:

1 include lp-mfx.gfn
2 m1 <- probit auto x
3 scalar dist = ($command == "logit")? 1 : 2
4 binary_mfx(auto, $xlist, $coeff, $vcv, $sample, dist)

The first line loads the package. The model is estimated and the $command accessor is used to
determine which model is estimated. One of the benefits of this package over the ones I’ve written,
is the inclusion of error checking in the routines. If you haven’t estimated the preceding model by
logit or probit, it will throw and error message telling you so.

Running this script yields:
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Figure 16.2: Many user written function packages are available on the gretl function package
server.

Binary probit marginal effects
(evaluated at means of regressors)

auto = 1, Pr = 0.4597

dp/dx s.e. z pval xbar
dtime 0.11907 0.040998 2.9042 0.0036817 -0.12238

The return for binary_mfx is a bundle. To save the bundle as an icon in the session window,
one can use:

1 bundle b1 = binary_mfx(auto, $xlist, $coeff, $vcv, $sample, dist)
2 lp_mfx_print(&b1)

Notice the special lp_mfx_print command is used to print the results to the screen.

There are other advantages to using this function. 1) Notice that no marginal effect is estimated
for the constant. Since it is not a meaningful statistic, this is desirable. 2) The underlying func-
tion that computes the marginal effect will detect whether the explanatory variable is discrete or
continuous. This is an important advantage since it means that separate routines are not required
to compute marginal effects (or standard errors). 3) The function computes MERs for all of the
variables in the model. The value of this becomes obvious in Example 16.6 below, which includes
more than one regressor.
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To make use of these features the MER function will be revised to use the lp-mfx function
that computes marginal effects at representative values. This function is called MER_lpmfx and it
uses a function from lp-mfx that computes marginal effects for probit and logit models.

The binary_dp_dx function takes four arguments.

1 function matrix binary_dp_dx (matrix b "parameter estimates",
2 list XL "list of regressors",
3 matrix x "vector of x-values",
4 int dist[1:2:1] "distribution" \
5 {"logit", "probit"})

The main changes to MER occur in lines 2, 9 and 10 below. The regressor list is added to the
inputs in line 2. In lines 9 and 10 the MERs are computed using binary_dp_dx and the Jacobian
is computed. The printing statements that follow are modified as well, with the addition of row
and column names for the results.

1 function void MER_lpmfx (matrix b "parameter estimates",
2 list XL "list of regressors",
3 matrix covmat "Covariance matrix",
4 matrix x_at "Representative point",
5 int dist[1:2:1] "distribution",
6 int df "degrees-of-freedom")
7 # The MER function to be used with lp-mfx.gfn
8 # available from gretl’s function package server
9 matrix me = binary_dp_dx(b, XL, x_at, dist)

10 matrix jac = fdjac(b, binary_dp_dx(b, XL, x_at, dist))
11 matrix variance = qform(jac,covmat)
12 matrix se = sqrt(diag(variance))
13 matrix results = me’ ˜ se
14 if dist == 1
15 printf "Logit:\n"
16 else
17 printf "Probit:\n"
18 endif
19 scalar crit = critical(t,df,0.025)
20 matrix results = (me’-crit*se) ˜ me’ ˜ (me’+crit*se) ˜ se
21 cnameset(results, "Lower ME Upper StdErr")
22 rnameset(results, XL[2:nelem(XL)])
23 cnameset(x_at, XL )
24 printf "Representative Point\n%11.2g\n95%% CI for MER\n%10.4g\n",\
25 x_at, results
26 end function

The function call (line 6 below), including the model estimation is:
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1 open "@workdir\data\transport.gdt"
2 list x = const dtime
3 probit auto x --quiet
4 scalar dist = ($command == "logit")? 1 : 2
5 matrix x_at = { 1 , 2}
6 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)

The output shows us:

Probit:
Representative Point

const dtime
1 2

95% CI for MER
Lower ME Upper StdErr

dtime 0.03537 0.1037 0.172 0.03264

The estimator is identified as being produced by probit and the representative point is given.
The table containing the confidence intervals and standard errors now has a variable label as
identifier. All-in-all this works quite well and the output looks good too.

Marginal probabilities at representative values Finally, the predicted probability that
auto = 1 given a commuting time difference of 30 minutes is calculated and a confidence inter-
val obtained using the delta method. The function is very similar to the last one, which is again
used as a template.

First, a function that computes probabilities that yi = 1 is required. That function is called
p_binary. It requires three inputs: a vector of coefficient estimates, a point at which the proba-
bility will be evaluated and a scalar to indicate which distribution to use. The function is:

1 function scalar p_binary(matrix b "parameter estimates",
2 matrix x "Representative Point",
3 int dist[1:2:2] "distribution" )
4 # Computes the probability of a binary choice: 1 = logit
5 scalar p = x*b # The index function
6 scalar d = (dist==1) ? 1./(1.+exp(-p)) : cnorm(p)
7 return d
8 end function

Note, if dist=1 then the logit probabilities are returned. A function called Probs is composed that
uses p_binary to compute the delta method standard errors, confidence intervals, and to print a
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table of results.6

Probs is given below:

1 function void Probs (matrix b "parameter estimates",
2 matrix covmat "Covariance",
3 matrix x "Representative Point",
4 scalar df "Degrees of Freedom",
5 int dist[1:2:2] "distribution")
6 # Function computes std errors of binary predictions
7 # Requires p_binary
8 scalar p = p_binary(b, x, dist)
9 matrix jac = fdjac(b, p_binary(b, x , dist))

10 matrix variance = qform(jac,covmat)
11 matrix se = sqrt(diag(variance))
12 scalar crit = critical(t,df,0.025)
13 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
14

15 if dist == 1
16 printf "Logit:\n"
17 else
18 printf "Probit:\n"
19 endif
20

21 printf "95%% t(%.2g) confidence interval for probability at\n\
22 x = %8.4f\n", df, x
23 cnameset(results, " Lower ME Upper StdError" )
24 printf "%10.4f\n", results
25 end function

In line 8 the p_binary function is used to produce the probability at the representative point.
The derivative is take in line 9 with respect to the parameters and combined in line 10 as prescribed
by the delta method.

The function is used in this example to compute the marginal effect on the probability of driving
when the time differential is 30 minutes (dtime=3 ). The model is estimated by probit.

1 probit auto x --quiet
2 matrix x_at = { 1 , 3}
3 scalar dist = ($command == "logit")? 1 : 2
4 Probs($coeff,$vcv,x_at,$df,dist)

The output is:

6Another thing to note is that the use of pointers has been abandoned in favor of simplicity.

561



Probit:
95% t(19) confidence interval for probability at
x = 1.0000 3.0000

Lower ME Upper StdError
0.5000 0.7983 1.0966 0.1425

The probability of driving when dtime=3 is 0.7983 with standard error 0.1425. The 95% confi-
dence interval with dtime=3 is (0.5000, 1.0966). Obviously, the upper bound is not feasible since
probabilities cannot exceed 1.

16.3.4 Logit

The logit model is very similar to probit. Rather than the probability of an event being described
by a normal distribution, it is modeled using a logistic distribution. The logistic and normal have
very similar shapes and the substabtive outcomes from the logit estimation are usually very similar
to those of probit. The probability that individual i chooses the alternative is

Pi = F (zi) = Λ(zi) =
1

1 + e−zi
(16.9)

zi =

k∑
j=1

xijβj (16.10)

In logit the probability is modeled using Λ(zi) rather than Φ(zi) as in the probit model.

In gretl, the logit command syntax is the same as that for probit.

logit

Arguments: depvar indepvars
Options: --robust (robust standard errors)

--cluster=clustvar (clustered standard errors)
--multinomial (estimate multinomial logit)
--vcv (print covariance matrix)
--verbose (print details of iterations)
--p-values (show p-values instead of slopes)

In the next example estimators of probit, logit and the LPM are compared. The models are
estimated and marginal effects are computed using the functions from the preceding subsection.

Example 16.6

The model used for this example is soft drink choice where the dependent variable is equal to
one if the buyer purchases Coke and is zero otherwise. This is modeled as a function of the ratio of
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the Coke price to Pepsi price, the presence of a Coke display (1 = yes) and the presence of a Pepsi
display (1 = yes). The model is:

Pr(Cokei = 1) = Φ(β1 + β2pratio + β3disp coke + β4disp pepsi) (16.11)

First, the model in equation (16.11) is estimated using each of the binary choice estimators and
the session window is used to create a model table. This is facilitated by assigning the output to
the icons m1, m2, and m3 in the session window:

1 open "@workdir\data\coke.gdt"
2 list x = const pratio disp_pepsi disp_coke
3 m1 <- probit coke x --quiet
4 m2 <- logit coke x --quiet
5 m3 <- ols coke x --robust

The model table, which is constructed by dragging each of the model icons onto the model table
icon in the session window (see page 15), is:

Dependent variable: coke

(1) (2) (3)
OLS Probit Logit

const 0.8902∗∗ 1.108∗∗ 1.923∗∗

(0.06530) (0.1900) (0.3258)

pratio −0.4009∗∗ −1.146∗∗ −1.996∗∗

(0.06037) (0.1809) (0.3146)

disp pepsi −0.1657∗∗ −0.4473∗∗ −0.7310∗∗

(0.03436) (0.1014) (0.1678)

disp coke 0.07717∗∗ 0.2172∗∗ 0.3516∗∗

(0.03393) (0.09661) (0.1585)

n 1140 1140 1140
R2 0.1201 0.0930 0.0949
` −748.1 −710.9 −709.4

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

For logit and probit, R2 is McFadden’s pseudo-R2
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The signs and the t-ratios are approximately equal across the estimators. In logit and probit,
the coefficients, signs are consistent with the direction of the marginal effects, either positive or
negative. Coefficient magnitudes differ only because of the implicit differences in how the coefficients
are normalized. Although it is not obvious, there is an approximate relationship among the ‘slope’
coefficients of the three sets of estimates.

γ̃Logit ∼= 4β̂LPM

β̃Probit ∼= 2.5β̂LPM

γ̃Logit ∼= 1.6β̂Probit

So, 4(−0.4009) = −1.6036 is fairly close to the estimate −1.996 for the pratio coefficient in the
logit column. More importantly, there are closer similarities between the marginal effects impliesd
by logit and probit. Their averages (AME) are very close to the corresponding coefficient in the
linear probability model. One can expect them to become closer as sample size increases.

The first set of statistics computed are the AME from each of the models. This is easy for the
LPM since the marginal effects are the same no matter what the value of x. For probit and logit
it requires the use of the delta method to obtain consistent estimators of standard errors.

The computation of AME and their standard errors has been consolidated to the following
function, which uses the ame_binary function to estimate the average marginal effects from the
sample.

1 function matrix ame_cov (matrix b "parameter estimates",
2 matrix covmat "Covariance",
3 list x "Variables list",
4 int dist[1:2:2] "distribution" )
5 # Computes std errs for AME probit/logit
6 # Requires ame_binary
7 matrix amfx = ame_binary(&b, x, dist)
8 matrix jac = fdjac(b, ame_binary(&b, x , dist))
9 matrix variance = qform(jac,covmat)

10 matrix se = sqrt(diag(variance))
11 matrix results = amfx’ ˜ se
12 rnameset(results, "b")
13 cnameset(results, "AME StdErr")
14 if dist == 1
15 printf "Logit:\n"
16 else
17 printf "Probit:\n"
18 endif
19 printf "%10.4f\n", results
20 return amfx|variance
21 end function

The ame_cov function accumulates the AMEs and their delta method variance covariance matrix
into a k + 1 × k matrix. This matrix provides perfect input into the function that computes
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confidence intervals based on the t-distribution. The columns of the output from ame_cov are the
parameters of the model. The first row contains the coefficient estimates and the remaining k × k
matrix is the estimated variance covariance.

The model is estimated and the inputs required for these functions are assigned to matrices and
a scalar.

1 m1 <- probit coke x --quiet
2 matrix bp = $coeff
3 matrix covmat = $vcv
4 scalar dist = ($command == "logit")? 1 : 2

To produce a set of confidence intervals, separate the coefficients from the covariance and use
the t_interval_m function as shown below.

1 matrix c=ame_cov(bp,$vcv,x,dist)
2 t_interval_m(c[1,]’,c[-1,],$df,.95)

The indexing prowess of gretl is in evidence here. The k+ 1× k matrix produced by the function
is c. c[1,] pulls out the first row, all columns of the matrix c. It is transposed to form a k × 1
vector of coefficients. c[-1,] takes c and −1 in the row position removes the first row. What is
left is the variance-covariance. The rest of the inputs are familiar by now.

The result is:

The 95% confidence intervals (t-distribution)
Estimate StdErr (Lower, Upper)

b1 0.3961 0.0652 0.2682 0.5241
b2 -0.4097 0.0616 -0.5306 -0.2887
b3 -0.1599 0.0353 -0.2292 -0.0906
b4 0.0776 0.0343 0.0103 0.1450

Logit and probit MERs are also compared. The representative point considered has the price
of Coke 10% higher than Pepsi (pratio = 1.1) and neither is displayed. For probit:

1 matrix x_at = { 1, 1.1, 0, 0}
2 probit coke x
3 scalar dist = ($command == "logit")? 1 : 2
4 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)

which produces:
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Probit:
Representative Point

const pratio disp_pepsi disp_coke
1 1.1 0 0

95% CI for MER
Lower ME Upper StdErr

pratio -0.5898 -0.4519 -0.314 0.07028
disp_pepsi -0.2346 -0.1651 -0.09554 0.03544
disp_coke 0.01102 0.08639 0.1618 0.03842

Re-estimating the model using logit:

1 logit coke x
2 scalar dist = ($command == "logit")? 1 : 2
3 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)

produces:

Logit:
Representative Point

const pratio disp_pepsi disp_coke
1 1.1 0 0

95% CI for MER
Lower ME Upper StdErr

pratio -0.6376 -0.4898 -0.342 0.07532
disp_pepsi -0.2329 -0.164 -0.0952 0.03509
disp_coke 0.009974 0.08747 0.165 0.0395

Do not forget to recreate the scalar dist in line 2 since it must be reinitiated each time a new
estimator is used. Comparing the two sets of results, the MER for the pratio coefficient estimated
by probit is −0.4519, and the 95% confidence interval is (−0.5898,−0.314). From logit we get an
estimate of −0.4898 and an interval of (−0.6376,−0.342). The two sets of results are very similar.

The models can also be compared based on predictions. Gretl produces a table in the standard
probit and logit outputs that facilitates this. The table is 2× 2 and compares predictions from the
model to actual choices. The table for the beverage choice model is:

Number of cases ’correctly predicted’ = 754 (66.1%)
f(beta’x) at mean of independent vars = 0.394
Likelihood ratio test: Chi-square(3) = 145.823 [0.0000]

Predicted
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0 1
Actual 0 507 123

1 263 247

The table reveals that with probit, of the (507 + 123) = 630 consumers that chose Pepsi (Pepsi=0),
the model predicted 507 of these correctly (80.48% correct for Pepsi). It predicted 247/(263 +
247) = 247/510 = 48.43% correct for Coke. The overall percentage that was correctly predicted is
754/1140 = 66.1%. The table for logit is exactly the same, so there is no reason to prefer one over
the other for their predictive accuracy.

In fact, the correlations between the predictions of the three estimators are high as shown below:

Correlation Coefficients for model predictions,
using the observations 1 - 1140

5\% critical value (two-tailed) = 0.0581 for n = 1140

probit logit ols
1.0000 0.9996 0.9950 probit

1.0000 0.9924 logit
1.0000 ols

The correlations exceed 0.99 and are significant at 5%.

16.3.5 Hypothesis Tests

Example 16.7 in POE5

In this example several hypotheses are tested using Wald tests. In gretl these are done using
the restrict block, possibly with the --quiet option. One-sided t-tests can be constructed
manually using accessors and these are displayed below as well.

One-sided t-test Tests of significance were explored in section (5.4.3). Based on the soft drink
model explored in equation (16.11), the hypothesis that the presence of a Coke display increases
the probability of a Coke purchase. Parametrically, this is expressed as H0: β3 ≤ 0 versus H1:
β3 > 0. First, load the data and estimate the model by probit. Then form the t-ratio as a scalar
and print the t-statistic and its one-sided p-value to the screen. The script is:

1 open "@workdir\data\coke.gdt"
2 list x = const pratio disp_pepsi disp_coke
3 probit coke x
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4

5 # H1 Test of significance
6 scalar tv = $coeff(disp_coke)/$stderr(disp_coke)
7 printf "Ho: b3 = 0 Ha: b3>0\n \
8 t = %.4f\n \
9 p-value = %.4f\n", \

10 tv, pvalue(t,$df,tv)

Even though the example is rudimentary, the extra care taken to produce the output can pay off
when your programs experience a long layoff between uses.

Ho: b3 = 0 Ha: b3>0
t = 2.2481
p-value = 0.0124

Here, the p-value is less than 5% and we conclude that the display helps to sell more Coke.

Two-sided t-test For this hypothesis H0: β3 = 0 versus H1: β3 6= 0. The same statistic from
the one-sided test is used, but a different p-value is computed. In addition, the 5% critical value
from the t-distribution is computed and displayed.

1 printf "Ho: b3 = 0 Ha: b3 != 0\n \
2 t = %.4f\n \
3 p-value = %.4f\n", \
4 tv, 2*pvalue(t,$df,abs(tv))
5

The results are:

Ho: b3 = 0 Ha: b3 != 0
t = 2.2481
p-value = 0.0248

The 5% critical value from the t(1136) is 1.9621

Note that the p-value doubles, but β3 is significantly different from zero at 5%. The t-ratio exceeds
the 5% critical value from the t(1136) distribution.

The same result can be obtained using a restrict block.
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1 restrict --quiet
2 b[disp_coke]=0
3 end restrict

The results are:

Restriction:
b[disp_coke] = 0

Test statistic: chiˆ2(1) = 5.05403, with p-value = 0.0245687

Asymptotically, this is exactly equivalent to the t-test, since as n extends to infinity, t2n → χ2(1).

Economic Hypothesis The hypothesis that the Coke and Pepsi displays have an equal but
opposite effect on the probability of buying Coke is to be tested. That is,

H0: β3 + β4 = 0 H1: β3 + β4 6= 0 (16.12)

If a store has both displays, the net effect on Coke purchases is hypothesized to be zero.

As a two-sided alternative, the simplest thing to do is use the restrict statement as shown
below:

1 probit coke x --quiet
2 restrict
3 b[3]+b[4]=0
4 end restrict

This works exactly as it did in linear regression. The outcome in gretl is:

Restriction:
b[disp_pepsi] + b[disp_coke] = 0

Test statistic: chiˆ2(1) = 5.40401, with p-value = 0.0200905

The p-value is less than 5% and the hypothesis is rejected at this level.

Another hypothesis to consider is that the displays have no effect. The null and alternative
hypotheses are:

H0: β3 = 0 and β4 = 0 H1: β3 6= 0 or β4 6= 0 (16.13)

The gretl code is
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1 probit coke x
2 restrict --quiet
3 b[3]=0
4 b[4]=0
5 end restrict
6 printf "The 5%% critical value from the chi-square(2) is %.4f\n",\
7 critical(C,2,.05)

This statistic will have an χ2(2) distribution if the null hypothesis is true. The outcome in gretl
is:

Restriction set
1: b[disp_pepsi] = 0
2: b[disp_coke] = 0

Test statistic: chiˆ2(2) = 19.4594, with p-value = 5.9489e-005

Again, this hypothesis is rejected at any reasonable level of significance.

Overall regression significance For this hypothesis, the null is for all parameters other than
the constant to be jointly zero.

1 probit coke x
2 restrict --quiet
3 b[2]=0
4 b[3]=0
5 b[4]=0
6 end restrict
7 printf "The 5%% critical value from the chi-square(3) is %.4f\n",\
8 critical(C,3,.05)

This statistic will have an χ2(2) distribution if the null hypothesis is true. The outcome in gretl
is:

Restriction set
1: b[pratio] = 0
2: b[disp_pepsi] = 0
3: b[disp_coke] = 0

Test statistic: chiˆ2(3) = 132.54, with p-value = 1.53304e-028

According to this result, the model is significant at 5%.
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Example 16.8 in POE5

Since probit and logit are estimated via maximum likelihood, you can also perform a likelihood
ratio test. The likelihood ratio is

LR = 2(lnLU − lnLR) ∼ χ2(J) (16.14)

if the null is true. The parameter J is the degrees of freedom for the χ2 and it equals the number
of hypotheses you are testing jointly, in this case 2. It has the same approximate distribution as
the preceding test. LU and LR are the maximized log-likelihoods from unrestricted and restricted
models, respectively. The procedure is to estimate restricted and unrestricted models, collect the
log-likelihood from each, compose the LR statistic, and compute its p-value.

Parameter significance For the first hypothesis, the restriction implies that β3 = 0 under the
null. The restricted model is:

Pcoke = Φ(β1 + β2pratio + β4disp pepsi) (16.15)

The script to estimate restricted and unrestricted models is:

1 open "@workdir\data\coke.gdt"
2 list x = const pratio disp_pepsi disp_coke
3

4 probit coke x --quiet
5 scalar llu = $lnl
6

7 probit coke const pratio disp_pepsi --quiet
8 scalar llr = $lnl
9

10 scalar lr = 2*(llu-llr)
11 printf "Ho: b3 = 0 Ha: b3 != 0\n \
12 LR = %.4f\n \
13 p-value = %.4f\n", \
14 lr, pvalue(C,1,lr)

Since there are two models to estimate, the script looks more complicated than it is. The unre-
stricted model, which contains all variables, is estimated in line 4. The value of the log-likelihood
is saved into a scalar llu using the accessor $lnl. In line 7 the restricted model is estimated and
its log-likelihood is saved into a scalar llr in line 8, again using the accessor $lnl. The likelihood
ratio is computed in line 10 and then printf is used to summarize things for us.

The result is:

Ho: b3 = 0 Ha: b3 != 0
LR = 5.0634
p-value = 0.0244
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This is nearly the same result obtained using the Wald test. For nonlinear estimators, these
statistics will normally yield (slightly) different results.

Economic hypothesis Again, the hypothesis that the two types of display have equal and
opposite effects on the probability of purchasing Coke (i.e., β3 = −β4). To estimate the restricted
model, substitute the restriction into the model and collect parameters. This forms the new variable
(disp pepsi−disp coke), which is used in estimating the restricted likelihood. The script to compute
and evaluate the LR is:

1 series c_p = disp_pepsi-disp_coke
2 probit coke x --quiet
3 scalar llu = $lnl
4 probit coke const pratio c_p --quiet
5 scalar llr = $lnl
6 scalar lr = 2*(llu-llr)
7 printf "Ho: b3+b4 = 0 Ha: b3+b4 != 0\n \
8 LR = %.4f\n \
9 p-value = %.4f\n", \

10 lr, pvalue(C,1,lr)

The result is

Ho: b3+b4 = 0 Ha: b3+b4 != 0
LR = 5.4218
p-value = 0.0199

The statistic is 5.42, which is very close to the value from the Wald test of this hypothesis.

The next hypothesis to consider is that the displays have no effect. The null and alternative
hypotheses are:

H0: β3 = 0 and β4 = 0 H1: β3 6= 0 or β4 6= 0 (16.16)

The gretl code is

1 probit coke x --quiet
2 scalar llu = $lnl
3 probit coke const pratio --quiet
4 scalar llr = $lnl
5 scalar lr = 2*(llu-llr)
6 printf "Ho: b3 = b4 = 0 vs. Ha: b3 != 0, b4 != 0\n \
7 LR = %.4f\n \
8 p-value = %.4f\n", \
9 lr, pvalue(C,2,lr)
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This statistic will have an χ2(2) distribution if the null hypothesis is true. The outcome in gretl
is:

Ho: b3 = b4 = 0 vs. Ha: b3 != 0, b4 != 0
LR = 19.5515
p-value = 0.0001

Again, this hypothesis is rejected at any reasonable level of significance.

Overall regression significance For this hypothesis, the null is for all parameters other than
the constant to be jointly zero, i.e., β2 = β3 = β4 = 0.

1 probit coke x --quiet
2 scalar llu = $lnl
3 probit coke const --quiet
4 scalar llr = $lnl
5 scalar lr = 2*(llu-llr)
6 printf "Ho: b2=b3=b4=0 vs. Ha: not Ho\n \
7 LR = %.4f\n \
8 p-value = %.4f\n", \
9 lr, pvalue(C,3,lr)

This statistic will have an χ2(2) distribution if the null hypothesis is true. The outcome in gretl
is:

Ho: b2=b3=b4=0 vs. Ha: not Ho
LR = 145.8234
p-value = 0.0000

According to this result, the model is significant at 5%.

16.4 Endogenous Regressors

With an endogenous, continuous regressor there are at least two approaches one can take to
estimate the parameters of the model consistently. The first is to use linear two-stage least squares.
This is the endogenous regressor counterpart to the linear probability model.

The other approach is to use an instrumental variable probit (or logit). This is NOT a two-
stage estimator in the same sense as linear 2SLS. It requires some care in practice. For some
computational hints on computing the AGLS estimator see Adkins (2009).
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Example 16.9 in POE5

In this example, the mroz.gdt data are used to estimate a model of female labor force partici-
pation (LFP). LFP is binary, taking the value 1 if a female is in the labor force and 0 otherwise.
The linear probability model estimated is:

LFP = β1 + α1educ + β2exper + β3exper2 + β4kidls6 + β5age + e

The woman’s years of schooling, educ, is considered to be endogenous. For linear 2SLS we need an
instrument. This is provided by her mother’s education, mothereduc. Following the discussion in
section 10.2.2 we estimate:

1 open "@workdir\data\mroz.gdt"
2 square exper
3 list x = const educ exper sq_exper kidsl6 age
4 list inst = const exper sq_exper kidsl6 age mothereduc
5 tsls lfp x ; inst --robust

Experience is squared in line 2, a list of regressors created in line 3 and the entire set of instruments
saved to a list in line 4. The tsls estimator is used with the --robust option, which in this
instance is robust with respect to the known heteroskedasticity of the binary dependent variable.
The output is:

LPM IV: TSLS, using observations 1–753
Dependent variable: lfp

Instrumented: educ
Instruments: const exper sq exper kidsl6 age mothereduc
Heteroskedasticity-robust standard errors, variant HC1

Coefficient Std. Error t-ratio p-value

const 0.5919 0.2382 2.485 0.0132
educ 0.03878 0.01649 2.352 0.0189
exper 0.03938 0.005977 6.589 0.0000
sq exper −0.0005715 0.0001944 −2.940 0.0034
kidsl6 −0.2712 0.03212 −8.442 0.0000
age −0.01769 0.002279 −7.761 0.0000

Mean dependent var 0.568393 S.D. dependent var 0.495630
Sum squared resid 137.2405 S.E. of regression 0.428628
R2 0.257174 Adjusted R2 0.252202
F (5, 747) 74.78407 P-value(F ) 1.56e–63
Log-likelihood −5568.220 Akaike criterion 11148.44
Schwarz criterion 11176.19 Hannan–Quinn 11159.13
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Hausman test –
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: χ2(1) = 0.211625
with p-value = 0.645497

Weak instrument test –
First-stage F (1, 747) = 144.4

While the instrument appears to be strong (F=144.4), the Hausman test for the exogeneity of
education is not rejected at 5%.

The first stage regression

1 ols educ inst

yields:

FirstStage: OLS, using observations 1–753
Dependent variable: educ

Coefficient Std. Error t-ratio p-value

const 8.995 0.5848 15.38 0.0000
exper 0.09396 0.02658 3.535 0.0004
sq exper −0.002066 0.0008746 −2.363 0.0184
kidsl6 0.3540 0.1576 2.246 0.0250
age −0.002618 0.01108 −0.2363 0.8133
mothereduc 0.2905 0.02261 12.85 0.0000

Mean dependent var 12.28685 S.D. dependent var 2.280246
Sum squared resid 3075.952 S.E. of regression 2.029222
R2 0.213320 Adjusted R2 0.208054
F (5, 747) 40.51193 P-value(F ) 6.57e–37
Log-likelihood −1598.311 Akaike criterion 3208.622
Schwarz criterion 3236.366 Hannan–Quinn 3219.310

Notice that the squared value of the t-ratio on mothereduc is equal to the first-stage F statistic for
weak instruments.

The other possibility is to estimate an instrumental variables probit version of the model. This
can be done using a package called HIP. HIP is written by Riccardo Lucchetti and Claudia Pigini
and features a collection of scripts to estimate heteroskedastic probit models, that may include
endogenous regressors. Estimation is by maximum likelihood assuming that the latent errors are
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assumed to be normally distributed, and hence estimated as probit. Below, we reestimate the
model in Example 16.9 using HIP.

First, head to the gretl function package server and download and install HIP.gfn. The syntax
used by HIP is a little different from that of tsls. In tsls two lists are composed: a list of
regressors in the model and a full list of the exogenous variables, including the external instruments.
HIP does this differently.

HIP can use four arguments.

1. the dependent variable (series)–y

2. the exogenous explanatory variables (normally as a list)–Exog_x

3. the endogenous explanatory variables (a list or, as in this this case, a single variable name)–
Endog_x

4. the external instruments (a list or, as in this this case, a single variable name)–External_IV

So, the regressors are separated into exogenous and endogenous. The instrument list includes only
the external instrument(s).

The syntax is:

HIP(y, Exog_x, Endog_x, External_IV)

HIP takes other arguments if a model of heteroskedasticiy is used and to control the amount of
output produced. Also, HIP is available from the GUI, which will be discussed presently.

For our example:

1 include HIP.gfn
2 list exog_vars = const exper sq_exper kidsl6 age
3 b=HIP(lfp, exog_vars, educ, mothereduc)

The exogenous regressors are placed into the list exog_vars. There is only 1 endogenous regressor,
educ, and it is the next argument. It enters as a series. Finally, the external instrument is
mothereduc and it also enters as a series. The output is printed to the screen and saved as a
bundle, b, in the session window. The output is:

Probit model with endogenous regressors
ML, using observations 1-753
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Dependent Variable: lfp
Instrumented: educ
Instruments: const, exper, sq_exper, kidsl6, age, mothereduc
Parameter covariance matrix: OPG

coefficient std. error z p-value
----------------------------------------------------------
const 0.316430 0.767733 0.4122 0.6802
exper 0.122673 0.0195898 6.262 3.80e-010 ***
sq_exper -0.00178989 0.000619681 -2.888 0.0039 ***
kidsl6 -0.877123 0.119611 -7.333 2.25e-013 ***
age -0.0576838 0.00822293 -7.015 2.30e-012 ***
educ 0.127417 0.0530207 2.403 0.0163 **

Log-likelihood -2002.9255 Akaike criterion 4033.8511
Schwarz criterion 4098.5880 Hannan-Quinn 4058.7909
Conditional ll -404.614712 Cragg-Donald stat. 166.205

Overall test (Wald) = 160.054 (5 df, p-value = 0.0000)
Endogeneity test (Wald) = 0.154795 (1 df, p-value = 0.6940)

The test results are quite similar to those of the linear probability IV estimator. Education is not
found to be endogenous at 5%. The t-ratio on education was 2.35 in the LPM version and is 2.4
in the IV/probit version. Of course, computing marginal effects in the IV/probit is complicated by
nonlinearity.

The GUI is easy to use. Once installed, use Model > Limited dependent variable >
Probit > IV/Heteroskedastic to launch the dialog box shown in Figure 16.4 below.

Figure 16.3: Choose Model > Limited dependent variable > Probit > IV/Heteroskedastic
from the pull-down menu in gretl’s main window.

Click OK and estimates will be returned in a window. From there, the bundle can be saved,
printed, or the output copied into memory for pasting into your editor (text) or word processor
(RTF).
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Figure 16.4: HIP dialog box. Fill in the dependent variable, and create lists for exogenous regressors,
endogenous regressors, and external instruments. Single series can also be used as inputs as done
here by typing in the variable’s name.

16.5 Multinomial Logit

Starting with version 1.8.1, Gretl includes a routine to estimate multinomial logit (MNL) using
maximum likelihood. In versions before 1.8.1 the alternatives were either (1) use gretl’s maximum
likelihood module to estimate your own or (2) use another piece of software! In this section we’ll
estimate the multinomial logit model using the native gretl function and I’ll relegate the other
methods to a separate (optional) section 16.5.1. The other methods demonstrate how to use
gretl’s scripting language in conjunction with other software, in this case R.

In this model the dependent variable is categorical and is coded in the following way. A student
graduating from high school chooses among three alternatives: attend no college psechoice=1,
enroll in a 2-year college psechoice=2, or enroll in a 4-year college psechoice=3. The ex-
planatory variable is grades, which is an index ranging from 1.0 (highest level, A+ grade) to 13.0
(lowest level, F grade) and represents combined performance in English, Math and Social Studies.
For this example, the choices are treated as being unordered. There are 1000 observations.

To estimate the model of school choice as a function of grades and a constant open the
nels small.gdt dataset and use the logit command with the --multinomial option as shown:

1 open "@workdir\data\nels_small.gdt"
2 list x = const grades
3 mnl <- logit psechoice x --multinomial
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The --multinomial option is used when the choices are unordered. For ordered logit, it is
omitted. Gretl analyzes the dependent variable, in this case psechoice, to determine that it is
actually discrete. psechoice can takes three possible values (1, 2, or 3) and the logit function in
gretl should handle this automatically.

MNL estimation yields the output shown below:

mnl: Multinomial Logit, using observations 1–1000
Dependent variable: psechoice

Standard errors based on Hessian

Coefficient Std. Error z p-value

const 2.50642 0.418385 5.991 0.0000
grades −0.308789 0.0522849 −5.906 0.0000
const 5.76988 0.404323 14.27 0.0000
grades −0.706197 0.0529246 −13.34 0.0000

Mean dependent var 2.305000 S.D. dependent var 0.810328
Log-likelihood −875.3131 Akaike criterion 1758.626
Schwarz criterion 1778.257 Hannan–Quinn 1766.087

Number of cases ‘correctly predicted’ = 585 (58.5 percent)
Likelihood ratio test: χ2(2) = 286.689 [0.0000]

The coefficients appear in sets. The first set are the coefficients that go with psechoice=2
and the second set go with psechoice=3; this implies that gretl chose psechoice=1 used as
the base.

The probability of choosing an alternative in multinomial logit is

pi1 =
1

1 +
∑J

j=2 exp(β1j + β2jxi2 + · · ·+ βkjxik)
j = 1 (16.17)

pij =
exp(β1j + β2jxi2 + · · ·+ βkjxik)

1 +
∑J

j=2 exp(β1j + β2jxi2 + · · ·+ βkjxik)
j 6= 1 (16.18)

Obtaining the probabilities is simple. Estimate the model via the GUI (Model>Limited depen-
dent variable >Logit>Multinomial) or, as done above, by assigning the output to a model that
appears in the session window. From the model window select Analysis>Outcome probabilities
to produce the predicted probabilities for each case in the sample. This is shown in Figure 16.5.
The first few probabilities are:

Estimated outcome probabilities for psechoice
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Figure 16.5: You can obtain the outcome probabilities from the multinomial logit model window.
These are also available after estimation in the $mnlprobs accessor.

1 2 3
1 0.4408 0.3274 0.2319
2 0.3511 0.3308 0.3181
3 0.2539 0.3148 0.4313
4 0.2539 0.3148 0.4313
5 0.2539 0.3148 0.4313
....

1000 0.0339 0.1351 0.8310

A script can be written to obtain predicted probabilities that shows off a few more tricks. The
proposed function is called mlogitprob and the script for it is:

1 function list mlogitprob(series y "Dependent variable",
2 list x "List of regressors",
3 matrix theta "Coefficient vector")
4 list probs = null
5 matrix X = { x }
6 scalar j = max(y)
7 scalar k = cols(X)
8 matrix b = mshape(theta,k,j-1)
9 matrix tmp = X*b

10 series den = (1 + sumr(exp(tmp)))
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11

12 loop for i=1..j --quiet
13 if i == 1
14 series p$i = 1/den
15 else
16 scalar q = i - 1
17 series num = exp(X[q,]*b[,q])
18 series p$i=num/den
19 endif
20 list probs += p$i
21 endloop
22 return probs
23 end function

The inputs are the dependent variable, y, a list of independent variables, x, and the coefficients from
multinomial logit estimation, theta. The function will return a list that contains the computed
probabilites. These will be added to the dataset.

An empty list must be created, which is done using list null. In line 5 the independent
variables are converted into a matrix called X. Line 6 obtains the maximum category in the coding
of the dependent variable. The variable psechoice takes values 1, 2, and 3 in the data so this will
return the value 3. If the data are coded 0, 1, 2, as they sometimes are, the script must be altered
to account for that. The scalar k counts the number of independent variables. In MNL there are J
choices and J−1 sets of k parameters. The matrix b reshapes the (J−1)k×1 vector of coefficients
produced by logit --multinomial into a k × (J − 1) matrix. Each column of this matrix
contains the coefficients for the (j)th choice. The matrix labeled tmp computes the indexes for each
choice. The matrix den computes the row sums of these to produce the denominator found in the
MNL probabilities.

The loop is required because of the way MNL probabilities are computed. For the normalized
choice, the numerator is 1. For the others it is eindexj . The computed probabilities are added to the
list probs using the operator (+=), which is an efficient way of appending new results to existing
ones. The loop ends and you must return the list probs in order for the computed series to be
passed out of the function and added to the dataset.

To use the function, create the variable list, estimate the model and save the coefficients to a
matrix. Finally, create a list and print it by observation as in:

1 open "@workdir\data\nels_small.gdt"
2 list x = const grades
3 mnl <- logit psechoice x --multinomial
4 matrix theta = $coeff
5 list n = mlogitprob(psechoice, x, theta)
6 smpl 1 12
7 print n --byobs
8 smpl full
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This can be made easy simply by using the accessor, $mnlprobs. This gives you access to the
probabilities from the multinomial logit that we obtained using the GUI. Not much fun in that,
but it is easy. However, with this function marginal effects can be computed.

To get average marginal effects is a snap at this point. Add 1 to the value of grades, recompute
the probabilities, and average the difference between the two. This requires renaming the predicted
probabilities, but that is easily done using the rename function.

1 rename p1 p01
2 rename p2 p02
3 rename p3 p03
4

5 series grade1 = grades+1
6 list x1 = const grade1
7 list n1 = mlogitprob(psechoice, x1, theta)
8 series d1 = p1-p01
9 series d2 = p2-p02

10 series d3 = p3-p03
11 summary d* --simple

The script yields:

Summary statistics, using the observations 1 - 1000

Mean Minimum Maximum Std. Dev.
d1 0.080044 0.0092216 0.11644 0.034329
d2 -0.00014717 -0.11560 0.017795 0.023719
d3 -0.066086 -0.31899 -0.00037743 0.069045

As a student’s performance gets worse (grades increases by 1), the average probability of not
attending college goes up by 0.08. The probability of attending 4-year school declines by −0.066.

Finding marginal effects at specific points requires another function, but it is similar to the one
used above, mlogitprob. The only substantive change is feeding the function a matrix rather
than the list of variables and changing series computations within the function to either scalar or
matrix. The new function is:

1 function matrix mlogitprob_at(series y "Dependent variable",
2 matrix x "Representative point 1xk",
3 matrix theta "Coefficient vector")
4 # computes probabilites of each choice at a representative point
5 matrix probs = {}
6 scalar j = max(y)
7 scalar k = cols(x)
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8 matrix b = mshape(theta,k,j-1)
9 matrix tmp = x*b

10 scalar den = (1 + sumr(exp(tmp)))
11

12 loop for i=1..j --quiet
13 if i == 1
14 scalar p$i = 1/den
15 else
16 scalar q = i - 1
17 scalar num = exp(x*b[,q])
18 scalar p$i=num/den
19 endif
20 matrix probs = probs ˜ p$i
21 endloop
22 return probs
23 end function

The function is easy to use and reproduces the results in POE5 Table 16.3 using the script below.

1 open "@workdir\data\nels_small.gdt"
2 list x = const grades
3 logit psechoice x --multinomial
4 matrix theta = $coeff
5 matrix Xm = {1 , quantile(grades,.50)}
6 matrix p50 = mlogitprob_at(psechoice, Xm, theta)
7 matrix Xm = {1 , quantile(grades,.05)}
8 matrix p05 = mlogitprob_at(psechoice, Xm, theta)
9 printf "\nThe predicted probabilities for student\

10 grades = %.3g are\n %8.4f\n" ,quantile(grades,.05), p05
11 printf "\nThe predicted probabilities for student\
12 grades = %.3g are\n %8.4f\n",quantile(grades,.50), p50

Output from this routine shows:7

The predicted probabilities for student grades = 2.63 are
0.0177 0.0964 0.8859

The predicted probabilities for student grades = 6.64 are
0.1810 0.2856 0.5334

To use the function to get marginal effects of 1 unit change in grades for median and 95th

percentile students create quantiles based on the series grades and use these in the function. Taking
the difference in probabilities yields an approximate (discrete) marginal effect at the given quantiles.

7Notice that gretl computes the quantile using a weighted average of the 50th and 51st observations, i.e.,
.95*2.63+.05*2.64=2.3605 so the result differs slightly from the ones in POE5.
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1 open "@workdir\data\nels_small.gdt"
2 list x = const grades
3 logit psechoice x --multinomial
4 matrix theta = $coeff
5 scalar q50 = quantile(grades,.50)
6 matrix Xm = {1 , q50-0.5}
7 matrix p0 = mlogitprob_at(psechoice, Xm, theta)
8 matrix Xm = {1 , q50+0.5}
9 matrix p1 = mlogitprob_at(psechoice, Xm, theta)

10 matrix me = p1-p0
11 rnameset(me,"MER")
12 cnameset(me,"NoColl 2Year 4Year ")
13 printf "\nThe marginal effect of grades for student\
14 grades=%5.2f\n\
15 %8.4f\n", median(grades), me
16

17 scalar q05 = quantile(grades,.05)
18 matrix Xm = {1 , q05-0.5}
19 matrix p0 = mlogitprob_at(psechoice, Xm, theta)
20 matrix Xm = {1 , q05+0.5}
21 matrix p1 = mlogitprob_at(psechoice, Xm, theta)
22 matrix me = p1-p0
23 cnameset(me,"NoColl 2Year 4Year ")
24 rnameset(me,"MER")
25 printf "\nThe marginal effect of grades for student\
26 grades=%5.2f\n\
27 %8.4f\n", q05, me

Notice that the script returns the predicted probabilities for these students and the change in those
probabilities resulting from a 1 unit change in grades. The total probabilities should sum to one
and the marginal effects should sum to zero. This script also uses a common trick. The one unit
change is evaluated at ±0.5 of each quantile; then the discrete difference is taken. The results
match those in POE5 reasonably well.

The marginal effect of grades for student grades = 6.64
NoColl 2Year 4Year

MER 0.0118 0.0335 -0.0452

The marginal effect of grades for student grades = 2.63
NoColl 2Year 4Year

MER 0.0118 0.0335 -0.0452

We can also employ the lp-mfx package to compute the marginal effects and their standard
errors. This uses the mlogit_dpj_dx function supplied in this function package. The syntax for
is:
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1 function matrix mlogit_dpj_dx (matrix b "parameter estimates",
2 list XL "list of regressors",
3 matrix x "vector of x-values",
4 int j "1-based index of outcome",
5 int m "number of possible outcomes")

The inputs are fairly clear. The 4th input, j, is the index number of the choice, so for instance for
the two=year college choice, which is the second, this integer would be set to 2. The last integer, m,
is total number of possible choices, in our case 3. So, the following will return the marginal impact
on the probability of finishing two-year college with grade = 6.64.

1 matrix x1 = { 1 , 6.64 }
2 matrix c1 = mlogit_dpj_dx($coeff, $xlist, x1, 2, 3)

To obtain the marginal effects and to print results, we use a function call mnl_se_lpfmx. This
function appears below:

1 function matrix mnl_se_lpfmx (matrix b "parameter estimates",
2 matrix covmat "Covariance of MNL",
3 list XL "list of regressors",
4 matrix x "vector of x-values",
5 int j "1-based index of outcome",
6 int m "number of possible outcomes",
7 int df "degrees of freedom for CI" )
8

9 matrix p = mlogit_dpj_dx(b, XL, x, j, m)
10 matrix jac = fdjac(b, mlogit_dpj_dx(b, XL, x, j, m))
11 matrix variance = qform(jac,covmat)
12 matrix se = sqrt(diag(variance))
13 scalar crit = critical(t,df,0.025)
14 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
15

16 cnameset(results, "Lower ME Upper StdErr")
17 printf "95%% CI for MER\n%10.4f\n", results
18 return results
19 end function

It takes seven inputs.

1. A vector of estimates from MNL

2. The estimated variance-covariance matrix

3. A list of regressors
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4. A vector representing the point at which the derivative will be evaluated

5. The index number of the choice, j.

6. The total number of choices, m

7. An integer for degrees-of-freedom for the t-critical value used in the confidence interval

To replicate all of the results in Table 16.3 of POE5 requires this to be executed a number of times
using different values of x, j, and m. To demonstrate how this is used, the MER for the second of
3 possible choices with grades=6.64 use:

1 include lp-mfx.gfn
2 open "@workdir\data\nels_small.gdt"
3 list x = const grades
4 matrix x_at = {1, 6.64 }
5 logit psechoice x --multinomial
6 c = mnl_se_lpfmx( $coeff, $vcv, x, x_at, 2, 3, $df)

to produce:

95% CI for MER
Lower ME Upper StdErr
0.0296 0.0446 0.0596 0.0076

This matches line 3 of Table 16.3 in POE5 .

16.5.1 Using the mle Command for MNL

In this section the maximum likelihood estimator of the MNL model is estimated using gretl’s
generic mle command.

Although versions of Gretl beyond 1.8 include a command for estimating MNL, it can be
estimated with a little effort using the mle block commands (see Chapter 14 for other examples).
To use the mle function, the user writes a script in hansl to compute a model’s log-likelihood given
the data. The parameters of the log-likelihood must be declared and given starting values (using
scalar commands). If desired, the user may specify the derivatives of the log-likelihood function
with respect to each of the parameters; if analytical derivatives are not supplied, a numerical
approximation is computed. In many instances, the numerical approximations work quite well. In
the event that the computations based on numerical derivatives fail, then analytical ones may be
required in order to make the program work.
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What appears below is taken from the Gretl Users Guide. The example for MNL for POE5
requires only a slight modification in order for the program to run with the nels small dataset.

The multinomial logit function, which was found in the Gretl User’s Guide (Cottrell and Luc-
chetti, 2011), is defined

1 function series mlogitlogprobs(series y "Dependent Variable",
2 matrix X "Independent variables",
3 matrix theta "Parameters")
4 # This function computes the log probabilites for MLE
5 # estimation of MNL
6 scalar n = max(y)
7 scalar k = cols(X)
8 matrix b = mshape(theta,k,n)
9 matrix tmp = X*b

10 series ret = -ln(1 + sumr(exp(tmp)))
11 loop for i=1..n --quiet
12 series x = tmp[,i]
13 ret += (y==$i) ? x : 0
14 endloop
15 return ret
16 end function

The function is named mlogitlogprobs and has three arguments. The first is the dependent
variable, series y, the second is set of independent variables contained in matrix X, and the
last is the matrix of parameters, called theta. Scalars in the function are defined for sample
size, number of regressors, and the coefficients are placed in an n × k array in order to match
the dimensionality of the data. The index tmp=X*b is created and ret returns the log-likelihood
function. Don’t worry if you can’t make sense of this because you should not have to change any
of this to estimate MNL with another dataset. That is one of the beauties of defining and using a
function.

To use the mlogitlogprobs function, the data must be of the right form in the right order for
the function to work properly. After loading the data, determine if the dependent choice variable
is in the correct format for the function. The function requires the choices to start at 0. Ours is
not. So, the first step is to convert 1, 2, 3 into choices 0, 1, 2 by subtracting 1 from psechoice.

Create the matrix of regressors, define the number of regressors and use these to initialize the
matrix of coefficients, theta. Then list the dependent variable, matrix of independent variables,
and the initialized parameter matrix as arguments in the function. Click the run button and wait
for the result.

1 open "@workdir\data\nels_small.gdt"
2 series psechoice = psechoice -1
3 list x = const grades
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4 smpl full
5 matrix X = { x }
6 scalar k = cols(X)
7 matrix theta = zeros(2*k, 1)
8 mle loglik = mlogitlogprobs(psechoice, X, theta)
9 params theta

10 end mle --hessian

The results from the program appear below. They match those in POE5 produced by the
logit command with the --multinomial option and are dirt simple to obtain.

ml: ML, using observations 1–1000
loglik = mlogitlogprobs(psechoice, X, theta)

Standard errors based on Hessian

Estimate Std. Error z p-value

theta[1] 2.50643 0.418385 5.991 0.0000
theta[2] −0.308790 0.0522849 −5.906 0.0000
theta[3] 5.76988 0.404323 14.27 0.0000
theta[4] −0.706197 0.0529246 −13.34 0.0000

Log-likelihood −875.3131 Akaike criterion 1758.626
Schwarz criterion 1778.257 Hannan–Quinn 1766.087

Notice that contained in this output is a reference to the function used to specify the log-likelihood.
Gretl stores estimates which can be accessed using $coeff. Other available accessors can be listed
using the varlist --type=accessor command.

? varlist --type=accessor

model-related
$T (scalar: 1000)
$df (scalar: 996)
$ncoeff (scalar: 4)
$lnl (scalar: -875.313)
$aic (scalar: 1758.63)
$bic (scalar: 1778.26)
$hqc (scalar: 1766.09)
$sample (series)
$coeff (matrix)
$stderr (matrix)
$vcv (matrix)
$rho (matrix)
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other
$nobs (scalar: 1000)
$nvars (scalar: 9)
$pd (scalar: 1)
$t1 (scalar: 1)
$t2 (scalar: 1000)
$tmax (scalar: 1000)
$datatype (scalar: 1)
$windows (scalar: 1)
$version (scalar: 20180)
$error (scalar: 0)
$seed (scalar: 1.53238e+009)
$huge (scalar: 1e+100)
$stopwatch (scalar: 6303.82)

This permits a user written likelihood to be used with the other functions in this chapter to produce
the probabilities and marginal effects. This was the approach taken in the preceding section and
the details will not be repeated here.

16.6 Conditional Logit

Conditional logit is used to model choices when there is alternative specific information available.
When choosing among brands of soft-drinks, you have information on the choice that an individual
makes as well as the prices the alternatives. This kind of data differs from the data used in
multinomial logit example because there we only had information on the grade earned by an
individual; there were no alternative grades for those choosing what kind of school to attend.
The grade was specific to the individual, not his choice of schooling. In conditional logit there is
information about each alternative. Models that combine individual specific information and choice
specific information are referred to as mixed. Such data are somewhat rare. Usually you either
have information on the individual (income or race) or the choices (prices and advertising), but not
both.

The following example should make this more clear. We are studying choices among three soft-
drinks: Pepsi, Coke, and Seven-up. Each may sell for a different price. Each individual purchases
one of the brands. The probability that individual i chooses j is

pij =
exp(β1j + β2priceij)

exp(β11 + β2pricei1) + exp(β12 + β2pricei2) + exp(β13 + β2pricei3)
(16.19)

Now there is only 1 parameter that relates to price, but there are J=3 constants. One of these
cannot be identified and is set to zero. This is referred to as normalization and in our case we
set β13 = 0.

Below is a function and a script that will estimate the conditional logit model for the soft drink
example by maximum likelihood. The function is not general in the sense that it will work with
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another model, but the basic idea could be used to generalize it to do so. The MCMC method
discussed below is an alternative that is better suited for general use, but produces results that are
quite similar to those from maximum likelihood estimation.

The function computes the value of the log-likelihood for the conditional logit model. The
inputs consist of two lists and a vector of starting values. The first list contains indicator variables
identifying which choice was made (pepsi, 7up or coke). The second list contains the regressors.

Conditional Logit Probabilities
1 function scalar clprobs(list y "list of choices",
2 list x "list of independent variables",
3 matrix theta "parameters")
4 # computes the probabilities for Conditional Logit
5 # Used in user written MLE
6 matrix Y = { y }
7 matrix p = { x }
8 scalar n = $nobs
9 matrix P = {}

10 loop i=1..n --quiet
11 scalar i1 = exp(theta[1]+theta[3]*p[i,1])
12 scalar i2 = exp(theta[2]+theta[3]*p[i,2])
13 scalar i3 = exp(theta[3]*p[i,3])
14 scalar d = i1+i2+i3
15 matrix pp = (Y[i,1]==1)*i1/d +\
16 (Y[i,2]==1)*i2/d +\
17 (Y[i,3]==1)* i3/d
18 matrix P = P | pp
19 endloop
20 return sumc(ln(P))
21 end function

Lines 6 and 7 convert the lists to matrices. The number of observations is counted in line 8 and
an empty matrix is created to hold the result in 9. The loop that starts in line 10 just computes
the probabilities for each observed choice. The scalars i1, i2 and i3 are added together for the
denominator of equation (16.19); each of these scalars is divided by the denominator term. The
logical statements, i.e., (Y[i,1]=1) is multiplied by the probability. If the person chooses the first
alternative, this i1/d is set to pp. The other logicals are false at this point and are zero. The
vector pp contains the probabilities of making the choice for the alternative actually chosen. The
return is the sum of the logs of the probabilities, which is just the log-likelihood.

In order to use this function to work as intended the data must be arranged properly. Below is
a script that rearranges the data contained in cola.gdt and outputs the new data into a file called
cola mixed.gdt.

1 open "@workdir\data\cola.gdt"
2 matrix ids = values(id)
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3 matrix idx_pepsi = seq(1, 5466, 3)
4 matrix idx_7up = seq(2, 5466, 3)
5 matrix idx_coke = seq(3, 5466, 3)
6 matrix Price = { price }
7 matrix Choice = { choice }
8 matrix cokePrice = Price[idx_coke]
9 matrix pepsiPrice = Price[idx_pepsi]

10 matrix sevenupPrice = Price[idx_7up]
11 matrix cokeChoice = Choice[idx_coke]
12 matrix pepsiChoice = Choice[idx_pepsi]
13 matrix sevenupChoice = Choice[idx_7up]
14

15 nulldata 1822 --preserve
16 series coke = cokePrice
17 series pepsi = pepsiPrice
18 series sevenup = sevenupPrice
19 series d_coke = cokeChoice
20 series d_pepsi = pepsiChoice
21 series d_sevenup = sevenupChoice
22

23 setinfo d_pepsi -d "1 if Pepsi, 0 otherwise"
24 setinfo d_sevenup -d "1 if 7-Up, 0 otherwise"
25 setinfo d_coke -d "1 if Coke, 0 otherwise"
26 setinfo pepsi -d "Pepsi price"
27 setinfo sevenup -d "7-Up price"
28 setinfo coke -d "Coke price"
29 store cola_mixed

Warning, this is not pretty, but it works. The data from cola.gdt are arranged by a person’s id.
Each person has three choices and each choice is an observation. The choice is an indicator and
arranged in order (Pepsi, 7UP, and Coke) for each id. The script pulls out each choice (every
third observation) and puts it into a column vector, which is then converted to series and saved.
The choices are recoded as 1=pepsi, 2=sevenup, and 3=coke. Prices are handled similarly. Each
beverage has its own price and choice series. The original data are arranged:

obs id choice price feature display
1 1 0 1.79 0 0
2 1 0 1.79 0 0
3 1 1 1.79 0 0
4 2 0 1.79 0 0
5 2 0 1.79 0 0
6 2 1 0.89 1 1
7 3 0 1.41 0 0
8 3 0 0.84 0 1
9 3 1 0.89 1 0
10 4 0 1.79 0 0
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The clprobs function is written such that the data should be arranged as:

id d_coke d_pepsi d_sevenup coke pepsi sevenup
1 1 0 0 1.79 1.79 1.79
2 1 0 0 1.79 1.79 0.89
3 1 0 0 1.41 0.84 0.89
4 1 0 0 1.79 1.79 1.33

where each line represents an individual, recording his choice of beverage and each of the three
prices he faces. The goal then is to reorganize the original dataset so that the relevant information
for each individual, which is contained in 3 lines, is condensed into a single row. To simplify the
example, any variables not being used are dropped.

Without further explanation, run the script which saves a new dataset called cola mixed.gdt to
the working directory. This is the file that will be loaded and used with the following example.
The cola mixed.gdt will also be included in the datasets distributed with this manual as well.

To estimate the model, load the data that you have created. Create a set of indicators based on
the variable choice. Starting values for the three parameters in the MLE are given in line 4. Lines
6-8 contain the mle block. The log likelihood function uses a user written function clprobs and
identifies the parameter vector as theta.

1 open "@workdir\cola_mixed.gdt"
2 list y = d_pepsi d_sevenup d_coke
3 list x = pepsi sevenup coke
4 matrix theta = {-2, .3, .1}
5

6 mle lln = clprobs(y, x, theta)
7 params theta
8 end mle

The results from this function and MLE estimation are found below:

Using numerical derivatives
Tolerance = 1.81899e-012
Function evaluations: 41
Evaluations of gradient: 12

Model 2: ML, using observations 1-1822
lln = clprobs(y, x, theta)
Standard errors based on Hessian

estimate std. error z p-value
-------------------------------------------------------
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theta[1] 0.283166 0.0623772 4.540 5.64e-06 ***
theta[2] 0.103833 0.0624595 1.662 0.0964 *
theta[3] -2.29637 0.137655 -16.68 1.77e-062 ***

Log-likelihood -1824.562 Akaike criterion 3655.124
Schwarz criterion 3671.647 Hannan-Quinn 3661.220

These match the results in POE5. Even the estimated standard errors are the same out to 4 decimal
places. Very good indeed. Substantively, the price coefficient is −2.296 and is significantly different
from zero at any reasonable level of significance.

More work is required in order to obtain marginal effects and their standard errors. This is
tackled below.

Example 16.13 in POE5

In this example there are three choices available to the consumer: Coke, Pepsi, and 7-Up. The
only variable influencing the choice are the beverages’ prices. The model is estimated using mle as
before and the parameters and covariance are saved using accessors. The probabilities of choosing
each drink is evaluated for a set of prices: $1 for Pepsi, $1.25 for 7-Up, and $1.10 for Coke. To do
this, we use a function called clprobs_at, which is shown below:

1 function matrix clprobs_at(matrix x, matrix theta)
2 scalar i1 = exp(theta[1]+theta[3]*x[1])
3 scalar i2 = exp(theta[2]+theta[3]*x[2])
4 scalar i3 = exp(theta[3]*x[3])
5 scalar d = i1+i2+i3
6 matrix pp = i1/d ˜ i2/d ˜ i3/d
7 return pp
8 end function

The function requires two inputs: a vector of variables at which to evaluate probabilities and the
vector of coefficients from CL. Its form is relies heavily on the previously considered function,
clprobs.

The clprobs_at function is used to calculate the probabilities and column names are added
to its matrix output.

1 mle lln = clprobs(y, x, theta)
2 params theta
3 end mle
4
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5 matrix theta = $coeff
6 matrix covmat = $vcv
7 matrix x1 = {1.0, 1.25, 1.10}
8 matrix mm = clprobs_at(x1,theta)
9 cnameset(mm, " Pepsi 7-Up Coke")

10 print mm

The probabilites rendered by the clprobs_at function are:

Pepsi 7-Up Coke
0.48319 0.22746 0.28934

At those prices, the probability of purchasing a Pepsi is 0.483. As we shall see, the clprobs_at
function will play an important role in this example.

Marginal Effects Next, the own price marginal effect is computed using the output clprobs_at.
As shown in POE5,

∂pij
∂priceij

= pij(1− pij)β2

where pij is the probability that individual i purchases drink j.

For the cross-price marginal effect

∂pij
∂priceik

= −pijpikβ2.

This should have the opposite sign as the own price effect. To obtain these for the given point

1 scalar me_op_pepsi = mm[1]*(1-mm[1])*theta[3] # own price pepsi
2 scalar me_cp_7up = -mm[2]*mm[1]*theta[3] # cross price 7up
3 scalar me_cp_coke = -mm[1]*mm[3]*theta[3] # cross price coke
4 printf "\n Own-Price (Pepsi) marginal effect (1$) = %.3f\n\
5 Cross-Price (7-up) effect ($1) = %.3f\n\
6 Cross-Price (Coke) effect ($1)= %.3f\n",\
7 me_op_pepsi, me_cp_7up, me_cp_coke

For xi = {1.0, 1.25, 1.10} we get

Own-Price (Pepsi) marginal effect (1$) = -0.573
Cross-Price (7-up) effect ($1) = 0.252
Cross-Price (Coke) effect ($1)= 0.321
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The marginal impact on probability appears to be huge since a price increase of 1 unit doubles the
price of a Pepsi. A 10 cent price increase would diminish the probability by about 5.7%. The cross
effects do in fact have opposite signs, indicating that reducing the probability of purchasing Pepsi
will increase the probability of buying one of the others. The probabilities must add to one and
the changes must add to zero.

To facilitate the computation of standard errors for the marginal effects, the computations
above are put into another function that relies on clprobs_at that returns either the own-price
marginal effect or a cross-effect that are controlled by the function’s inputs.

1 function scalar clprobs_me(matrix *x "vector for the desired point",
2 matrix *theta "parameters",
3 int q "variable index for own price",
4 int p "variable index for other price")
5 matrix mm = clprobs_at(x, theta)
6 if p == q
7 scalar me = mm[q]*(1-mm[q])*theta[3] # own price pepsi
8 else
9 scalar me = -mm[p]*mm[q]*theta[3] # cross price 7up

10 endif
11 return me
12 end function

For instance, suppose you want to compute the marginal effect of a 1 unit change in Coke price on
the probability of purchasing a Pepsi. The initial prices are $1 for Pepsi, $1.25 for 7-Up, and $1.10
for Coke. The clprobs_me function would be:

1 matrix x2 = {1.0, 1.25, 1.10}
2 scalar q = 1 # Own price: 1 = pepsi
3 scalar p = 3 # Other price: 2 = 7up, 3 = coke
4 scalar c = clprobs_me(&x2, &theta, q, p)

Own price parameter, q, is set to 1 for Pepsi, the other price parameter, p, is set to 3 for Coke. If
p = q, then the own price effect is computed, otherwise it computes a cross-effect.

With this function, we can add the standard three lines to compute the delta standard errors
and then use the output to print a confidence interval for the marginal effect.

5 matrix jac = fdjac(theta, clprobs_me(&x2, &theta, q, p))
6 matrix variance = qform(jac,covmat)
7 matrix se = sqrt(variance)
8

9 t_interval(c,se,$df,.95)
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This produces:

The 95% confidence interval centered at -0.573 is (-0.6421, -0.5048)

Probabilities at specific points The probability of making a choice at specific prices is easy
to automate. We add the ability to compute delta standard errors in this section. Once again, the
function clprobs_at is used and the mechanism to compute the delta standard errors is added
to a script.

Suppose the prices are $1 for Pepsi, $1.25 for 7-Up, and $1.10 for Coke. We evaluate the
probabilites and compute standard errors using:

1 matrix x2 = {1.0, 1.25, 1.10}
2 matrix m2 = clprobs_at(x2, theta)
3 matrix jac = fdjac(theta, clprobs_at(x2, theta))
4 matrix variance = qform(jac,covmat)
5 matrix se = sqrt(diag(variance))
6 matrix results = m2’ ˜ se
7 cnameset(results, " Probability std_error t-ratio" )
8 rnameset(results, "Pepsi 7UP Coke" )
9 print results

The result is shown below:

Probability std_error
Pepsi 0.48319 0.015356

7UP 0.22746 0.011710
Coke 0.28934 0.011491

As seen at the beginning of this example, the probability of purchasing a Pepsi at these prices is
0.483. This time, a standard error of 0.0153 is computed that could be used to produce a confidence
interval for the ME.

Increasing the price of Pepsi by .10 and reestimating the probabilities produces:

Probability std_error
Pepsi 0.42632 0.013542
7UP 0.25250 0.011546

Coke 0.32119 0.012168
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The probability of purchasing a Pepsi is falling to 0.426, while the probability of purchasing the
others is increasing. In the next section the changes in probability are examined and standard
errors for those effects are computed.

Discrete changes in variables Using clprobs_at one can also examine the effects of dis-
crete changes on the probabilities. This is the idea behind the following function that computes
probabilities at two different data points and then computes the change in probability induced by
that.

1 function matrix clprobs_me_d(matrix *x1,
2 matrix *x2,
3 matrix *theta)
4 matrix mm = clprobs_at(x1, theta)
5 matrix m2 = clprobs_at(x2, theta)
6 mat = m2-mm
7 return mat
8 end function

The advantage of this is that an entire matrix of effects (own-price and cross-price) are returned
at once.

To compute marginal effects and standard errors for a discrete change in x where the price of
Coke is increased from $1.10 to $1.25 use the script:

1 matrix x2 = {1.0, 1.25, 1.25}
2 matrix x1 = {1.0, 1.25, 1.10}
3 matrix c2 = clprobs_me_d(&x1, &x2, &theta)
4 matrix jac = fdjac(theta, clprobs_me_d(&x1, &x2, &theta))
5 matrix variance = qform(jac,covmat)
6 matrix se = sqrt(diag(variance))
7 matrix results = c2’ ˜ se ˜ c2’./se
8 cnameset(results, " m_effect std_error t-ratio" )
9 rnameset(results, "Pepsi 7UP Coke" )

10 print results

This produces:

m_effect std_error t-ratio
Pepsi 0.044490 0.0033481 13.288

7UP 0.020944 0.0011616 18.030
Coke -0.065434 0.0039051 -16.756

597



Again, the own-price effect is negative and the cross-price ones are positive.

This exercise is repeated for a change in the price of Pepsi from $1 to $1.10. The price of Coke
is $1.10.

1 matrix x2 = {1.1, 1.25, 1.10}
2 matrix x1 = {1.0, 1.25, 1.10}
3 matrix c2 = clprobs_me_d(&x1, &x2, &theta)
4 matrix jac = fdjac(theta, clprobs_me_d(&x1, &x2, &theta))
5 matrix variance = qform(jac,covmat)
6 matrix se = sqrt(diag(variance))
7 matrix results = c2’ ˜ se ˜ c2’./se
8 cnameset(results, " m_effect std_error t-ratio" )
9 rnameset(results, "Pepsi 7-UP Coke" )

10 print results

This indicates that the probability of purchasing a Pepsi falls by 0.057 to 0.4263. The estimated
standard deviation of that difference is 0.0035.

m_effect std_error t-ratio
Pepsi -0.056875 0.0035459 -16.039

7UP 0.025033 0.0014376 17.413
Coke 0.031842 0.0025542 12.467

16.7 Ordered Probit

In this example, the probabilities of attending no college, a 2 year college, and a 4 year college
after graduation are modeled as a function of a student’s grades. In principle, we would expect
that those with higher grades to be more likely to attend a 4 year college and less likely to skip
college altogether. In the dataset, grades are measured on a scale of 1 to 13, with 1 being the
highest. That means that if higher grades increase the probability of going to a 4 year college, the
coefficient on grades will be negative. The probabilities are modeled using the normal distribution
in this model where the outcomes represent increasing levels of difficulty.

The model is
y∗i = βgradesi + ei (16.20)

The variable y∗i is a latent variable, which means its value is unobserved. Instead, we observe
categorical choices of college attendance:

yi =


3 four-year college;

2 two-year college;

1 no college.

(16.21)
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Gretl’s probit command handles multinomial ordered probit models. Open the nels small.gdt
data. The set consists of 1000 observations collected as part of the National Education Longitudinal
Study of 1988. The variable grades measures the average grade in math, English and social studies
on 13 point scale with 1 being the highest.

The GUI provides access to a dialog box for ordered probit. It is opened from the main gretl
window using the pull-down menu Model>Limited dependent variable>Probit>Ordered.
The dialog box is shown in Figure 16.6. Choose a dependent variable and a set of regressors and

Figure 16.6: The ordered probit dialog box is opened from the pull-down menu using
Model>Limited dependent variable>Probit>Ordered.

click OK. This produces the result:

Model 3: Ordered Probit, using observations 1–1000
Dependent variable: psechoice

Standard errors based on Hessian

Coefficient Std. Error z p-value

grades −0.306624 0.0191735 −15.99 0.0000

cut1 −2.94559 0.146828 −20.06 0.0000
cut2 −2.08999 0.135768 −15.39 0.0000
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Mean dependent var 2.305000 S.D. dependent var 0.810328
Log-likelihood −875.8217 Akaike criterion 1757.643
Schwarz criterion 1772.367 Hannan–Quinn 1763.239

Number of cases ‘correctly predicted’ = 587 (58.7 percent)
Likelihood ratio test: χ2(1) = 285.672 [0.0000]

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 2.96329
with p-value = 0.227264

The coefficient on grades is negative and significant at 5%. This means that as the grades
variable gets larger (grades get worse), the index is getting smaller and at the margins 2-year
college attendees are being pushed towards no college and the 4-year college attendees are being
pushed toward the 2-year option. We know that the probability of being in the lowest category
increases and of being in the highest category decreases. Whatever happens in the middle depends
on net effects of people being pushed out of category 3 and pulled into category 1.

The other two parameters are estimates of the cut-off points that determine the boundaries
between categories. The parameter µ1 < µ2.

The algebraic expressions for the marginal effects are:

∂P (y = 1)

∂grades
= −φ(µ1 − βgrades)β

∂P (y = 2)

∂grades
= [φ(µ1 − βgrades)− φ(µ2 − βgrades)]β

∂P (y = 3)

∂grades
= φ(µ2 − βgrades)β

where φ is the probability density function of a standard normal distribution. The parameters µ1

and µ2 are the thresholds (or cut-off points) and β is the coefficient on grades. So, for example to
calculate the marginal effect on the probability of attending a 4-year college (y = 3) for a student
having grades at the median (6.64) and 5th percentile (2.635) use:

1 open "@workdir\data\nels_small.gdt"
2 probit psechoice grades
3 k = $ncoeff
4 matrix b = $coeff[1:k-2]
5 mu1 = $coeff[k-1]
6 mu2 = $coeff[k]
7

8 matrix X = {6.64}
9 scalar Xb = X*b
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10 P3a = pdf(N,mu2-Xb)*b
11

12 matrix X = 2.635
13 scalar Xb = X*b
14 P3b = pdf(N,mu2-Xb)*b
15

16 printf "\nFor the median grade of 6.64, the marginal\
17 effect is %.4f\n", P3a
18 printf "\nFor the 5th percentile grade of 2.635, the\
19 marginal effect is %.4f\n", P3b

This yields

For the median grade of 6.64, the marginal effect is -0.1221

For the 5th percentile grade of 2.635, the marginal effect is -0.0538

Once again, the lp-mfx package can be used to improve upon this analysis. The function to use
is ordered_dpj_dx, which works for both ordered probit or logit. The function syntax is:

1 function matrix ordered_dpj_dx (matrix theta "parameter estimates",
2 list XL "list of regressors",
3 matrix x "vector of regressors",
4 int j "1-based index of outcome",
5 int m "number of possible outcomes",
6 int dist[1:2:1] "distribution" \
7 {"logit", "probit"})

This should look familiar since it carries the same syntax as the mlogit_dpj_dx function from
lp-mfx. It becomes the basis for a function similar to mlogit_se_lpfmx, which is shown below:

1 function matrix op_se_lpfmx (matrix b "parameter estimates",
2 matrix covmat "Covariance of MNL",
3 list XL "list of regressors",
4 matrix x "vector of x-values",
5 int j "1-based index of outcome",
6 int m "number of possible outcomes",
7 int df "degrees of freedom for CI",
8 int dist[1:2:1] "distribution" )
9

10 matrix p = ordered_dpj_dx(b, XL, x, j, m, dist)
11 matrix jac = fdjac(b, ordered_dpj_dx(b, XL, x, j, m, dist))
12 matrix variance = qform(jac,covmat)
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13 matrix se = sqrt(diag(variance))
14 scalar crit = critical(t,df,0.025)
15 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
16

17 cnameset(results, "Lower ME Upper StdErr")
18 printf "95%% CI for MER\n%10.4f\n", results
19 return results
20 end function

To use this function, make sure that lp-mfx.gfn is installed on your computer and has been loaded.
Load the data, estimate ordered probit and define a value for grades at which to evaluate the
marginal effect (line 4 x=6.64). Choose the remaining parameters. The outcome probability is
for the 3rd choice, there are 3 choices total, include the accessor for degrees-of-freedom, and select
dist using the $command accessor.

1 include lp-mfx.gfn
2 open "@workdir\data\nels_small.gdt"
3 probit psechoice grades
4 matrix x = {6.64}
5 scalar dist = ($command == "logit")? 1 : 2
6 op_se_lpfmx($coeff, $vcv, $xlist, x, 3, 3, $df, dist)

The result produced is:

95% CI for MER
Lower ME Upper StdErr

-0.1371 -0.1221 -0.1072 0.0076

The marginal effect of an increase in grades on the probability of attending 4-year college is −.1221
and its 95% confidence interval is (−0.1371,−0.1072).

16.8 Poisson Regression

When the dependent variable in a regression model is a count of the number of occurrences
of an event you may want to use the poisson regression model. In these models, the dependent
variable is a nonnegative integer, (i.e., y = 0, 1, . . .), which represent the number of occurrences of
a particular event. The probability of a given number of occurrences is modeled as a function of
independent variables.

P (Y = y|x) =
e−λλy

y!
y = 0, 1, 2, . . . (16.22)

where λ = β1 + β2x is the regression function.
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Estimating this model using maximum likelihood is very simple since the MLE of the poisson
regression model is already programmed into gretl. The syntax for a script is similar to ols, but
uses the possion command. This is shown in the following script which replicates the example
16.15 in POE5.

Example 16.15 in POE5

The number of doctor visits in the past three years is modeled as a function of person’s age,
sex, and whether he or she has public or private insurance. The data are in rwm88 small.gdt,
which are a subset from the German Socioeconomic Panel Survey for 1988. Once data are loaded,
models for count data can be accessed via the menu system using Model>Limited dependent
variable>Count. This opens the count data dialog box shown in Figure 16.7 below. Estimation

Figure 16.7: Models for count data can be accessed via the menu system using Model>Limited
dependent variable>Count. For Example 16.15, choose Poisson from the available distributions.

of the model yields:

Model 2: Poisson, using observations 1–1200
Dependent variable: docvis
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Coefficient Std. Error z p-value

const −0.00301416 0.0917868 −0.03284 0.9738
age 0.0116388 0.00149144 7.804 0.0000
female 0.128273 0.0335225 3.826 0.0001
public 0.572624 0.0679804 8.423 0.0000

Mean dependent var 2.986667 S.D. dependent var 5.496059
Sum squared resid 35734.60 S.E. of regression 5.466116
McFadden R2 0.018933 Adjusted R2 0.018067
Log-likelihood −4532.404 Akaike criterion 9072.808
Schwarz criterion 9093.169 Hannan–Quinn 9080.478

Overdispersion test: χ2(1) = 42.2804 [0.0000]

The variables age, female, and public are all significantly different from zero and positive.

To obtain these results using a script:

1 open "@workdir\data\rwm88_small.gdt"
2 PR <- poisson docvis const age female public

The conditional mean of a Poisson regression is

E[y0] = exp(β1 + β2age + β3female + β4public)

Choosing an appropriate point and estimating the βs by MLE is straightforward. For instance, a
29 year old female on public insurance is predicted to insure 2.816 doctor visits. Rounding to the
nearest integer, we would predict 3 visits.

1 scalar p1 = exp(x1*b)
2 scalar p1_hat = round(p1)
3 printf "\nPoisson Regression\n\
4 \n x = %4.2g\n\
5 The predicted mean is %2.4g. This rounds to %2.4g\n",\
6 x1, p1, p1_hat

The correlation between doctor visits and the number of (rounded) predictions is obtained by
saving the model predictions using an accessor, rounding these, and taking correlations.
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1 series yhat = $yhat
2 series round_yhat = round(yhat)
3 corr docvis yhat round_yhat

The correlation between docvis and rounded predictions is estimated to be 0.1179.

Correlation Coefficients, using the observations 1 - 1200
5% critical value (two-tailed) = 0.0566 for n = 1200

docvis yhat round_yhat
1.0000 0.1155 0.1179 docvis

1.0000 0.8996 yhat
1.0000 round_yhat

The overall significance of the model can be determined using a likelihood ratio test. This involves
estimating restricted and unrestricted models and computing the LR statistic.

1 Unrestricted <- poisson docvis const age female public
2 scalar lnl_u = $lnl
3 Restricted <- poisson docvis const
4 scalar lnl_r = $lnl
5 scalar LR = 2*(lnl_u-lnl_r)
6 scalar pval = pvalue(c,3,LR)

To view these, navigate to the session window and click on the Scalars icon. This opens a window
that shows all currently defined scalars:

The LR statistic (174.93) and its p-value (≈ 0) are shown in the last two lines. The model is
significant at the 5% level.

Marginal effect are computed as well. The marginal effect of a change in the kth (continuous)
regressor for the ith individual is

∂E(yi|x)

∂xij
= λiβj
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where λi = exp(β1 + β2xi2 + · · · + βkxik) and j = 1, 2, · · · , k. Based on this, take a 30 year old
female on public insurance. The predicted marginal effect of being a year older is computed:

1 matrix x1 = { 1 , 30 , 1 , 1 }
2 scalar m1 = exp(x1*b)*b[2]

which equals 0.0331.

If the variable is discrete, then compute the discrete difference in probability functions for the
two points. To determine the marginal effect of private insurance (vs public) for a 30-year-old
woman:

1 matrix x1 = { 1 , 30 , 1 , 1 }
2 matrix x2 = { 1 , 30 , 1 , 0 }
3 scalar me_public_30=exp(x1*b)-exp(x2*b)

This is computed to be 1.242. Having public insurance increases the predicted number of doctor
visits by 1.

The difference for a 70 year old woman

1 matrix x1 = { 1 , 70 , 1 , 1 }
2 matrix x2 = { 1 , 70 , 1 , 0 }
3 scalar me_public_70=exp(x1*b)-exp(x2*b)

The marginal impact is 1.98.

To obtain standard errors and confidence intervals for these, a proper function must be written.
Below we have two functions. The first is used for continuous independent variables and the second
is used if the variable is discrete.

1 # Poisson ME at point -- continuous variable
2 function scalar p_me_at(matrix b, matrix xx, scalar j)
3 scalar me = exp(xx*b)*b[q]
4 return me
5 end function
6 #-------------------------------------------------------
7 # Poisson ME at point -- indicator variable
8 function scalar p_me_at_d(matrix b, matrix x1, matrix x2)
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9 scalar me = exp(x1*b)-exp(x2*b)
10 return me
11 end function

The first one, which is for continuous variables, is called p_me_at. It takes three arguments and
returns a scalar. The first argument is the coefficients of the Poisson model. The second is a vector
to evaluate the independent variables, and the last is an integer that locates the position in the
parameter vector of the desired βj .

The second function, p_me_at_d also has three arguments. The third argument, x2, is the
second vector of x at which the second discrete point at which the ME is evaluated. So, for our
30-year-old female on public insurance we have:

1 m4 <- poisson docvis const age female public
2 matrix b = $coeff
3 matrix covmat = $vcv
4 matrix xx = { 1 , 30 , 1 , 1 }
5 scalar j = 2
6 matrix mfx = p_me_at(b, xx, j)
7 matrix jac = fdjac(b, p_me_at(b, xx, j))
8 matrix variance = qform(jac,covmat)
9 matrix se = sqrt(variance)

10 t_interval(mfx,se,$df,.95)

which yields:

The 95% confidence interval centered at 0.033 is (0.0261, 0.0402)

For a 70-year-old female on public insurance we have:

1 matrix xx = { 1 , 70 , 1 , 1 }
2 scalar j = 2
3 matrix mfx = p_me_at(b, xx, j)
4 matrix jac = fdjac(b, p_me_at(b, xx, j))
5 matrix variance = qform(jac,covmat)
6 matrix se = sqrt(variance)
7 t_interval(mfx,se,$df,.95)

which yields:

The 95% confidence interval centered at 0.053 is (0.0355, 0.0702)
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For a discrete change, consider two 30-year-old women, one on public insurance and with private
insurance. The script is:

1 matrix x1 = { 1 , 30 , 1 , 1 }
2 matrix x2 = { 1 , 30 , 1 , 0 }
3 matrix mfx = p_me_at_d(b, x1, x2)
4 matrix jac = fdjac(b, p_me_at_d(b, x1, x2))
5 matrix variance = qform(jac,covmat)
6 matrix se = sqrt(variance)
7 t_interval(mfx,se,$df,.95)

which yields:

The 95% confidence interval centered at 1.242 is (1.0034, 1.4809)

For 70-year-old females on public vs private insurance:

1 matrix x1 = { 1 , 70 , 1 , 1 }
2 matrix x2 = { 1 , 70 , 1 , 0 }
3 matrix mfx = p_me_at_d(b, x1, x2)
4 matrix jac = fdjac(b, p_me_at_d(b, x1, x2))
5 matrix variance = qform(jac,covmat)
6 matrix se = sqrt(variance)
7 t_interval(mfx,se,$df,.95)

which produces:

The 95% confidence interval centered at 1.979 is (1.5918, 2.3654)

The marginal impact of public insurance (more visits) now includes 2 in its estimated interval.

16.9 Tobit

The tobit model is a linear regression where some of the observations on your dependent variable
have been censored. A censored variable is one that, once it reaches a limit, is recorded at that
limit no matter what its actual value might be. For instance, anyone earning $1 million or more
per year might be recorded in your dataset at the upper limit of $1 million. That means that Bill
Gates and the authors of your textbook earn the same amount in the eyes of your dataset (just
kidding, folks). Least squares can be seriously biased in this case and it is wise to use a censored
regression model (tobit) to estimate the parameters of the regression when a portion of your sample
is censored.

608



Example 16.16 in POE5

Hill et al. (2018) consider the following model of hours worked for a sample of women. equation
(16.23).

hoursi = β1 + β2educi + β3experi + β4agei + β5kidsl6i + ei (16.23)

They estimate the model as a censored regression since a number of people in the sample are found
to work zero hours. The command for censored regression in gretl is tobit, the syntax for which is
shown below

tobit

Arguments: depvar indepvars
Options: --llimit=lval (specify left bound)

--rlimit=rval (specify right bound)
--vcv (print covariance matrix)
--robust (robust standard errors)
--cluster=clustvar (see logit for explanation)
--verbose (print details of iterations)

The routine allows you to specify the left and right points at which censoring occurs. You also can
choose a robust covariance that is robust with respect to the normality assumption used to obtain
the MLE (not heteroskedasticity).

Estimation of this model in gretl is shown in the following script which replicates the example
from POE5. The script estimates a tobit model of hours worked and generates the marginal effect
of another year of schooling on the average hours worked. Hours are assumed to be censored at
zero and no lower limit need be specified.

1 open "@workdir\data\mroz.gdt"
2 list xvars = const educ exper age kidsl6
3 tobit hours xvars

The results from the tobit estimation of the hours worked equation are:

Tobit, using observations 1–753
Dependent variable: hours

Standard errors based on Hessian
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Coefficient Std. Error z p-value

const 1349.88 386.298 3.4944 0.0005
educ 73.2910 20.4698 3.5804 0.0003
age −60.7678 6.88310 −8.8286 0.0000
exper 80.5353 6.28051 12.8231 0.0000
kidsl6 −918.918 111.588 −8.2349 0.0000

Chi-square(4) 244.2972 p-value 1.10e–51
Log-likelihood −3827.143 Akaike criterion 7666.287
Schwarz criterion 7694.031 Hannan–Quinn 7676.975

σ̂ = 1133.7 (40.8769)
Left-censored observations: 325
Right-censored observations: 0

Test for normality of residual –
Null hypothesis: error is normally distributed
Test statistic: χ2(2) = 6.31679
with p-value = 0.0424938

The marginal effect of another year of schooling on hours worked is

∂E(hoursi)

∂educi
= Φ( ̂hoursi)β̂2, (16.24)

where ̂hoursi is the estimated regression function evaluated at the mean levels of education, expe-
rience, and age for a person with one child under the age of six. Then, the cnorm function is used
to compute the normal cdf, Φ( ̂hoursi), evaluated at the prediction.

1 matrix beta = $coeff
2 scalar H_hat = beta[1]+beta[2]*mean(educ)+beta[3]*mean(exper) \
3 +beta[4]*mean(age)+beta[5]*1
4 scalar z = cnorm(h_hat/$sigma)
5 scalar me_educ = z*$coeff(educ)
6

7 printf "\nThe computed scale factor = %6.5g\nand marginal effect of\
8 another year of schooling = %5.5g.\n", z, me_educ

This produces

The computed scale factor = 0.363
and marginal effect of another year of schooling = 26.605.

A slightly easier way to evaluate the index, ̂hours0, is to use matrices. In the alternative version
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the data are converted to a matrix and a vector of means is created. The average number of children
(0.24), is replaced with a 1 and the index is computed using vector algebra.

1 tobit hours xvars
2 matrix beta = $coeff
3 matrix X = { xvars }
4 matrix meanx = meanc(X)
5 matrix meanx[1,5]=1
6 scalar h_hat=meanx*beta
7 printf "\nTwo ways to compute a prediction get %8.4f and %8.4f\n",\
8 h_hat, H_hat

This produces

Two ways to compute a prediction get -397.3022 and -397.3022

Finally, estimates of the restricted sample using least squares and the full sample that includes the
zeros for hours worked follow.

1 list xvars = const educ exper age kidsl6
2 smpl hours > 0 --restrict
3 ols hours xvars
4 smpl --full
5 ols hours xvars

Notice that the sample is restricted to the positive observations using the smpl hours > 0
--restrict statement. To estimate the model using the entire sample the full range is restored
using smpl full.

These were added to a model table and the result appears below:

Dependent variable: hours

(1) (2) (3)
Tobit OLS OLS

const 1350∗∗ 1830∗∗ 1335∗∗

(386.3) (292.5) (235.6)

educ 73.29∗∗ −16.46 27.09∗∗

(20.47) (15.58) (12.24)

exper 80.54∗∗ 33.94∗∗ 48.04∗∗
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(6.281) (5.009) (3.642)

age −60.77∗∗ −17.11∗∗ −31.31∗∗

(6.883) (5.458) (3.961)

kidsl6 −918.9∗∗ −305.3∗∗ −447.9∗∗

(111.6) (96.45) (58.41)

n 753 428 753
R̄2 0.1168 0.2531
` −3827 −3426 −6054

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The tobit regression in column (1) and the OLS regression in column (3) use the entire sample.
Estimating the model by OLS with the zero observations in the model reduces all of the slope
coefficients by a substantial amount. Tossing out the zero observations as in the OLS regression
in column (2) reverses the sign on years of schooling (though it is not significant). For women in
the labor force, more schooling has no effect on hours worked. If the entire population of women is
considered, more schooling increases hours worked, presumably by enticing more women into the
labor force.

16.10 Selection Bias

Example 16.17 in POE5

Selection bias occurs when for some observations we do not have data on the dependent for
some reason. The statistical problems occur when the cause of the sample limitation is correlated
with the dependent variable. Ignoring the correlation, the model might be estimated using least
squares, tobit or truncated least squares. In any event, obtaining consistent estimates of the
regression parameters is not possible when cause of the missing observations is correlated with the
dependent variable of the regession model. In this section the basic features of the this model will
be presented.

Consider a model consisting of two equations. The first is the selection equation, defined

z∗i = γ1 + γ2wi + ui, i = 1, . . . , N (16.25)

where z∗i is a latent variable, γ1 and γ2 are parameters, wi is an explanatory variable, and ui
is a random disturbance. A latent variable is unobservable, but we do observe the dichotomous
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variable

zi =

{
1 z∗i > 0

0 otherwise
(16.26)

The second equation, called the regression equation, is the linear model of interest. It is

yi = β1 + β2xi + ei, i = 1, . . . , n, N > n (16.27)

where yi is an observable random variable, β1 and β2 are parameters, xi is an exogenous variable,
and ei is a random disturbance. It is assumed that the random disturbances of the two equations
are distributed as [

ui
ei

]
∼ N

[(
0
0

)
,

(
1 ρ
ρ σ2

e

)]
(16.28)

A selectivity problem arises when yi is observed only when zi = 1 and ρ 6= 0. In this case the
ordinary least squares estimator of β in (16.27) is biased and inconsistent. A consistent estimator
has been suggested by Heckman (1979) and is commonly referred to as Heckman’s two-step
estimator, or more simply, Heckit. Because the errors are normally distributed, there is also a
maximum likelihood estimator of the parameters. Gretl includes routines for both.

The two-step (Heckit) estimator is based on conditional mean of yi given that it is observed:

E[yi|zi > 0] = β1 + β2xi + βλλi (16.29)

where

λi =
φ(γ1 + γ2wi)

Φ(γ1 + γ2wi)
(16.30)

is the inverse Mill’s ratio; (γ1+γ2wi) is the index function; φ(·) is the standard normal probability
density function evaluated at the index; and Φ(·) is the standard normal cumulative density function
evaluated at the index. Adding a random disturbance yields:

yi = β1 + β2xi + βλλi + vi (16.31)

It can be shown that (16.31) is heteroskedastic and if λi were known (and nonstochastic),
then the selectivity corrected model (16.31) could be estimated by generalized least squares. Al-
ternately, the heteroskedastic model (16.31) could be estimated by ordinary least squares, using
White’s heteroskedasticity consistent covariance estimator (HCCME) for hypothesis testing and
the construction of confidence intervals. Unfortunately, λi is not known and must be estimated
using the sample. The stochastic nature of λi in (16.31) makes the automatic use of HCCME in
this context inappropriate.

The two-steps of the Heckit estimator consist of

1. Estimate the selection equation to obtain γ̂1 and γ̂2. Use these in equation (16.30) to estimate
the inverse Mill’s ratio, λ̂i.
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2. Add λ̂i to the regression model as in equation (16.31) and estimate it using least squares.

This ignores the problem of properly estimating the standard errors, which requires an additional
step. Gretl takes care of this automatically when you use the heckit command.

The example from POE5 uses the mroz.gdt data. First, estimate the model ignoring selection
bias using least squares on the nonzero observations. Load the data and generate the natural
logarithm of wages. Since wages are zero for a portion of the sample, gretl generates an error
when taking the natural logs. This can be safely ignored since gretl create missing values for the
variables that cannot be transformed. Then use the ols command to estimate a linear regression
on the truncated subset.

1 open "@workdir\data\mroz.gdt"
2 logs wage
3 ols l_wage const educ exper

The results are:

Model 1: OLS estimates using the 428 observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const −0.400174 0.190368 −2.1021 0.0361
educ 0.109489 0.0141672 7.7283 0.0000
exper 0.0156736 0.00401907 3.8998 0.0001

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 190.1950 S.E. of regression 0.668968
R2 0.148358 Adjusted R2 0.144350
F (2, 425) 37.01805 P-value(F ) 1.51e–15
Log-likelihood −433.7360 Akaike criterion 873.4720
Schwarz criterion 885.6493 Hannan–Quinn 878.2814

Notice that the sample has been truncated to include only 428 observations for which hours
worked are actually observed. The estimated return to education is about 11%, and the estimated
coefficients of both education and experience are statistically significant.

The Heckit procedure takes into account that the decision to work for pay may be correlated
with the wage a person earns. It starts by modeling the decision to work and estimating the resulting
selection equation using a probit model. The model can contain more than one explanatory variable,
wi, and in this example there are four: a womans age, her years of education, a dummy variable for
whether she has children and the marginal tax rate that she would pay upon earnings if employed.
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Generate a new variable kids, which is a dummy variable indicating the presence of any kids in
the household. Estimate the probit model, generate the index function, and use it to compute the
inverse Mill’s ratio variable. Finally, estimate the regression including the IMR as an explanatory
variable.

1 open "@workdir\data\mroz.gdt"
2 series kids = (kidsl6+kids618>0)
3 logs wage
4 series kids = (kidsl6+kids618>0)
5 list X = const educ exper
6 list W = const mtr age kids educ
7 probit lfp W
8 series ind = $coeff(const) + $coeff(age)*age + \
9 $coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr

10 series lambda = dnorm(ind)/cnorm(ind)
11 ols l_wage X lambda

The variables for the regression are put into the list X and those for the selection equation are put
into W. The dnorm and cnorm functions return the normal density and normal cumulative density
evaluated at the argument, respectively. The results are:

OLS estimates using the 428 observations 1–428
Dependent variable: l wage

Coefficient Std. Error t-ratio p-value

const 0.810542 0.494472 1.6392 0.1019
educ 0.0584579 0.0238495 2.4511 0.0146
exper 0.0163202 0.00399836 4.0817 0.0001
lambda −0.866439 0.326986 −2.6498 0.0084

Mean dependent var 1.190173 S.D. dependent var 0.723198
Sum squared resid 187.0967 S.E. of regression 0.664278
R2 0.162231 Adjusted R2 0.156304
F (3, 424) 27.36878 P-value(F ) 3.38e–16
Log-likelihood −430.2212 Akaike criterion 868.4424
Schwarz criterion 884.6789 Hannan–Quinn 874.8550

The estimated coefficient of the inverse Mill’s ratio is statistically significant, implying that there
is a selection bias in the least squares estimator. Also, the estimated return to education has fallen
from approximately 11% (which is inconsistently estimated) to approximately 6%. Unfortunately,
the usual standard errors do not account for the fact that the inverse Mills ratio is itself an estimated
value and so they are not technically correct. To obtain the correct standard errors, you will use
gretl’s built-in heckit command.
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The heckit command syntax is

heckit

Arguments: depvar indepvars ; selection equation
Options: --quiet (suppress printing of results)

--two-step (perform two-step estimation)
--vcv (print covariance matrix)
--opg (OPG standard errors)
--robust (QML standard errors)
--cluster=clustvar (see logit for explanation)
--verbose (print extra output)

Examples: heckit y 0 x1 x2 ; ys 0 x3 x4

In terms of our example the generic syntax will be

heckit y const x2 x3 ... xk; z const w2 w3 ... ws --two-step

where const x2 ... xk are the k independent variables for the regression and const w2
.... ws are the s independent variables for the selection equation. In this example, we’ve used
the two-step option which mimics the manual procedure employed above, but returns the correct
standard errors.

heckit l_wage X ; lfp W --two-step

The list function is used to hold the variables of the regression and selection equations.

The results appear below in Table 16.3. Notice that in this model, the return to another year of
schooling is about 5.8%. The parameter on the inverse Mill’s ratio is significant, which is evidence
of selection bias.

To use the pull-down menus, select Model>limited dependent variable>Heckit from
gretl’s main window. This will reveal the dialog shown in figure 16.8. Enter lwage as the
dependent variable and the indicator variable lfp as the selection variable. Then enter the de-
sired independent variables for the regression and selections equations. Finally, select the 2-step
estimation button at the bottom of the dialog box and click OK.

You will notice that the coefficient estimates are identical to the ones produced manually above.
However, the standard errors, which are now consistently estimated, have changed. The t-ratio
of the coefficient on the inverse Mills ratio, λ̂, has fallen to −2.17, but it is still significant at the
5% level. Gretl also produces the estimates of the selection equation, which appear directly below
those for the regression.
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Two-step Heckit estimates using the 428 observations 1–428
Dependent variable: l wage

Selection variable: lfp
Coefficient Std. Error z-stat p-value

const 0.810542 0.610798 1.3270 0.1845
educ 0.0584579 0.0296354 1.9726 0.0485
exper 0.0163202 0.00420215 3.8838 0.0001
lambda −0.866439 0.399284 −2.1700 0.0300

Selection equation

const 1.19230 0.720544 1.6547 0.0980
mtr −1.39385 0.616575 −2.2606 0.0238
age −0.0206155 0.00704470 −2.9264 0.0034
kids −0.313885 0.123711 −2.5372 0.0112
educ 0.0837753 0.0232050 3.6102 0.0003

Mean dependent var 1.190173 S.D. dependent var 0.723198
σ̂ 0.932559 ρ̂ −0.929098

Total observations: 753
Censored observations: 325 (43.2%)

Table 16.3: Two-step Heckit results.

16.11 Simulation

Appendix 16D

In this simulation gretl is used to show that least squares is biased when the sample is censored.
The simulated data are generated

y∗i = −9 + 1xi + ei (16.32)

where ei ∼ N(0, 16). Then,

yi =

{
y∗i if y∗i > 0
0 if y∗i ≤ 0

The xi ∼ U(0, 20), which are held constant in the simulated samples.

The following script demonstrates that least squares is indeed biased when all observations,
including the zero ones, are included in the sample. Line 7 uses the conditional assignment operator,
series yc = (y > 0) ? y : 0 is a logical statement that generates ‘y’ or ‘0’ depending on
whether the statement in parentheses is true. Another logical is used in line 10 to generate an
indicator variable, w. The variable w=1 when the statement in the parentheses (y>0) is true.
Otherwise it is equal to zero. The variable w is used in wls to exclude the observations that have
zero hours of work.
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1 nulldata 200
2 series xs = 20*uniform()
3 list x = const xs
4 series ys = -9 + 1*xs
5 loop 1000 --progressive --quiet
6 series y = ys + normal(0,4)
7 series yc = (y > 0) ? y : 0
8 ols y x
9 ols yc x

10 series w = (yc>0)
11 wls w yc x
12 tobit yc x
13 endloop

Because the tobit estimator is iterative, there is a lot of output generated to the screen. However, if
you scroll down you will find the results from this simulation. Recall, the value of the constant was
set at −9 and the slope to 1. The column labeled ‘mean of the estimated coefficients’ is the average
value of the estimator in 1000 iterations of the Monte Carlo. When the estimator is unbiased, this
number should be ‘close’ to the true value in the statistical sense. You can use the next column
(std. dev. of estimated coefficients) to compute a Monte Carlo standard error to perform a test.

Since the coefficients are being averaged over the number, NMC, of simulated samples, the
central limit theorem should apply; the mean should be approximately normally distributed and
the variance of the mean equal to σ/

√
NMC. The result in the column labeled ‘std. dev. of

estimated coefficients’ is an estimate of σ. To test for unbiasedness of the tobit estimator of the
slope (Ho : b2 = 1 against the two-sided alternative) compute:

√
NMC(b̄2 − 1)/σ̂ =

√
1000(1.00384− 1)/0.0737160 = 1.647 ∼ N(0, 1) (16.33)

if the estimator is unbiased. The 5% critical value is 1.96 and the unbiasedness of the tobit estimator
cannot be rejected at this level of significance. See Adkins (2011b) for more examples and details.

OLS estimates using the 200 observations 1-200
Statistics for 1000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -9.00646 0.548514 0.562873 0.0283463
xs 0.999336 0.0494064 0.0500999 0.00252303

OLS estimates using the 200 observations 1-200
Statistics for 1000 repetitions
Dependent variable: yc
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mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -2.20798 0.232987 0.405670 0.0226162
xs 0.558122 0.0351037 0.0361076 0.00201301

WLS estimates using the 108 observations 1-200
Statistics for 1000 repetitions
Dependent variable: yc

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -2.09574 0.960994 1.09869 0.118095
xs 0.602659 0.0743574 0.0774449 0.00757796

Tobit estimates using the 200 observations 1-200
Standard errors based on Hessian
Statistics for 1000 repetitions
Dependent variable: yc

mean of std. dev. of mean of std. dev. of
estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors

const -9.07517 0.988720 0.994815 0.0954671
xs 1.00384 0.0737160 0.0742580 0.00629653

The estimators in the first set and last are unbiased. OLS in the first instance uses the full sample
that has not been censored. In reality, the censored observations won’t be available so this estimator
is not really feasible outside of the Monte Carlo. The tobit estimator in the last set is feasible,
however. Clearly it is working pretty well with this data generation process. The second set of
results estimates the model using the entire sample with 0 recorded for the censored observations.
It is not performing well at all and is no better than the third set of results that discards the zero
hours observations. It does reveal what happens, conditional on being in the labor force though.
So, it is not without its uses.

16.12 Script

First, here are all of the functions used in this chapter. They have been collected into a script
called functions ch16.inp that is included with the other script files distributed with this manual
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(also reproduced in section D.2). You will need to run these before using the second part of the
script.

Functions used in Chapter 16
1 set echo off
2 # This function computes a t-dist confidence interval based on a statistic
3 function void t_interval (scalar b, scalar se, scalar df, scalar p)
4 scalar alpha = (1-p)
5 scalar lb = b - critical(t,df,alpha/2)*se
6 scalar ub = b + critical(t,df,alpha/2)*se
7 printf "\nThe %2g%% confidence interval centered at %.3f is\
8 (%.4f, %.4f)\n", p*100, b, lb, ub
9 end function

10

11 # This function computes t-dist confidence intervals after a model
12 function matrix t_interval_m (matrix b "Coefficients",
13 matrix v "Variance-covariance matrix",
14 int df "Degrees-of-freedom",
15 scalar p "Coverage probability for CI")
16

17 scalar alpha = (1-p) # Convert p to alpha
18 matrix c = critical(t,df,alpha/2) # alpha/2 critical value
19 matrix se = sqrt(diag(v)) # standard errors
20 matrix lb = b - c*se # lower bound
21 matrix ub = b + c* se # upper bound
22 matrix result = b ˜ se ˜ lb ˜ ub # put into matrix
23

24 cnameset(result, "Estimate StdErr (Lower, Upper) ")
25 rnameset(result, "b")
26 printf "\nThe %2g%% confidence intervals\
27 (t-distribution)\n%10.4f\n", p*100, result
28 return result
29 end function
30

31 function matrix ame_binary(matrix *b "parameter estimates",
32 list x "Variables list",
33 int dist[1:2:2] "distribution" )
34 # Computes average marginal effects for probit or logit
35 matrix p = lincomb(x, b) # The index function
36 matrix d = (dist==1) ? exp(-p)./(1.+exp(-p)).ˆ2 : dnorm(p)
37 matrix ame_matrix = d*b’
38 cnameset(ame_matrix, x) # add column names
39 matrix amfx = meanc(ame_matrix) # find the means
40 cnameset(amfx, x) # add the column names to amfx
41 printf "\n Average Marginal Effects (AME):\
42 \n Variables: %s\n%12.4g \n", varname(x), amfx
43 return amfx
44 end function
45

46 function matrix ame_cov (matrix b "parameter estimates",
47 matrix covmat "Covariance",
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48 list x "Variables list",
49 int dist[1:2:2] "distribution" )
50 # Computes std errs for AME probit/logit
51 # Requires ame_binary
52 matrix amfx = ame_binary(&b, x, dist)
53 matrix jac = fdjac(b, ame_binary(&b, x , dist))
54 matrix variance = qform(jac,covmat)
55 matrix se = sqrt(diag(variance))
56 matrix results = amfx’ ˜ se
57 rnameset(results, "b")
58 cnameset(results, "AME StdErr")
59 if dist == 1
60 printf "Logit:\n"
61 else
62 printf "Probit:\n"
63 endif
64 printf "%10.4f\n", results
65 return amfx|variance
66 end function
67

68 function scalar p_binary(matrix b "parameter estimates",
69 matrix x "Representative Point",
70 int dist[1:2:2] "distribution" )
71 # Computes the probability of a binary choice: 1 = logit
72 scalar p = x*b # The index function
73 scalar d = (dist==1) ? 1./(1.+exp(-p)) : cnorm(p)
74 return d
75 end function
76

77 function void Probs (matrix b "parameter estimates",
78 matrix covmat "Covariance",
79 matrix x "Representative Point",
80 scalar df "Degrees of Freedom",
81 int dist[1:2:2] "distribution")
82 # Function computes std errors of binary predictions
83 # Requires p_binary
84 scalar p = p_binary(b, x, dist)
85 matrix jac = fdjac(b, p_binary(b, x , dist))
86 matrix variance = qform(jac,covmat)
87 matrix se = sqrt(diag(variance))
88 scalar crit = critical(t,df,0.025)
89 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
90

91 if dist == 1
92 printf "Logit:\n"
93 else
94 printf "Probit:\n"
95 endif
96

97 printf "95%% t(%.2g) confidence interval for probability at\n\
98 x = %8.4f\n", df, x
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99 cnameset(results, " Lower ME Upper StdError" )
100 printf "%10.4f\n", results
101 end function
102

103 function scalar me_at(matrix *param "parameter estimates",
104 matrix xx "Representative Point",
105 scalar q "Parameter of interest",
106 int modl[1:2:2] "distribution" )
107 # Marginal effects at a point -- continuous variables only
108 scalar idx = xx*param
109 scalar d = (modl==1)? (exp(-idx)./(1.+exp(-idx)).ˆ2)*param[q] :\
110 dnorm(idx)*param[q]
111 return d
112 end function
113

114 function void MER (matrix *b "parameter estimates",
115 matrix covmat "Covariance",
116 matrix x "Representative Point",
117 int q "Parameter of interest",
118 int df "Degrees of Freedom",
119 int modl[1:2:2] "distribution")
120 # Std errors for Marginal effects at a point -- continuous vars only
121 scalar p = me_at(&b, x, q, modl)
122 matrix jac = fdjac(b, me_at(&b, x , q, modl))
123 matrix variance = qform(jac,covmat)
124 matrix se = sqrt(diag(variance))
125 scalar crit = critical(t,df,0.025)
126 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
127 if modl == 1
128 printf "Logit:\n"
129 else
130 printf "Probit:\n"
131 endif
132 printf "95%% t(%.2g) confidence interval for b%.g at\n x =\
133 %9.2g \n", df, q, x
134 cnameset(results, " Lower ME Upper StdError" )
135 printf "%10.4f\n", results
136 end function
137

138 function void MER_lpmfx (matrix b "parameter estimates",
139 list XL "list of regressors",
140 matrix covmat "Covariance matrix",
141 matrix x_at "Representative point",
142 int dist[1:2:1] "distribution",
143 int df "degrees-of-freedom")
144 # The MER function to be used with lp-mfx.gfn
145 # available from gretl’s function server
146 matrix me = binary_dp_dx(b, XL, x_at, dist)
147 matrix jac = fdjac(b, binary_dp_dx(b, XL, x_at, dist))
148 matrix variance = qform(jac,covmat)
149 matrix se = sqrt(diag(variance))

622



150 matrix results = me’ ˜ se
151 if dist == 1
152 printf "Logit:\n"
153 else
154 printf "Probit:\n"
155 endif
156 scalar crit = critical(t,df,0.025)
157 matrix results = (me’-crit*se) ˜ me’ ˜ (me’+crit*se) ˜ se
158 cnameset(results, "Lower ME Upper StdErr")
159 rnameset(results, XL[2:nelem(XL)])
160 cnameset(x_at, XL )
161 printf "Representative Point\n%11.2g\n95%% CI for\
162 MER\n%10.4g\n",x_at, results
163 end function
164

165

166 # Poisson ME at point -- continuous variable
167 function scalar p_me_at(matrix b, matrix xx, scalar q)
168 scalar me = exp(xx*b)*b[q]
169 return me
170 end function
171

172 # Poisson ME at point -- indicator variable
173 function scalar p_me_at_d(matrix b, matrix x1, matrix x2)
174 scalar me = exp(x1*b)-exp(x2*b)
175 return me
176 end function
177

178 function list mlogitprob(series y "Dependent variable",
179 list x "List of regressors",
180 matrix theta "Coefficient vector")
181 # computes probabilites of each choice for all data
182 list probs = null
183 matrix X = { x }
184 scalar j = max(y)
185 scalar k = cols(X)
186 matrix b = mshape(theta,k,j-1)
187 matrix tmp = X*b
188 series den = (1 + sumr(exp(tmp)))
189

190 loop for i=1..j --quiet
191 if i == 1
192 series p$i = 1/den
193 else
194 scalar q = i - 1
195 series num = exp(X[q,]*b[,q])
196 series p$i=num/den
197 endif
198 list probs += p$i
199 endloop
200 return probs
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201 end function
202

203 function matrix mlogitprob_at(series y "Dependent variable",
204 matrix x "Representative point 1xk",
205 matrix theta "Coefficient vector")
206 # computes probabilites of each choice at a representative point
207 matrix probs = {}
208 scalar j = max(y)
209 scalar k = cols(x)
210 matrix b = mshape(theta,k,j-1)
211 matrix tmp = x*b
212 scalar den = (1 + sumr(exp(tmp)))
213

214 loop for i=1..j --quiet
215 if i == 1
216 scalar p$i = 1/den
217 else
218 scalar q = i - 1
219 scalar num = exp(x*b[,q])
220 scalar p$i=num/den
221 endif
222 matrix probs = probs ˜ p$i
223 endloop
224 return probs
225 end function
226

227 function series mlogitlogprobs(series y "Dependent Variable",
228 matrix X "Independent variables",
229 matrix theta "Parameters")
230 # This function computes the log probabilites for MLE
231 # estimation of MNL
232 scalar n = max(y)
233 scalar k = cols(X)
234 matrix b = mshape(theta,k,n)
235 matrix tmp = X*b
236 series ret = -ln(1 + sumr(exp(tmp)))
237 loop for i=1..n --quiet
238 series x = tmp[,i]
239 ret += (y==$i) ? x : 0
240 endloop
241 return ret
242 end function
243

244 function matrix mnl_se_lpfmx (matrix b "parameter estimates",
245 matrix covmat "Covariance of MNL",
246 list XL "list of regressors",
247 matrix x "vector of x-values",
248 int j "1-based index of outcome",
249 int m "number of possible outcomes",
250 int df "degrees of freedom for CI" )
251 # Computes MER and std errors for MNL
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252 # must install and use lp-mfx.gfn
253 matrix p = mlogit_dpj_dx(b, XL, x, j, m)
254 matrix jac = fdjac(b, mlogit_dpj_dx(b, XL, x, j, m))
255 matrix variance = qform(jac,covmat)
256 matrix se = sqrt(diag(variance))
257 scalar crit = critical(t,df,0.025)
258 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
259

260 cnameset(results, "Lower ME Upper StdErr")
261 printf "95%% CI for MER\n%10.4f\n", results
262 return results
263 end function
264

265 # Several Functions for conditional logit.
266 # These are NOT general
267 # clprobs --Conditional logit probability scalar
268 # clprobs_mat --Conditional logit probabilities matrix
269 # clprobs_at --marginal effects at a point -> 1x3 vector
270 # cl_me --marginal effects continuous w/std errors
271 # cl_me_d --marginal effects discrete w/std errors
272

273 function scalar clprobs(list y "list of choices",
274 list x "list of independent variables",
275 matrix theta "parameters")
276 # computes the probabilities for Conditional Logit
277 # Used in user written MLE
278 matrix Y = { y }
279 matrix p = { x }
280 scalar n = $nobs
281 matrix P = {}
282 loop i=1..n --quiet
283 scalar i1 = exp(theta[1]+theta[3]*p[i,1])
284 scalar i2 = exp(theta[2]+theta[3]*p[i,2])
285 scalar i3 = exp(theta[3]*p[i,3])
286 scalar d = i1+i2+i3
287 matrix pp = (Y[i,1]==1)*i1/d +\
288 (Y[i,2]==1)*i2/d +\
289 (Y[i,3]==1)* i3/d
290 matrix P = P | pp
291 endloop
292 return sumc(ln(P))
293 end function
294

295 function matrix clprobs_mat(list x, matrix theta)
296 matrix p = { x }
297 scalar n = $nobs
298 matrix P = {}
299 loop i=1..n --quiet
300 scalar i1 = exp(theta[1]+theta[3]*p[i,1])
301 scalar i2 = exp(theta[2]+theta[3]*p[i,2])
302 scalar i3 = exp(theta[3]*p[i,3])
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303 scalar d = i1+i2+i3
304 matrix pp = i1/d ˜ i2/d ˜ i3/d
305 matrix P = P | pp
306 endloop
307 return P
308 end function
309

310 function matrix clprobs_at(matrix x, matrix theta)
311 scalar i1 = exp(theta[1]+theta[3]*x[1])
312 scalar i2 = exp(theta[2]+theta[3]*x[2])
313 scalar i3 = exp(theta[3]*x[3])
314 scalar d = i1+i2+i3
315 matrix pp = i1/d ˜ i2/d ˜ i3/d
316 return pp
317 end function
318

319 function scalar cl_me(matrix *x "vector for the desired point",
320 matrix *theta "parameters",
321 int q "variable index for own price",
322 int p "variable index for other price")
323 # Margial effects for CL model -- continuous case
324 # Function only works for 3 choice beverage model in poe
325 # Inputs: x = point at which to evaluate
326 # theta: Cond Logit MLE
327 # q: own price index
328 # p: other price index
329 # op: 1 if own price, 0 otherwise
330 matrix mm = clprobs_at(x, theta)
331 if p == q
332 scalar me = mm[q]*(1-mm[q])*theta[3] # own price pepsi
333 else
334 scalar me = -mm[p]*mm[q]*theta[3] # cross price 7up
335 endif
336 return me
337 end function
338

339 function matrix cl_me_d(matrix *x1,
340 matrix *x2,
341 matrix *theta)
342 # Margial effects for CL model -- discrete case
343 matrix mm = clprobs_at(x1, theta)
344 matrix m2 = clprobs_at(x2, theta)
345 mat = m2-mm
346 return mat
347 end function
348

349 function matrix op_se_lpfmx (matrix b "parameter estimates",
350 matrix covmat "Covariance of MNL",
351 list XL "list of regressors",
352 matrix x "vector of x-values",
353 int j "1-based index of outcome",
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354 int m "number of possible outcomes",
355 int df "degrees of freedom for CI",
356 int dist[1:2:1] "distribution" )
357 # Computes marginal effects and std errors for ordered probit/logit
358 # must install and use lp-mfx.gfn
359 matrix p = ordered_dpj_dx(b, XL, x, j, m, dist)
360 matrix jac = fdjac(b, ordered_dpj_dx(b, XL, x, j, m, dist))
361 matrix variance = qform(jac,covmat)
362 matrix se = sqrt(diag(variance))
363 scalar crit = critical(t,df,0.025)
364 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
365

366 cnameset(results, "Lower ME Upper StdErr")
367 printf "95%% CI for MER\n%10.4f\n", results
368 return results
369 end function

Once the functions have been run, the script below should produce all of the results in the
chapter.

1 # run the functions_ch16.inp first!
2 include functions_ch16.inp
3

4 open "@workdir\data\transport.gdt"
5 set verbose off
6 summary --simple
7

8 # Example 16.1
9 m1 <- ols auto const dtime --robust

10 series y_pred = $yhat>0.5
11 series incorrect = abs(auto-y_pred)
12 summary incorrect --by=auto --simple
13

14 scalar correct = $nobs-sum(abs(auto-y_pred))
15 printf "The number correct predictions =\
16 %g out of %g commuters\n", correct, $nobs
17 t_interval_m($coeff,$vcv,$df,.95)
18

19 scalar pr = $coeff(const)+$coeff(dtime)*1
20 printf "\n The predicted probability of auto travel if public\
21 transportation\n takes 10 minutes longer = %.4f \n", pr
22

23 printf "\n R2 = %.4f \n", $rsq
24

25 # Example 16.3
26 nulldata 3
27 series y x
28 series y[1]=1
29 series y[2]=1

627



30 series y[3]=0
31 series x[1]=1.5
32 series x[2]=.6
33 series x[3]=.7
34 probit y const x
35

36 # Example 16.4
37 open "@workdir\data\transport.gdt"
38 list xvars = const dtime
39 m2 <- probit auto xvars
40 t_interval_m($coeff,$vcv,$df,.95)
41

42 scalar p1=cnorm($coeff(const))
43 scalar i_20 = $coeff(const)+$coeff(dtime)*2
44 scalar d_20 = dnorm(i_20)*$coeff(dtime)
45 printf "\n The value of the index for dtime = 20 minutes is %6.4f\n\
46 The predicted probability of driving is = %6.4f\n\
47 The marginal effect on probability of driving is %6.4f \n",\
48 i_20, cnorm(i_20), d_20
49

50 scalar i_30 = $coeff(const)+$coeff(dtime)*3
51 printf "\n The predicted probability of driving if dtime = 30\
52 minutes is %6.4f\n", cnorm(i_30)
53 printf "\n The difference in probability is %6.4f\n",\
54 cnorm(i_30)-cnorm(i_20)
55

56 # Example 16.5
57 # Estimated Probability of driving
58 set echo off
59 open "@workdir\data\transport.gdt"
60 list x = const dtime
61 probit auto x
62 matrix b = $coeff
63 series me = dnorm(lincomb(x,b))*b[2]
64 scalar amf = mean(me)
65 printf "\n The average marginal effect for change in dtime =\
66 %6.4f\n", amf
67 summary me --simple
68

69 # probit AME using function
70 list x = const dtime
71 probit auto x --quiet
72 matrix b = $coeff
73 scalar dist = ($command == "logit")? 1 : 2
74 matrix me_probit = ame_binary(&b, x, dist)
75

76 # using Delta method to get standard errors for AME
77 open "@workdir\data\transport.gdt"
78 list x = const dtime
79 probit auto x --quiet
80 matrix b = $coeff
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81 matrix covmat = $vcv
82 scalar dist = ($command == "logit")? 1 : 2
83 matrix amfx = ame_binary(&b, x, dist)
84 matrix jac = fdjac(b, ame_binary(&b, x , dist))
85 matrix variance = qform(jac, $vcv)
86 matrix se = sqrt(diag(variance))
87 printf "\n The average marginal effects:\n%10.4f\
88 delta estimated standard errors: \n%10.4f \n", amfx, se’
89

90 # confidence interval for AME
91 t_interval_m(amfx’,variance,$df,.95)
92

93 # MER: marginal effects and std errors at specific points
94 open "@workdir\data\transport.gdt"
95 list x = const dtime
96 m1 <- probit auto x --quiet
97 matrix bp = $coeff
98 matrix xi = { 1, 2 }
99 scalar dist = ($command == "logit")? 1 : 2

100 MER(&bp,$vcv,xi,2,$df,dist)
101

102 # MEM: Marginal effects at the means
103 matrix xi = { 1, mean(dtime) }
104 MER(&bp,$vcv,xi,2,$df,dist)
105

106 # MEM: using lp-mfx
107 include lp-mfx.gfn
108 open "@workdir\data\transport.gdt"
109 list x = const dtime
110 probit auto x --quiet
111 scalar dist = ($command == "logit")? 1 : 2
112 binary_mfx(auto, $xlist, $coeff, $vcv, $sample, dist)
113

114 bundle b1 = binary_mfx(auto, $xlist, $coeff, $vcv, $sample, dist)
115 lp_mfx_print(&b1)
116

117 # MER using lp-mfx
118 probit auto x --quiet
119 scalar dist = ($command == "logit")? 1 : 2
120 matrix x_at = { 1 , 2}
121 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)
122

123 # predicted probability and its confidence interval
124 probit auto x --quiet
125 matrix x_at = { 1 , 3}
126 scalar dist = ($command == "logit")? 1 : 2
127 Probs($coeff,$vcv,x_at,$df,dist)
128

129 # Example 16.6
130 # comparing probit, logit, ols
131 set echo off
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132 open "@workdir\data\coke.gdt"
133 list x = const pratio disp_pepsi disp_coke
134 m1 <- probit coke x --quiet
135 m2 <- logit coke x --quiet
136 m3 <- ols coke x --robust
137

138 # AME for probit/logit
139 m1 <- probit coke x --quiet
140 matrix bp = $coeff
141 matrix covmat = $vcv
142 scalar dist = ($command == "logit")? 1 : 2
143

144 matrix c=ame_cov(bp,$vcv,x,dist)
145 t_interval_m(c[1,]’,c[-1,],$df,.95)
146

147 # Compute MER for probit and logit
148 matrix x_at = { 1, 1.1, 0, 0}
149 probit coke x
150 scalar dist = ($command == "logit")? 1 : 2
151 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)
152

153 logit coke x
154 scalar dist = ($command == "logit")? 1 : 2
155 MER_lpmfx($coeff,$xlist,$vcv,x_at,dist,$df)
156

157 # Compute probabilites and std errors for probit/logit
158 matrix xi = { 1, 1.1, 0, 0}
159 probit coke x
160 matrix bp = $coeff
161 scalar dist = ($command == "logit")? 1 : 2
162 Probs(bp,$vcv,xi,$df,dist)
163

164 logit coke x
165 matrix lp = $coeff
166 scalar dist = ($command == "logit")? 1 : 2
167 Probs(lp,$vcv,xi,$df,dist)
168

169 # Compute probability and std errors for LPM
170 ols coke x --robust
171 matrix b_ols = $coeff
172 matrix pred = xi*b_ols
173 matrix v = (qform(xi,$vcv))
174 matrix se = sqrt(v)
175 printf "ME of OLS %.4f with std error %.4f\n", xi*b_ols, se
176

177 # Compute ME at representative value for probit/logit
178 matrix xi = { 1, 1.1, 0, 0}
179

180 probit coke x
181 matrix bp = $coeff
182 scalar dist = ($command == "logit")? 1 : 2
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183 MER(&bp,$vcv,xi,2,$df,dist)
184

185 # correlation among predictions
186 probit coke x --quiet
187 series pp = $yhat
188 logit coke x --quiet
189 series pl = $yhat
190 ols coke x --quiet
191 series po = $yhat
192 corr pp pl po
193

194 # Example 16.7
195 # test hypotheses with probit
196 open "@workdir\data\coke.gdt"
197 list x = const pratio disp_pepsi disp_coke
198 probit coke x
199

200 # H1 Test of significance
201 scalar tv = $coeff(disp_coke)/$stderr(disp_coke)
202 printf "Ho: b3 = 0 Ha: b3>0\n \
203 t = %.4f\n \
204 p-value = %.4f\n", \
205 tv, pvalue(t,$df,tv)
206

207 printf "Ho: b3 = 0 Ha: b3 != 0\n \
208 t = %.4f\n \
209 p-value = %.4f\n", \
210 tv, 2*pvalue(t,$df,abs(tv))
211 printf "The 5%% critical value from the t(%g) is %.4f\n",\
212 $df, critical(t,$df,.025)
213

214 printf "The 5%% critical value from the chi-square(1) is %.4f\n",\
215 critical(C,1,.05)
216

217 restrict --quiet
218 b[disp_coke]=0
219 end restrict
220 # H2 Economic Hypothesis: b3=-b4
221

222 probit coke x --quiet
223 restrict
224 b[3]+b[4]=0
225 end restrict
226

227 # H3 Joint significance: b3=b4=0
228 probit coke x
229 restrict --quiet
230 b[3]=0
231 b[4]=0
232 end restrict
233 printf "The 5%% critical value from the chi-square(2) is %.4f\n",\
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234 critical(C,2,.05)
235

236 # H4 Model significance: b2=b3=b4=0
237 probit coke x
238 restrict --quiet
239 b[2]=0
240 b[3]=0
241 b[4]=0
242 end restrict
243 printf "The 5%% critical value from the chi-square(3) is %.4f\n",\
244 critical(C,3,.05)
245

246 # Example 16.8
247 # LR tests
248 open "@workdir\data\coke.gdt"
249 list x = const pratio disp_pepsi disp_coke
250 # H1 Test of significance
251 probit coke x --quiet
252 scalar llu = $lnl
253 probit coke const pratio disp_pepsi --quiet
254 scalar llr = $lnl
255 scalar lr = 2*(llu-llr)
256 printf "Ho: b3 = 0 Ha: b3 != 0\n \
257 LR = %.4f\n \
258 p-value = %.4f\n", \
259 lr, pvalue(C,1,lr)
260

261 # H2 Economic Hypothesis: b3=-b4
262 series c_p = disp_pepsi-disp_coke
263 probit coke x --quiet
264 scalar llu = $lnl
265 probit coke const pratio c_p --quiet
266 scalar llr = $lnl
267 scalar lr = 2*(llu-llr)
268 printf "Ho: b3+b4 = 0 Ha: b3+b4 != 0\n \
269 LR = %.4f\n \
270 p-value = %.4f\n", \
271 lr, pvalue(C,1,lr)
272

273 # H3 Joint significance: b3=b4=0
274 probit coke x --quiet
275 scalar llu = $lnl
276 probit coke const pratio --quiet
277 scalar llr = $lnl
278 scalar lr = 2*(llu-llr)
279 printf "Ho: b3 = b4 = 0 vs. Ha: b3 != 0, b4 != 0\n \
280 LR = %.4f\n \
281 p-value = %.4f\n", \
282 lr, pvalue(C,2,lr)
283

284 # H4 Model significance: b2=b3=b4=0
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285 probit coke x --quiet
286 scalar llu = $lnl
287 probit coke const --quiet
288 scalar llr = $lnl
289 scalar lr = 2*(llu-llr)
290 printf "Ho: b2=b3=b4=0 vs. Ha: not Ho\n \
291 LR = %.4f\n \
292 p-value = %.4f\n", \
293 lr, pvalue(C,3,lr)
294

295 # Example 16.9
296 open "@workdir\data\mroz.gdt"
297 square exper
298 list x = const educ exper sq_exper kidsl6 age
299 list inst = const exper sq_exper kidsl6 age mothereduc
300 LPM_IV <- tsls lfp x ; inst --robust
301

302 FirstStage <- ols educ inst
303 # IV Probit
304 list exogvars = 0 exper sq_exper kidsl6 age
305 include HIP.gfn
306 b=HIP(lfp, exogvars, educ, mothereduc)
307

308 # Example 16.12
309 # Multinomial Logit
310 open "@workdir\data\nels_small.gdt"
311 list x = const grades
312 logit psechoice x --multinomial
313 matrix theta = $coeff
314 list n = mlogitprob(psechoice, x, theta)
315 smpl 1 12
316 print n --byobs
317 smpl full
318

319 # Average marginal effects
320 rename p1 p01
321 rename p2 p02
322 rename p3 p03
323

324 series grade1 = grades+1
325 list x1 = const grade1
326 list n1 = mlogitprob(psechoice, x1, theta)
327 series d1 = p1-p01
328 series d2 = p2-p02
329 series d3 = p3-p03
330 printf "Average Marginal Effects"
331 summary d* --simple
332

333 # mnl predictions at points
334 open "@workdir\data\nels_small.gdt"
335 list x = const grades
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336 logit psechoice x --multinomial
337 matrix theta = $coeff
338 matrix Xm = {1 , quantile(grades,.50)}
339 matrix p50 = mlogitprob_at(psechoice, Xm, theta)
340 matrix Xm = {1 , quantile(grades,.05)}
341 matrix p05 = mlogitprob_at(psechoice, Xm, theta)
342 printf "\nThe predicted probabilities for student\
343 grades = %.3g are\n %8.4f\n" ,quantile(grades,.05), p05
344 printf "\nThe predicted probabilities for student\
345 grades = %.3g are\n %8.4f\n",quantile(grades,.50), p50
346

347 # mnl marginal effects at points
348 open "@workdir\data\nels_small.gdt"
349 list x = const grades
350 logit psechoice x --multinomial
351 matrix theta = $coeff
352 scalar q50 = quantile(grades,.50)
353 matrix Xm = {1 , q50-0.5}
354 matrix p0 = mlogitprob_at(psechoice, Xm, theta)
355 matrix Xm = {1 , q50+0.5}
356 matrix p1 = mlogitprob_at(psechoice, Xm, theta)
357 matrix me = p1-p0
358 rnameset(me,"MER")
359 cnameset(me,"NoColl 2Year 4Year ")
360 printf "\nThe marginal effect of grades for student\
361 grades =%5.2f\n\
362 %8.4f\n", median(grades), me
363

364 scalar q05 = quantile(grades,.05)
365 matrix Xm = {1 , q05-0.5}
366 matrix p0 = mlogitprob_at(psechoice, Xm, theta)
367 matrix Xm = {1 , q05+0.5}
368 matrix p1 = mlogitprob_at(psechoice, Xm, theta)
369 matrix me = p1-p0
370 cnameset(me,"NoColl 2Year 4Year ")
371 rnameset(me,"MER")
372 printf "\nThe marginal effect of grades for student\
373 grades =%5.2f\n\
374 %8.4f\n", q05, me
375

376

377 # mnl logit with user written likelihood
378 open "@workdir\data\nels_small.gdt"
379 series psechoice = psechoice -1
380 list x = const grades
381 smpl full
382 matrix X = { x }
383 scalar k = cols(X)
384 matrix theta = zeros(2*k, 1)
385 ml <- mle loglik = mlogitlogprobs(psechoice, X, theta)
386 params theta
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387 end mle --hessian
388

389 varlist --type=accessor
390 # MNL marginal effects at the means and predicted probabilites
391 # using lp-mfx.gfn
392 include lp-mfx.gfn
393 open "@workdir\data\nels_small.gdt"
394 list x = const grades
395 logit psechoice x --multinomial
396 bundle b = mlogit_mfx(psechoice, $xlist, $coeff, $vcv, $sample)
397 lp_mfx_print(&b)
398

399 matrix x1 = { 1 , 6.64 }
400 matrix c1 = mlogit_dpj_dx($coeff, $xlist, x1, 2, 3)
401 matrix x2 = {1, 2.635 }
402 matrix c2 = mlogit_dpj_dx($coeff, $xlist, x2, 2, 3)
403 print c1 c2
404

405 # MER and std errors using lp_mfx.gfn
406 include lp-mfx.gfn
407 open "@workdir\data\nels_small.gdt"
408 list x = const grades
409 matrix x_at = {1, 6.64 }
410 logit psechoice x --multinomial
411 c = mnl_se_lpfmx( $coeff, $vcv, x, x_at, 2, 3, $df)
412

413 # Example 16.13
414 # conditional logit
415 open "@workdir\cola_mixed.gdt"
416 list y = d_Pepsi d_7Up d_Coke
417 list x = pepsi sevenup coke
418 matrix theta = {-2, .3, .1}
419

420 mle lln = clprobs(y, x, theta)
421 params theta
422 end mle
423

424 matrix theta = $coeff
425 matrix covmat = $vcv
426

427 # probabilities of purchasing drinks at the given price
428 matrix x1 = {1.0, 1.25, 1.10}
429 matrix x2 = {1.0, 1.25, 1.25}
430 matrix mm = clprobs_at(x1,theta)
431 cnameset(mm, " Pepsi 7-Up Coke")
432 print mm
433

434 # marginal effects of increase in pepsi price
435 scalar me_op_pepsi = mm[1]*(1-mm[1])*theta[3] # own price pepsi
436 scalar me_cp_7up = -mm[2]*mm[1]*theta[3] # cross price 7up
437 scalar me_cp_coke = -mm[1]*mm[3]*theta[3] # cross price coke
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438 printf "\n Own-Price (Pepsi) marginal effect (1$) = %.3f\n\
439 Cross-Price (7up) effect ($1) = %.3f\n\
440 Cross-Price (Coke) effect ($1)= %.3f\n",\
441 me_op_pepsi, me_cp_7up, me_cp_coke
442

443 # Confidence Intervals for CL
444 # Marginal effects and standard errors: calculus version
445 matrix x2 = {1.0, 1.25, 1.10}
446 scalar q = 1 # Own price: 1 = pepsi, 2 = 7up, 3 = coke
447 scalar p = 1 # Other price: 1 = pepsi, 2 = 7up, 3 = coke
448 scalar c = cl_me(&x2, &theta, q, p)
449 matrix jac = fdjac(theta, cl_me(&x2, &theta, q, p))
450 matrix variance = qform(jac,covmat)
451 matrix se = sqrt(variance)
452 t_interval(c,se,$df,.95)
453

454 # Confidence Intervals for CL
455 # Marginal effects and standard errors: discrete change version
456 matrix x2 = {1.0, 1.25, 1.25}
457 matrix x1 = {1.0, 1.25, 1.10}
458 matrix c2 = cl_me_d(&x1, &x2, &theta)
459 matrix jac = fdjac(theta, cl_me_d(&x1, &x2, &theta))
460 matrix variance = qform(jac,covmat)
461 matrix se = sqrt(diag(variance))
462 matrix results = c2’ ˜ se ˜ c2’./se
463 cnameset(results, " m_effect std_error t-ratio" )
464 rnameset(results, "Pepsi 7UP Coke" )
465 print results
466

467 # Marginal effects and standard errors: discrete change version
468 # increase pepsi price to 1.10
469 matrix x2 = {1.1, 1.25, 1.10}
470 matrix x1 = {1.0, 1.25, 1.10}
471 matrix c2 = cl_me_d(&x1, &x2, &theta)
472 matrix jac = fdjac(theta, cl_me_d(&x1, &x2, &theta))
473 matrix variance = qform(jac,covmat)
474 matrix se = sqrt(diag(variance))
475 matrix results = c2’ ˜ se ˜ c2’./se
476 cnameset(results, " m_effect std_error t-ratio" )
477 rnameset(results, "Pepsi 7UP Coke" )
478 print results
479

480 # probabilities and ME of an
481 # increase coke price to 1.25
482 matrix x1 = {1.0, 1.25, 1.10}
483 matrix m1 = clprobs_at(x1,theta)
484

485 matrix x3 = {1.0, 1.25, 1.25}
486 matrix m3 = clprobs_at(x3,theta)
487 cnameset(m3, " pepsi 7up coke")
488 print m3
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489 mat = m3-m1
490 cnameset(mat, " pepsi 7up coke")
491 print mat
492

493 # Probability of pepsi purchase
494 # Probabilities and delta std errors
495 matrix x2 = {1.0, 1.25, 1.10}
496 matrix m2 = clprobs_at(x2, theta)
497 matrix jac = fdjac(theta, clprobs_at(x2, theta))
498 matrix variance = qform(jac,covmat)
499 matrix se = sqrt(diag(variance))
500 matrix results = m2’ ˜ se
501 cnameset(results, " Probability std_error" )
502 rnameset(results, "Pepsi 7UP Coke" )
503 print results
504

505 # Probability of pepsi purchase
506 # Pepsi price up by .1
507 # Probabilities and delta std errors
508 matrix x3 = {1.10, 1.25, 1.10}
509 matrix m3 = clprobs_at(x3, theta)
510 matrix jac = fdjac(theta, clprobs_at(x3, theta))
511 matrix variance = qform(jac,covmat)
512 matrix se = sqrt(diag(variance))
513 matrix results = m3’ ˜ se
514 cnameset(results, " Probability std_error" )
515 rnameset(results, "Pepsi 7UP Coke" )
516 print results
517

518

519 # increase coke price to 1.25
520 matrix x1 = {1.0, 1.25, 1.10}
521 matrix m1 = clprobs_at(x1,theta)
522

523 matrix x4 = {1.0, 1.25, 1.25}
524 matrix m4 = clprobs_at(x4,theta)
525 cnameset(m4, " pepsi 7up coke")
526 print m4
527 mat = m4-m1
528 cnameset(mat, " pepsi 7up coke")
529 print mat
530

531 # Example 16.14
532 #Ordered Probit
533 open "@workdir\data\nels_small.gdt"
534 op <- probit psechoice const grades
535

536 # Marginal effects on probability of going to 4 year college
537 k = $ncoeff
538 matrix b = $coeff[1:k-2]
539 mu1 = $coeff[k-1]
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540 mu2 = $coeff[k]
541

542 matrix X = {6.64}
543 matrix Xb = X*b
544 P3a = pdf(N,mu2-Xb)*b
545

546 matrix X = 2.635
547 matrix Xb = X*b
548 P3b = pdf(N,mu2-Xb)*b
549

550 printf "\nFor the median grade of 6.64, the marginal effect\
551 is %.4f\n", P3a
552 printf "\nFor the 5th percentile grade of 2.635, the marginal\
553 effect is %.4f\n", P3b
554

555 include lp-mfx.gfn
556 probit psechoice grades
557 matrix theta = $coeff
558 matrix x = {6.64}
559 scalar dist = ($command == "logit")? 1 : 2
560 op_se_lpfmx($coeff, $vcv, $xlist, x, 3, 3, $df, dist)
561

562 # Example 16.15
563 # Poisson Regression -- means and marginal effect
564 open "@workdir\data\rwm88_small.gdt"
565 poisson docvis const age female public
566 matrix b = $coeff
567 matrix x1 = { 1 , 29 , 1 , 1 }
568 scalar p1 = exp(x1*b)
569 scalar p1_hat = round(p1)
570 printf "\nPoisson Regression\n\
571 \n x = %4.2g\n\
572 The predicted mean is %2.4g. This rounds to %2.4g\n",\
573 x1, p1, p1_hat
574

575 series yhat = $yhat
576 series round_yhat = round(yhat)
577 corr docvis yhat round_yhat
578

579 Unrestricted <- poisson docvis const age female public
580 scalar lnl_u = $lnl
581 Restricted <- poisson docvis const
582 scalar lnl_r = $lnl
583 scalar LR = 2*(lnl_u-lnl_r)
584 scalar pval = pvalue(c,3,LR)
585

586 matrix x1 = { 1 , 30 , 1 , 1 }
587 scalar m1 = exp(x1*b)*b[2]
588

589 matrix x2 = { 1 , 30 , 1 , 0 }
590 scalar me_public_30=exp(x1*b)-exp(x2*b)
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591

592 matrix x1 = { 1 , 70 , 1 , 1 }
593 matrix x2 = { 1 , 70 , 1 , 0 }
594 scalar me_public_70=exp(x1*b)-exp(x2*b)
595

596 m4 <- poisson docvis const age female public
597 matrix b = $coeff
598 matrix covmat = $vcv
599 matrix xx = { 1 , 30 , 1 , 1 }
600 scalar j = 2
601 matrix mfx = p_me_at(b, xx, j)
602 matrix jac = fdjac(b, p_me_at(b, xx, j))
603 matrix variance = qform(jac,covmat)
604 matrix se = sqrt(variance)
605 t_interval(mfx,se,$df,.95)
606

607 matrix xx = { 1 , 70 , 1 , 1 }
608 scalar j = 2
609 matrix mfx = p_me_at(b, xx, j)
610 matrix jac = fdjac(b, p_me_at(b, xx, j))
611 matrix variance = qform(jac,covmat)
612 matrix se = sqrt(variance)
613 t_interval(mfx,se,$df,.95)
614

615 # ME indicator
616 matrix x1 = { 1 , 30 , 1 , 1 }
617 matrix x2 = { 1 , 30 , 1 , 0 }
618 matrix mfx = p_me_at_d(b, x1, x2)
619 matrix jac = fdjac(b, p_me_at_d(b, x1, x2))
620 matrix variance = qform(jac,covmat)
621 matrix se = sqrt(variance)
622 t_interval(mfx,se,$df,.95)
623

624 matrix x1 = { 1 , 70 , 1 , 1 }
625 matrix x2 = { 1 , 70 , 1 , 0 }
626 matrix mfx = p_me_at_d(b, x1, x2)
627 matrix jac = fdjac(b, p_me_at_d(b, x1, x2))
628 matrix variance = qform(jac,covmat)
629 matrix se = sqrt(variance)
630 t_interval(mfx,se,$df,.95)
631

632 # Example 16.16
633 #Tobit
634 open "@workdir\data\mroz.gdt"
635 list xvars = const educ exper age kidsl6
636 tobit hours xvars
637 scalar H_hat = $coeff(const)+$coeff(educ)*mean(educ) \
638 +$coeff(exper)*mean(exper) \
639 +$coeff(age)*mean(age)+$coeff(kidsl6)*1
640 scalar z = cnorm(H_hat/$sigma)
641 scalar me_educ = z*$coeff(educ)
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642 printf "\nThe computed scale factor = %6.5g\nand marginal effect of\
643 another year of schooling = %5.5g.\n", z, me_educ
644

645 matrix beta = $coeff
646 matrix X = { xvars }
647 matrix meanx = meanc(X)
648 matrix meanx[1,5]=1
649 scalar h_hat=meanx*beta
650 printf "\nTwo ways to compute a prediction get\
651 %8.4f and %8.4f\n", h_hat, H_hat
652

653 smpl hours > 0 --restrict
654 ols hours xvars
655 smpl --full
656 ols hours xvars
657

658 # Example 16.17
659 #Heckit
660 open "@workdir\data\mroz.gdt"
661

662 series kids = (kidsl6+kids618>0)
663 logs wage
664

665 list X = const educ exper
666 list W = const mtr age kids educ
667

668 probit lfp W
669 series ind = $coeff(const) + $coeff(age)*age + \
670 $coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr
671 series lambda = dnorm(ind)/cnorm(ind)
672 ols l_wage X lambda
673

674 heckit l_wage X ; lfp W --two-step
675

676 # Example 16.17
677 #Heckit
678 open "@workdir\data\mroz.gdt"
679

680 series kids = (kidsl6+kids618>0)
681 logs wage
682

683 list X = const educ exper
684 list W = const mtr age kids educ
685

686 probit lfp W
687 series ind = $coeff(const) + $coeff(age)*age + \
688 $coeff(educ)*educ + $coeff(kids)*kids + $coeff(mtr)*mtr
689 series lambda = dnorm(ind)/cnorm(ind)
690 ols l_wage X lambda
691

692 heckit l_wage X ; lfp W --two-step
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693

694 # Example 16.18
695 # tobit simulation
696 nulldata 200
697 series xs = 20*uniform()
698 list x = const xs
699 series ys = -9 + 1*xs
700 loop 1000 --progressive --quiet
701 series y = ys + normal(0,4)
702 series yc = (y > 0) ? y : 0
703 ols y x
704 ols yc x
705 series w = (yc>0)
706 wls w yc x
707 tobit yc x
708 endloop

Finally, this is the script used to rearrange the data for conditional logit.

1 # Generates data for Conditional Logit by id
2 open "@workdir\data\cola.gdt"
3 matrix ids = values(id)
4 matrix idx_pepsi = seq(1, 5466, 3)
5 matrix idx_7up = seq(2, 5466, 3)
6 matrix idx_coke = seq(3, 5466, 3)
7 matrix Price = { price }
8 matrix Choice = { choice }
9 matrix cokePrice = Price[idx_coke]

10 matrix pepsiPrice = Price[idx_pepsi]
11 matrix sevenupPrice = Price[idx_7up]
12 matrix cokeChoice = Choice[idx_coke]
13 matrix pepsiChoice = Choice[idx_pepsi]
14 matrix sevenupChoice = Choice[idx_7up]
15

16 nulldata 1822 --preserve
17 series coke = cokePrice
18 series pepsi = pepsiPrice
19 series sevenup = sevenupPrice
20 series d_coke = cokeChoice
21 series d_pepsi = pepsiChoice
22 series d_sevenup = sevenupChoice
23

24 setinfo d_pepsi -d "1 if Pepsi, 0 otherwise"
25 setinfo d_sevenup -d "1 if 7-Up, 0 otherwise"
26 setinfo d_coke -d "1 if Coke, 0 otherwise"
27 setinfo pepsi -d "Pepsi price"
28 setinfo sevenup -d "7-Up price"
29 setinfo coke -d "Coke price"
30 # store cola_mixed

641



Figure 16.8: Choose Model>Limited dependent variable>Heckit from gretl’s main window
to reveal the dialog box for Heckit.
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Appendix A

Gretl Commands

Estimation

ar Autoregressive estimation ar1 AR(1) estimation
arbond Arellano-Bond arch ARCH model
arima ARMA model biprobit Bivariate probit
dpanel Dynamic panel models duration Duration models
equation Define equation within a sys-

tem
estimate Estimate system of equations

garch GARCH model gmm GMM estimation
heckit Heckman selection model hsk Heteroskedasticity-corrected

estimates
intreg Interval regression model kalman Kalman filter
lad Least Absolute Deviation es-

timation
logistic Logistic regression

logit Logit regression mle Maximum likelihood estima-
tion

mpols Multiple-precision OLS negbin Negative Binomial regression
nls Nonlinear Least Squares ols Ordinary Least Squares
panel Panel Models poisson Poisson estimation
probit Probit model quantreg Quantile regression
system Systems of equations tobit Tobit model
tsls Instrumental variables regres-

sion
var Vector Autoregression

vecm Vector Error Correction
Model

wls Weighted Least Squares

midasreg OLS and NLS of mixed data
sampling
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Tests

add Add variables to model adf Augmented Dickey-Fuller test
chow Chow test coeffsum Sum of coefficients
coint Engle-Granger cointegration

test
coint2 Johansen cointegration test

cusum CUSUM test difftest Nonparametric test for differ-
ences

hausman Panel diagnostics kpss KPSS stationarity test
leverage Influential observations levinlin Levin-Lin-Chu test
meantest Difference of means modtest Model tests
normtest Normality test omit Omit variables
qlrtest Quandt likelihood ratio test reset Ramseys RESET
restrict Testing restrictions runs Runs test
vartest Difference of variances vif Variance Inflation Factors

Transformations

diff First differences discrete Mark variables as discrete
dummify Create sets of dummies lags Create lags
ldiff Log-differences logs Create logs
orthdev Orthogonal deviations sdiff Seasonal differencing
square Create squares of variables

Statistics

anova ANOVA corr Correlation coefficients
corrgm Correlogram fractint Fractional integration
freq Frequency distribution hurst Hurst exponent
mahal Mahalanobis distances pca Principal Components Analy-

sis
pergm Periodogram spearman Spearmanss rank correlation
summary Descriptive statistics xcorrgm Cross-correlogram
xtab Cross-tabulate variables
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Dataset

append Append data data Import from database
dataset Manipulate the dataset delete Delete variables
genr Generate a new variable info Information on data set
join Add data from a file labels Print labels for variables
info Information on data set markers Write obs markers to file
nulldata Creating a blank dataset open Open a data file
setinfo Edit attributes of variable rename Rename variables
scalar Generate a scalar setobs Set frequency and starting ob-

servation
setmiss Missing value code smpl Set the sample range
store Save data varlist Listing of variables

Graphing

boxplot Boxplots gnuplot Create a gnuplot graph
graphpg Gretl graph page qqplot Q-Q plot
hfplot MIDAS plot plot
rmplot Range-mean plot scatters Multiple pairwise graphs
textplot ASCII plot

Printing

eqnprint Print model as equation modprint Print a user-defined model
outfile Direct printing to file print Print data or strings
printf Formatted printing sprintf Printing to a string
tabprint Print model in tabular form

Prediction

fcast Generate forecasts

Utilities

critical Computes critical values eval Evaluate expression
help Help on commands install
modeltab The model table pvalue Compute p-values
quit Exit the program shell Execute shell commands
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Programming

break Break from loop catch Catch errors
clear debug Debugging
elif Flow control else
end End block of commands endif Flow control
endloop End a command loop foreign Non-native script
function Define a function if Flow control
include Include function definitions loop Start a command loop
makepkg Make function package run Execute a script
set Set program parameters sscanf Scanning a string
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Appendix B

Some Basic Probability Concepts

In this chapter, you learned some basic concepts about probability. Since the actual values that
economic variables take on are not actually known before they are observed, we say that they are
random. Probability is the theory that helps us to express uncertainty about the possible values of
these variables. Each time we observe the outcome of a random variable we obtain an observation.
Once observed, its value is known and hence it is no longer random. So, there is a distinction to
be made between variables whose values are not yet observed (random variables) and those whose
values have been observed (observations). Keep in mind, though, an observation is merely one of
many possible values that the variables can take. Another draw will usually result in a different
value being observed.

A probability distribution is just a mathematical statement about the possible values that
our random variable can take on. The probability distribution tells us the relative frequency (or
probability) with which each possible value is observed. In their mathematical form probability dis-
tributions can be rather complicated; either because there are too many possible values to describe
succinctly, or because the formula that describes them is complex. In any event, it is common
summarize this complexity by concentrating on some simple numerical characteristics that they
possess. The numerical characteristics of these mathematical functions are often referred to as
parameters. Examples are the mean and variance of a probability distribution. The mean of a
probability distribution describes the average value of the random variable over all of its possible
realizations. Conceptually, there are an infinite number of realizations therefore parameters are
not known to us. As econometricians, our goal is to try to estimate these parameters using a finite
amount of information available to us. We collect a number of realizations (called a sample) and
then estimate the unknown parameters using a statistic. Just as a parameter is an unknown numer-
ical characteristic of a probability distribution, a statistic is an observable numerical characteristic
of a sample. Since the value of the statistic will be different for each sample drawn, it too is a
random variable. The statistic is used to gain information about the parameter.

Expected values are used to summarize various numerical characteristics of a probability dis-
tributions. For instance, if X is a random variable that can take on the values 0,1,2,3 and these
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values occur with probability 1/6, 1/3, 1/3, and 1/6, respectively. The average value or mean of
the probability distribution, designated µ, is obtained analytically using its expected value.

µ = E[X] =
∑

xf(x) = 0 · 1

6
+ 1 · 1

3
+ 2 · 1

3
+ 3 · 1

6
=

3

2
(B.1)

So, µ is a parameter. Its value can be obtained mathematically if we know the probability
density function of the random variable, X. If this probability distribution is known, then there is
no reason to take samples or to study statistics! We can ascertain the mean, or average value, of a
random variable without every firing up our calculator. Of course, in the real world we only know
that the value of X is not known before drawing it and we don’t know what the actual probabilities
are that make up the density function, f(x). In order to Figure out what the value of µ is, we have
to resort to different methods. In this case, we try to infer what it is by drawing a sample and
estimating it using a statistic.

One of the ways we bridge the mathematical world of probability theory with the observable
world of statistics is through the concept of a population. A statistical population is the collection
of individuals that you are interested in studying. Since it is normally too expensive to collect
information on everyone of interest, the econometrician collects information on a subset of this
population–in other words, he takes a sample.

The population in statistics has an analogue in probability theory. In probability theory one
must specify the set of all possible values that the random variable can be. In the example above,
a random variable is said to take on 0,1,2, or 3. This set must be complete in the sense that the
variable cannot take on any other value. In statistics, the population plays a similar role. It consists
of the set that is relevant to the purpose of your inquiry and that is possible to observe. Thus it
is common to refer to parameters as describing characteristics of populations. Statistics are the
analogues to these and describe characteristics of the sample.

This roundabout discussion leads me to an important point. We often use the words mean,
variance, covariance, correlation rather casually in econometrics, but their meanings are quite
different depending on whether we are refereing to a probability distribution or a sample. When
referring to the analytic concepts of mean, variance, covariance, and correlation we are specifically
talking about characteristics of a probability distribution; these can only be ascertained through
complete knowledge of the probability distribution functions. It is common to refer to them in this
sense as population mean, population variance, and so on. These concepts do not have anything
to do with samples or observations!

In statistics we attempt to estimate these (population) parameters using samples and explicit
formulae. For instance, we might use the average value of a sample to estimate the average value
of the population (or probability distribution).
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Probability Distribution Sample

mean E[X] = µ 1
n

∑
xi = x̄

variance E[X − µ]2 = σ2 1
n−1

∑
(xi − x̄)2 = s2

x

When you are asked to obtain the mean or variance of random variables, make sure you know
whether the person asking wants the characteristics of the probability distribution or of the sample.
The former requires knowledge of the probability distribution and the later requires a sample.

In gretl you are given the facility to obtain sample means, variances, covariances and correla-
tions. You are also given the ability to compute tail probabilities using the normal, t-, F and χ2

distributions. First we’ll examine how to get summary statistics.

Summary statistics usually refers to some basic measures of the numerical characteristics of your
sample. In gretl , summary statistics can be obtained in at least two different ways. Once your
data are loaded into the program, you can select Data>Summary statistics from the pull-down
menu. Which leads to the output in Figure B.2. The other way to get summary statistics is from

Figure B.1: Choosing summary statistics from the pull-down menu

the console or script. Recall, gretl is really just a language and the GUI is a way of accessing
that language. So, to speed things up you can do this. Load the dataset and open up a console
window. Then type summary. This produces summary statistics for all variables in memory. If
you just want summary statistics for a subset, then simply add the variable names after summary,
i.e., summary x gives you the summary statistics for the variable x.

Gretl computes the sample mean, median, minimum, maximum, standard deviation (S.D.),
coefficient of variation (C.V.), skewness and excess kurtosis for each variable in the data set. You
may recall from your introductory statistics courses that there are an equal number of observations
in your sample that are larger and smaller in value than the median. The standard deviation is the
square root of your sample variance. The coefficient of variation is simply the standard deviation
divided by the sample mean. Large values of the C.V. indicate that your mean is not very precisely
measured. Skewness is a measure of the degree of symmetry of a distribution. If the left tail (tail
at small end of the the distribution) extends over a relatively larger range of the variable than the
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Figure B.2: Choosing summary statistics from the pull-down menu yields these results.

right tail, the distribution is negatively skewed. If the right tail covers a larger range of values
then it is positively skewed. Normal and t-distributions are symmetric and have zero skewness.
The χ2(n) is positively skewed. Excess kurtosis refers to the fourth moment about the mean of
the distribution. ‘Excess’ refers to the kurtosis of the normal distribution, which is equal to three.
Therefore if this number reported by gretl is positive, then the kurtosis is greater than that of the
normal; this means that it is more peaked around the mean than the normal. If excess kurtosis is
negative, then the distribution is flatter than the normal.

Statistic Formula

Mean
∑
xi/n = x̄

Variance
∑

(xi − x̄)2/n = s2
x

Standard Deviation sx =
√
s2
x

Coefficient of Variation sx/x̄

Skewness n−1
∑

((xi − x̄)/sx)3

Excess Kurtosis n−1
∑

((xi − x̄)/sx)4 − 3

You can also use gretl to obtain tail probabilities for various distributions. For example if X ∼
N(3, 9) then P (X ≥ 4) is

P [X ≥ 4] = P [Z ≥ (4− 3)/
√

9] = P [Z ≥ 0.334]=̇0.3694 (B.2)

To obtain this probability, you can use the Tools>P-value finder from the pull-down menu.
Then, give gretl the value of X, the mean of the distribution and its standard deviation using
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Figure B.3: Dialog box for finding right hand side tail areas of various probability distributions.

Figure B.4: Results from the p value finder of P [X ≥ 4] where X ∼ N(3, 9). Note, the area in the
tail of this distribution to the right of 4 is .369441.

the dialog box shown in Figure B.3. The result appears in Figure B.4. Gretl is using the mean
and standard deviation to covert the normal to a standard normal (i.e., z-score). As with nearly
everything in gretl , you can use a script to do this as well. First, convert 4 from the X ∼ N(3, 9)
to a standard normal, X ∼ N(0, 1). That means, subtract its mean, 3, and divide by its standard
error,

√
9. The result is a scalar so, open a script window and type:

scalar z1 = (4-3)/sqrt(9)

Then use the cdf function to compute the tail probability of z1. For the normal cdf this is

scalar c1 = 1-cdf(z,z1)

The first argument of the cdf function, z, identifies the probability distribution and the second, z1,
the number to which you want to integrate. So in this case you are integrating a standard normal
cdf from minus infinity to z1=.334. You want the other tail (remember, you want the probability
that Z is greater than 4) so subtract this value from 1.

In your book you are given another example X ∼ N(3, 9) then find P (4 ≤ X ≤ 6) is

P [4 ≤ X ≤ 6] = P [0.334 ≤ Z ≤ 1] = P [Z ≤ 1]− P [Z ≤ .33] (B.3)

Take advantage of the fact that P [Z ≤ z] = 1−P [Z > z] to obtain use the p-value finder to obtain:

(1− 0.1587)− (1− 0.3694) = (0.3694− 0.1587) = 0.2107 (B.4)
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Note, this value differs slightly from the one given in your book due to rounding error that occurs
from using the normal probability table. When using the table, the P [Z ≤ .334] was truncated to
P [Z ≤ .33]; this is because your tables are only taken out to two decimal places and a practical
decision was made by the authors of your book to forgo interpolation (contrary to what your Intro
to Statistics professor may have told you, it is hardly ever worth the effort to interpolate when
you have to do it manually). Gretl, on the other hand computes this probability out to machine
precision as P [Z ≤ 1

3 ]. Hence, a discrepancy occurs. Rest assured though that these results are,
aside from rounding error, the same.

Using the cdf function makes this simple and accurate. The script is

scalar z1 = (4-3)/sqrt(9)
scalar z2 = (6-3)/sqrt(9)
scalar c1 = cdf(z,z1)
scalar c2 = cdf(z,z2)
scalar area = c2-c1

Gretl has a handy new feature that allows you to plot probability distributions. If you’ve ever
wondered what a Weibull(10,0.4) looks like then this is the utility you have waited for. From the
main menu choose Tools>Distribution graphs from the main menu. The following dialog will
appear:

which produces:
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You can plot normal, t, χ2, F, binomial, poisson, and weibull probability density functions.

Fill in the desired parameters and click OK. For the normal, you can also tell gretl whether
you want the pdf or the cdf. This utility is closely related to another that allows you to plot a
curve. The curve plotting dialog is also found in the Tools menu.

The dialog box allows you to specify the range of the graph as well as the formula, which must
be a function of x. Once the graph is plotted you can edit it in the usual way and add additional
formulae and lines as you wish. Please note that gnuplot uses ** for exponentiation (raising to a
power). The curve plotted is:
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Example B.15

In this example, the inversion method is used to generate random numbers from a triangular
distribution.

f(y) = 2y 0 < y < 1

and hence p = F (y) = y2. By inversion, p = y2 and y =
√
p. The probability, p, is modeled using

a pseudo-random uniform. In this example you could either generate a set of uniform variates or
use the ones contained in the dataset uniform1.gdt.

1 open "@workdir\data\uniform1.gdt"
2 freq u1 --plot=display
3 series y1 = sqrt(u1)
4 freq y1 --plot=display

The uniforms are plotted in line 2 and the inversion in line 3.

The extreme value cdf is F (ν) = exp(− exp(−ν)) which inverted produces ν = − ln(− ln(u)).
The script is:
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1 open "@workdir\data\uniform1.gdt"
2 series ev1 = -log(-log(u1))
3 freq ev1 --plot=display --nbins=20

Example B.16

In this example, uniform random variables are generated using the linear congruential generator.
This method uses the modulus (mod)

Xn = (aXn−1 + c) mod m

where a, c, and m are constants chosen by the user. The constant, m, determines the maximum
period of the recursively generated values. It is limited by the architecture of your 32-bit or 64-bit
computing system. The beginning number of the sequence, X0, is the seed.

Let X0 = 1234567, a = 1664525 and b = 1013904223. The max periodicity of my machine is
232. The uniforms are then generated:

1 nulldata 10001
2 series u1 = 1234567 # Seed 1
3 series u2 = 987654321 # Seed 2
4 scalar a = 1664525
5 scalar c = 1013904223
6 scalar m = 2ˆ32
7 series u1 = (a*u1(-1)+c) - m*ceil((a*u1(-1)+c)/m) + m
8 series u1=u1/m
9

10 series u2 = (a*u2(-1)+c) - m*ceil((a*u2(-1)+c)/m) + m
11 series u2=u2/m
12

13 setinfo u1 -d "uniform random number using seed = 1234567"
14 setinfo u2 -d "uniform random number using seed = 987654321"
15

16 freq u1 --plot=display --nbins=20
17 freq u2 --plot=display --nbins=20
18 summary u1 u2

This produces Figures B.5 and B.6: The summary statistics indicate that the generator is pretty
good. The mean is nearly .5 and the 95th and 5th percentiles are very close the their theoretical
levels.

Mean Median Minimum Maximum
u1 0.49867 0.50084 3.2682e-005 0.99984
u2 0.50087 0.50252 1.2647e-006 0.99980
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Figure B.5: Linear Congruential Generator: seed=1234567

Figure B.6: Linear Congruential Generator: seed=987654321
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Std. Dev. C.V. Skewness Ex. kurtosis
u1 0.28652 0.57456 -0.0039760 -1.1732
u2 0.28772 0.57445 -0.0056054 -1.1906

5% perc. 95% perc. IQ range Missing obs.
u1 0.049937 0.94909 0.49041 0
u2 0.049805 0.94847 0.49466 0
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Appendix C

Some Statistical Concepts

The hip data are used to illustrate computations for some simple statistics in your text.

Example C.1 in POE5

In this example a simple histogram is plotted using the freq command. This command can be
used to plot histograms of a series or of a vector. The plot can be sent to the display or to a file.
In this example, the hip data are loaded and a simple frequency plot is graphed to the display:

1 open "@workdir\data\hip.gdt"
2 freq y --plot=display
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C.1 Summary Statistics

Example C.2

In this example the sample mean of the variable y is computed using the summary command.
summary computes summary statistics of the variables listed. It can also work on matrices if the
--matrix= option is specified.

Using a script or operating from the console, open the hip data, hip.gdt, and issue the summary
command. This yields the results shown in Table C.1. This gives you the mean, median, mini-

Summary Statistics, using the observations 1 - 50
for the variable ’y’ (50 valid observations)

Mean 17.158
Median 17.085
Minimum 13.530
Maximum 20.400
Standard deviation 1.8070
C.V. 0.10531
Skewness -0.013825
Ex. kurtosis -0.66847

Table C.1: Summary statistics from the hip data

mum, maximum, standard deviation, coefficient of variation, skewness and excess kurtosis of your
variable(s).

Example C.3 in POE5

In this example a set of 10 normal variates are created and placed into a matrix. Each sample
has 50 observations. The mean of each is set to 17 and the standard deviation set to 1.8. Once
created, simple summary statistics are created.

1 matrix Y = 17 + 1.8*mnormal(50,10)
2 summary --matrix=Y --simple

The mnormal command has two arguments. The first is the row dimension and the second the
column dimension of the resulting matrix or set of series. The matrix Y in this case will be 50×10,
and each column will have a mean of 17 and standard deviation of 1.8 (in the population).

The summary statistics are:
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Mean Median S.D. Min Max
col1 16.88 16.99 2.087 11.15 20.30
col2 16.89 16.94 1.520 13.62 20.19
col3 17.06 17.14 1.604 13.61 20.58
col4 17.25 17.57 1.984 12.39 21.44
col5 16.88 16.94 1.578 12.97 20.16
col6 16.87 17.15 1.729 11.98 19.74
col7 17.34 17.36 2.011 13.01 21.41
col8 16.69 16.83 1.683 13.04 19.97
col9 17.33 17.39 1.470 14.14 20.78
col10 17.25 17.15 1.982 11.13 21.71

C.2 Central Limit Theorem

Example C.5 in POE5

This example is based on a simple simulation where random variables are generated from a
triangular distribution. Means of 10,000 samples are computed for various sample sizes (3, 10, and
30). Histograms of the means are compared to plots from a normal distribution. What we find is
that even with a sample as small as 30, the behaviour of the mean is approaching normality.

First, 10000 observations from a triangular distribution are created (using the inverse method)
and plotted.

1 nulldata 10000
2 set seed 123456
3 series y1 = sqrt(uniform(0,1))
4 freq y1 --plot=display --nbins=12

This produces the plot:
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Obviously, these are not normally distributed.

Then, an empty, three observation dataset is created. A --progressive loop is initiated and
the triangular series is generated and its mean computed. The mean is stored to a dataset c5 3.gdt.
This is repeated for samples of size 10 and 30.

1 nulldata 3
2 loop 1000 --progressive --quiet
3 series yt = sqrt(uniform())
4 scalar ybar = mean(yt)
5 store c5_3.gdt ybar
6 endloop
7

8 nulldata 10
9 loop 1000 --progressive --quiet

10 series yt = sqrt(uniform())
11 scalar ybar = mean(yt)
12 store c5_10.gdt ybar
13 endloop
14

15 nulldata 30
16 loop 1000 --progressive --quiet
17 series yt = sqrt(uniform())
18 scalar ybar = mean(yt)
19 store c5_30.gdt ybar
20 endloop

Now there are three datasets c5 3.gdt, c5 10.gdt, and c5 30.gdt. Open each one and plot the
frequency distribution of ybar as in:
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1 open c5_3.gdt
2 freq ybar --plot=display --normal
3

4 open c5_10.gdt
5 freq ybar --plot=display --normal
6

7 open c5_30.gdt
8 freq ybar --plot=display --normal

This yields three graphs: Notice that the test statistic for normality shrinks as the sample size
used to compute the mean of y increases. This is the essence of the central limit theorem (CLT).

C.3 Sample Moments

Example C.6 in POE5

In this example, several sample moments of the hip data are computed. The sample mean and
standard deviation, the standard deviation of the mean, and the third and fourth moments of the
hip data are computed.

Once the data are loaded, you can use gretl’s language to generate these. For instance, scalar
y bar = mean(y) yields the mean of the variable y. To obtain the sample variance use scalar
y var = sum((y-y bar)̂2)/($nobs-1). The script below can be used to compute other sum-
mary statistics as discussed in your text.

1 open "@workdir\data\hip.gdt"
2 summary
3 scalar y_bar = mean(y)
4 scalar y_var = sum((y-y_bar)ˆ2)/($nobs-1)
5 scalar y_se = sqrt(y_var)
6 scalar se_ybar = sqrt(y_var/$nobs)
7

8 scalar mu2 = sum((y-y_bar)ˆ2)/($nobs)
9 scalar mu3 = sum((y-mean(y))ˆ3)/($nobs)

10 scalar mu4 = sum((y-mean(y))ˆ4)/($nobs)
11 printf "\n mean = %5.4f\n sample variance = %5.4f\n sample\
12 std deviation = %5.4f\n",y_bar,y_var,y_se
13 printf "\n mu2 = %5.4f\n mu3 = %5.4f\n mu4 = %5.4f\n",mu2,mu3,mu4

Then, to estimate skewness, S = µ̃3/σ̃3, and excess kurtosis, K = µ̃4/σ̃4 − 3:
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Figure C.1: Histogram of the triangular mean: N=3

Figure C.2: Histogram of the triangular mean: N=10

Figure C.3: Histogram of the triangular mean: N=30
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1 scalar sig_tild = sqrt(mu2)
2 scalar skew = mu3/sig_tildˆ3
3 scalar ex_kurt = mu4/sig_tildˆ4 -3
4 printf "\n std dev. of the mean = %5.4f\n skewness = %5.4f\n\
5 excess kurtosis = %5.4f\n",se_ybar,skew,ex_kurt

Note, in gretl’s built-in summary command, the excess kurtosis is reported. The normal
distribution has a theoretical kurtosis equal to 3 and the excess is measured relative to that.
Hence, excess kurtosis = µ̃4/σ̃4 − 3

Example C.7 in POE5

If hip size in inches is normally distributed, Y ∼ N(µ, σ2). Based on the estimates, Y ∼
N(17.158, 3.265). The percentage of customers having hips greater than 18 inches can be estimated.

P (Y > 18) = P

(
Y − µ
σ

>
18− µ
σ

)
(C.1)

Replacing µ and σ by their estimates yields

1 scalar zs = (18 - mean(y))/sd(y)
2 pvalue z zs

The last line computes the p-value associated with z -score. So, the pvalue command requests
that a p-value be returned, the second argument (z) indicates the distribution to be used (in this
case, z indicates the normal), and the final argument (zs) is the statistic itself, which is computed
in the previous line. The result is 0.3207, indicating that about 32% of the population would not
fit into a seat that is 18 inches wide.

How large would a seat have to be to be able to fit 95% of the population? Find y∗ to satisfy

P (Y ≤ y∗) =
y∗ − ȳ
σ̂

≤ y∗ − 17.1582

1.8070
= 0.95 (C.2)

To find the value of Z = (y∗−ȳ)/σ̂ that satisfies the probability one could use the invcdf function.
Since Z is standard normal

1 scalar zz = invcdf(n,.95)
2 scalar ystar = sd(y)*zz+mean(y)
3 print ystar

The seat width is estimated to be 20.13 inches.
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C.4 Interval Estimation

Example C.8 in POE5

In this example pseudo-random numbers are used to generate 30 observations from a N(10,10)
distribution. The data are found in table c3.gdt. The sample mean is computed and a 95% confi-
dence interval is computed for y.

ȳ ± 1.96×
√

10//30

This is computed using:

1 open "@workdir\data\table_c3.gdt"
2 scalar ybar = mean(y)
3 scalar std = sqrt(10/$nobs)
4 scalar lb = ybar - critical(z,.025)*std
5 scalar ub = ybar + critical(z,.025)*std
6 printf "\nThe 95%% confidence interval is (%5.4f, %6.4f)\n",lb, ub
7

8 t_interval(ybar,std,10e10,.95)

to produce:

The 95% confidence interval is (9.0743, 11.3375)

In the last line, the t_interval program from Chapter 3.1 is used as well to produce a similar
result. The t_interval command uses critical values from the t-distribution rather than the
normal. The normal critical value can be approximated simply by using a very large number as
the degrees-of-freedom parameter as done here.

The 95% confidence interval centered at 10.206 is (9.0743, 11.3375)

In the second part of this example 10 samples of N(10,10) variables are opened from the ta-
ble 4c.gdt dataset. The script is:

1 open "@workdir\data\table_c4.gdt"
2 summary y* --simple
3

4 scalar std = sqrt(10/30)
5 scalar crit = critical(z,.025)
6 matrix result
7 list yall = y*
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8 loop foreach i yall
9 scalar lb = mean($i) - crit*std

10 scalar ub = mean($i) + crit*std
11 matrix result = result | (lb ˜ ub)
12 endloop
13 cnameset(result,"LowerBound UpperBound")
14 print result

After loading the data, summary statistics are summoned in line 2. Note that a wildcard is used
for a variable list, y*. The variables are y1, y2, and so on and y* collects all series that begin with
y.

The standard deviation of 30 observations from a N(10,10) are computed in line 4. The critical
value from the normal is obtained in line 5. A matrix called result is initialized in line 6. This
matrix will hold the lower and upper bounds of the computed intervals for each sample’s mean.

A foreach loop is started in line 8 that will loop through each element of the list yall. The
interval is computed and added as a row to the matrix results. The loop ends and column names
are assigned to the matrix and printed.

The result:

LowerBound UpperBound
9.0743 11.338
8.6963 10.959
10.063 12.326
7.6903 9.9535
9.3025 11.566
7.7231 9.9863
9.3798 11.643
8.0802 10.343
9.3329 11.596
9.0100 11.273

which matches the results from POE5.

Example C.9 in POE5

In this continuation of the hip data simulation from Example C.8, the loop is modified to use
the computed standard error of the mean from each sample and the t critical value.

Since the true variance, σ2, is not known, the t-distribution is used to compute the interval.
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The interval is

ȳ ± tc
σ̂√
N

(C.3)

where tc is the desired critical value from the student-t distribution. In our case, N = 50
and the desired degrees of freedom for the t-distribution is N − 1 = 49. The gretl command
critical(t,$nobs-1,.025) returns the 0.025 critical value from the t49 distribution.

1 open "@workdir\data\table_c4.gdt"
2

3 scalar crit = critical(t,$nobs-1,.025)
4 matrix result
5 list yall = y*
6 loop foreach i yall
7 scalar lb = mean($i) - crit*sd($i)/sqrt($nobs)
8 scalar ub = mean($i) + crit*sd($i)/sqrt($nobs)
9 matrix result = result | (lb ˜ ub)

10 endloop
11 cnameset(result,"LowerBound UpperBound")
12 print result

The first change occurs in line 3 where the critical value is selected from the t49 distribution rather
than the normal. Then, the calculation of the lower and upper bounds in lines 7 and 8 uses the
computed standard deviation of each series (sd(·)) and the number of observations stored in the
accessor $nobs. Otherwise, it is the same and in the previous example.

The results are:

LowerBound UpperBound
9.0734 11.338
8.8487 10.807
9.9940 12.394
7.6489 9.9948
9.3789 11.489
7.9227 9.7868
9.5003 11.523
7.7808 10.643
9.2595 11.669
8.5711 11.712

which matches the results from table C.5 in POE5.
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Example C.10 in POE5

Finally, these procedures are used on the original hip.gdt sample to obtain 95% confidence
interval for the population mean.

1 open "@workdir\data\hip.gdt"
2 scalar y_sd = sd(y)
3 scalar ybar_sd = y_sd/sqrt($nobs)
4 scalar lb = mean(y) - critical(t,$nobs-1,0.025)*ybar_sd
5 scalar ub = mean(y) + critical(t,$nobs-1,0.025)*ybar_sd
6 printf "\nThe 95%% confidence interval is (%5.4f, %6.4f)\n",lb,ub

which produces:

The 95% confidence interval is (16.6447, 17.6717)

C.5 Hypothesis Tests

Examples C.11 and C. 13 in POE5

Hypothesis tests are based on the same principles and use the same information that is used in
the computation of confidence intervals. The first test is on the null hypothesis that hip size does
not exceed 16.5 inches against the alternative that it does. Formally, H0: µ = 16.5 against the
alternative Ha: µ > 16.5. The test statistic is computed based on the sample average, Ȳ and is

t =
Ȳ − 16.5

σ̂/
√
N
∼ tN−1 (C.4)

if the null hypothesis is true. Choosing the significance level, α = .05, the right-hand side critical
value for the t49 is 1.677. The average hip size is 17.1582 with standard deviation 1.807 so the test
statistic is

t =
17.1582− 16.5

1.807/
√

50
= 2.576 (C.5)

The gretl code to produce this is:

1 open "@workdir\data\hip.gdt"
2 scalar df = $nobs-1
3 scalar y_bar = mean(y)
4 scalar y_sd = sd(y)
5 scalar ybar_sd = y_sd/sqrt($nobs)
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6 scalar tstat = (y_bar-16.5)/(ybar_sd)
7 printf "\n The test statistic = %.3f\n\
8 One-sided critical value = %.3f\n\
9 Two-sided critical value = %.3f\n",\

10 tstat, critical(t,df,.05), critical(t,df,0.025)
11

12 printf "\n The p-vlaue for the one-sided test = %.4f\n",\
13 pvalue(t,df,tstat)

This yields:

The test statistic = 2.576
One-sided critical value = 1.677
Two-sided critical value = 2.010

The p-vlaue for the one-sided test = 0.0065

Examples C.12 and C.14 in POE5

The two-tailed test is of the hypothesis, H0: µ = 17 against the alternative, Ha: µ 6= 17.

t =
Ȳ − 17

σ̂/
√
N
∼ tN−1 (C.6)

if the null hypothesis is true. Choosing the significance level, α = .05, the two sided critical value
is ±2.01. Hence, you will reject the null hypothesis if t < −2.01 or if t > 2.01. The statistic is
computed

t =
17.1582− 17

1.807/
√

50
= .6191 (C.7)

and you cannot reject the null hypothesis. The gretl code is:

1 scalar tstat = (y_bar-17)/(ybar_sd)
2 scalar c = critical(t,df,0.025)
3 printf "\n The test statistic = %.3f\n\
4 Two-sided critical value = +/-%.3f\n",\
5 abs(tstat), critical(t,df,.025)
6

7 printf "\n The p-vlaue for the one-sided test = %.4f\n",\
8 2*pvalue(t,df,abs(tstat))

which produces the results:
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The test statistic = 0.619
Two-sided critical value = +/-2.010

The p-vlaue for the one-sided test = 0.5387

C.6 Testing for Normality

POE5 discusses the Jarque-Bera test for normality which is computed using the skewness and
kurtosis of the least squares residuals. To compute the Jarque-Bera statistic manually, one must
obtain the summary statistics from your data series.

From gretl script

1 open "@workdir\data\hip.gdt"
2 summary

The summary statistics can be obtained from the user interface as well. From the main gretl win-
dow, highlight the hip series and right-click to bring up a list of options. Choose summary statistics.
Or, highlight the desired series in the main window and choose View>Summary statistics from
the pull-down menu. This yields the results in Table C.1.

One thing to note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis is
measured relative to that of the normal distribution which has kurtosis of three. Hence, your
computation is

JB =
N

6

(
Skewness2 +

(Excess Kurtosis)2

4

)
(C.8)

Which is

JB =
50

6

(
−0.01382 +

−0.668472

4

)
= .9325 (C.9)

Using the results in section C.1 for the computation of skewness and kurtosis, the gretl code is:

1 scalar sig_tild = sqrt(sum((y-mean(y))ˆ2)/($nobs))
2 scalar mu3 = sum((y-mean(y))ˆ3)/($nobs)
3 scalar mu4 = sum((y-mean(y))ˆ4)/($nobs)
4 scalar skew = mu3/sig_tildˆ3
5 scalar kurt = mu4/sig_tildˆ4
6 scalar JB = ($nobs/6)*(skewˆ2+(kurt-3)ˆ2/4)
7 pvalue X 2 JB
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C.7 Maximum Likelihood

In this section some basic computations based on likelihood estimation are demonstrated. The
premise is demonstrated using a game where there are two wheels that have shaded regions on
their surface. Spinning the wheel and having it stop on the shaded area is considered a win. If the
wheel stops on a non-shaded area, the contestant loses.

There are two different wheels in this game. Wheel A has a 25% chance of winning (P(A=win)=.25),
wheel B has P(B=win)=.75. Someone spins three times and produces the following result: win,
win, lose. Which wheel did she spin?

The likelihood is
L(p) = P1 × P2 × P3 = p2(1− p)

The maximum likelihood estimator is the value of p that maximizes this. For computational
reasons, the likelihood is seldom used. Instead, users take its natural logarithm, which in this case
is:

lnL(p) = 2 ln(p) + ln(1− p)

In this example a sequence of p is created based on a sequence of numbers from .001 to 1 by
.001. One way to do this is to create an empty dataset with 1000 observations. Then multiply
the internal variable index, which by default in gretl identifies an observation’s number by .001.
Then formulate the log-likelihood series as in:

1 nulldata 1000
2

3 series p=.001 * index
4 series lnl=2*ln(p)+ln(1-p)
5 setinfo p -d "Probability" -n "P"
6 setinfo lnl -d "ln(L(p))" -n "ln(L(p))"
7 gnuplot lnl p --fit=none --output=display

The setinfo commands add meaningful labels for the plot, which is carried out in line 7 by gnuplot.
The result appears below:
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The maximum occurs at 0.6667.

Example 6.19 in POE5

A marketer wants to know whether potential customers prefer a blue box or a green one for
their cereal. Two hundred are sampled at random and asked to express a preference. Seventy-five
prefer the blue one. What is the estimated population proportion of those who prefer the blue?

Gretl has a new function called eval that is useful in this circumstance. It acts as a calculator
in either a console window or in a script.

1 eval(75/200)

which yields:

? eval(75/200)
0.375

Our estimate of the population proportion is 37.5% prefer blue.
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Example C.20 in POE5

Following the previous example, suppose the CEO guesses that 40% prefer blue. To test this
construct the null hypothesis H0: p = 0.4 against the alternative H1: p 6= 0.4.

As in the preceding examples, this random variable is binomial. The sample proportion is
known to be

p̂
a∼ N

(
p,
p(1− p)
N

)
(C.10)

The estimated variance substitutes p̂ for p. The script to compute p and its estimated standard
error is:

1 nulldata 200
2 scalar p = 75/200
3 scalar se_p = sqrt((p*(1-p))/$nobs)
4 scalar t = (p-0.4)/se_p
5 scalar pval = pvalue(t,$nobs-1,t)
6 scalar crit = critical(t,$nobs-1,.025)
7 print t pval crit
8

9 t_interval(p,se_p,$nobs-1,.95)

The empty dataset is created so that $nobs has the appropriate value. In line 3 the estimated
standard error is computed and in 4 the t-ratio. The p-value and critical values are obtained and
printed.

Finally, the t_interval function is used to produce a 95% confidence interval for p. The
results are:

t = -0.73029674
pval = 0.76696616
crit = 1.9719565

The 95% confidence interval centered at 0.375 is (0.3075, 0.4425)

The t-ratio is −0.73, which is not in the rejection region of a 5% test (critical value is ±1.97). The
p-value is .77, which is greater than 5%. The 95% confidence interval is (0.3075, 0.4425), which of
course does not include zero.

C.7.1 Other Hypothesis Tests
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Example C.21 in POE5

The likelihood ratio test compares the log-likelihood functions evaluated at two-sets of estimates.
One set is the values of the parameters under the null hypothesis (restricted) and the other is a set
evaluated under the alternative hypothesis (unrestricted).

LR = 2(ln(L(pu)− ln(L(pr)) ∼ χ2(J)

if the null hypothesis is true. The parameter, J , is the number of joint hypotheses specified in the
null. The parameters, pu and pr are the unrestricted and restricted maximum likelihood estimates,
respectively.

In this example, pu = 75/200 = 0.375 and it is hypothesized to be equal to .4 under the null so
pr = .4. Evaluating the log-likelihood under these values and computing LR is accomplished using:

1 scalar p = 75/200
2 scalar lnL_u = 75*ln(p)+(200-75)*ln(1-p)
3 scalar lnL_r = 75*ln(0.4)+(200-75)*ln(1-0.4)
4

5 scalar LR = 2*(lnL_u-lnL_r)
6 scalar pval = pvalue(C,1,LR)
7 scalar crit = critical(C,1,.05)
8 print lnL_u lnL_r LR pval crit

which produces:

lnL_u = -132.31265
lnL_r = -132.57501

LR = 0.52472046
pval = 0.46883499
crit = 3.8414588

The LR is equal to .5247 and has a p-value of .4688. It is not significant at 5% and the null
hypothesis that 40% prefer blue cannot be rejected.

Example C.22 in POE5

For this test, a Wald statistic is computed. The Wald statistic is based on quadratic forms of
normally distributed random variables. Thus, if

X ∼ N(µ,Σ)
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then
W = (x− µ)TΣ−1(x− µ) ∼ χ2(k)

where k is the dimension of x. Based on equation (C.10) we have

W = (p̂− 0.4)

(
p̂(1− p̂)
N

)−1

(p̂− 0.4) ∼ χ2(1)

if H0 is true.

The script to estimate this is:

1 matrix V = p*(1-p)/$nobs
2 matrix Wald = qform(p-0.4,inv(V))
3 scalar pval = pvalue(C,1,Wald)
4 scalar crit = critical(C,1,.05)
5 printf "The Wald statistic is: %.3g\n\
6

7 The 5%% critical value is: %.3f\n\
8 and the p-value is: %.3f\n", Wald, crit, pval

The qform command is used to compute the quadratic form. The first argument is a vector to be
tested. The second argument is the inverse of the variance. The output follows:

The Wald statistic is: 0.533
The 5% critical value is: 3.841
and the p-value is: 0.469

These results are very similar to those from the LR test.

Example C.23 in POE5

The Lagrange multiplier version of the hypothesis test is considered here. The LM test considers
the value of the score at the values hypothesised under the null (restricted). The score is the slope
of the log-likelihood:

s(p) =
∂ln(L(p))

∂p

The textitLM statistic is formulated as a quadratic form much like the Wald test. In this case,

LM = s(p)TΣ(p)s(p) ∼ χ2(1)

if p = 0.4.

The script:
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1 scalar c = 0.4
2 scalar score = 75/c - (200-75)/(1-c)
3 scalar LM = qform(score,(c*(1-c))/$nobs)
4 scalar pval = pvalue(C,1,LM)
5 scalar crit = critical(C,1,.05)
6

7 printf "The LM statistic is: %.3g\n\
8 The 5%% critical value is: %.3f\n\
9 and the p-value is: %.3f\n", LM, crit, pval

which produces:

The LM statistic is: 0.521
The 5% critical value is: 3.841
and the p-value is: 0.470

Again, this is very similar to LR and Wald tests. It should be. They are asymptotically equivalent.

Example C.24 in POE5

In this example, the mean of the hip population is estimated by minimizing the sum of squared
errors.

hipi = µ+ ei

This is a least squares problem, hence:

1 open "@workdir\data\hip.gdt"
2 summary y
3 ols y const

which produces:

Summary statistics, using the observations 1 - 50
for the variable ’y’ (50 valid observations)

Mean 17.158
Median 17.085
Minimum 13.530
Maximum 20.400
Standard deviation 1.8070
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and for the regression:

Model 1: OLS, using observations 1-50
Dependent variable: y

coefficient std. error t-ratio p-value
---------------------------------------------------------
const 17.1582 0.255550 67.14 6.74e-050 ***

Mean dependent var 17.15820 S.D. dependent var 1.807013

It should be clear that the least squares estimator of this model is simply the sample mean. Sum-
mary statistics and a regression using only a constant produce identical results.

C.8 Kernel Density

Gretl includes a function that estimates the shape of a distribution based on a sample of
observations. The approach in non-parametric since it does not rely on a specific functional form
to generate an estimate. Instead, smoothing functions called kernels are used to “fit” the shape of
the distribution using the data. The idea of a kernel was first use here in the discussion of HAC
standard errors (see page 325). The function that computes these in gretl is called kdensity.

kdensity

Output: matrix
Arguments: x (series or vector)
scale (scalar, optional)
control (boolean, optional)

The function computes a kernel density estimate for a series or a vector. It returns a matrix having
two columns, the first holding a set of evenly spaced abscissae and the second the estimated density
at each of these points.

The optional scale parameter can be used to adjust the degree of smoothing relative to the
default of 1.0 (higher values produce a smoother result). Is used to choose the specific kernel
to use for smoothing. Set to zero to use a Gaussian kernel and something else to switch to the
Epanechnikov kernel.

A plot of the results may be obtained using the gnuplot. Here are a couple of examples using
the supplied dataset kernel.gdt.
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1 open "@workdir\data\kernel.gdt"
2

3 matrix d = kdensity(y,1)
4 gnuplot 2 1 --matrix=d --with-lines --fit=none
5

6 matrix d = kdensity(y,3)
7 gnuplot 2 1 --matrix=d --with-lines --fit=none
8

9 matrix d = kdensity(y,.2)
10 gnuplot 2 1 --matrix=d --with-lines --fit=none

The plots are shown in Figure C.4,C.5, and C.6 below. Notice that the larger the bandwidth, the
more smoothing occurs. Note, the bandwidths are not literally set to 1, 2.5 and .2. Gretl computes
an automatic bandwidth and these numbers are scales for that automatic selection.

C.9 Script

1 open "@workdir\data\hip.gdt"
2 # Example C.1
3 freq y --plot=display
4

5 # Example C.2
6 summary y --simple
7

8 # Example C.3
9 matrix Y = 17 + 1.8*mnormal(50,10)

10 summary --matrix=Y --simple
11

12 # Example C.5
13 nulldata 10000
14 set seed 123456
15 series y1 = sqrt(uniform(0,1))
16 freq y1 --plot=display --nbins=12
17

18 nulldata 3
19 loop 1000 --progressive --quiet
20 series yt = sqrt(uniform())
21 scalar ybar = mean(yt)
22 store c5_3.gdt ybar
23 endloop
24

25 nulldata 10
26 loop 1000 --progressive --quiet
27 series yt = sqrt(uniform())
28 scalar ybar = mean(yt)
29 store c5_10.gdt ybar
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Figure C.4: Kernel density: Bandwidth scaler = 1

Figure C.5: Kernel density: Bandwidth scale = 2.5

Figure C.6: Kernel density: Bandwidth scale = 0.2
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30 endloop
31

32 nulldata 30
33 loop 1000 --progressive --quiet
34 series yt = sqrt(uniform())
35 scalar ybar = mean(yt)
36 store c5_30.gdt ybar
37 endloop
38

39 open c5_3.gdt
40 freq ybar --plot=display --normal
41

42 open c5_10.gdt
43 freq ybar --plot=display --normal
44

45 open c5_30.gdt
46 freq ybar --plot=display --normal
47

48 # Example C.6
49 open "@workdir\data\hip.gdt"
50 scalar y_bar = mean(y)
51 scalar y_var = sum((y-y_bar)ˆ2)/($nobs-1)
52 scalar y_se = sqrt(y_var)
53 scalar se_ybar = sqrt(y_var/$nobs)
54

55 scalar mu2 = sum((y-y_bar)ˆ2)/($nobs)
56 scalar mu3 = sum((y-mean(y))ˆ3)/($nobs)
57 scalar mu4 = sum((y-mean(y))ˆ4)/($nobs)
58 printf "\n mean = %5.4f\n sample variance = %5.4f\n sample\
59 std deviation = %5.4f\n",y_bar,y_var,y_se
60 printf "\n mu2 = %5.4f\n mu3 = %5.4f\n mu4 = %5.4f\n",mu2,mu3,mu4
61

62 scalar sig_tild = sqrt(mu2)
63 scalar skew = mu3/sig_tildˆ3
64 scalar ex_kurt = mu4/sig_tildˆ4 -3
65 printf "\n std dev. of the mean = %5.4f\n skewness = %5.4f\n\
66 excess kurtosis = %5.4f\n",se_ybar,skew,ex_kurt
67

68 # Example C.7
69 # Using the estimates
70 scalar zs = (18 - mean(y))/sd(y)
71 pvalue z zs
72 scalar zz = invcdf(n,.95)
73 scalar ystar = sd(y)*zz+mean(y)
74 print ystar
75

76 # Example C.8
77 open "@workdir\data\table_c3.gdt"
78 scalar ybar = mean(y)
79 scalar std = sqrt(10/$nobs)
80 scalar lb = ybar - critical(z,.025)*std
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81 scalar ub = ybar + critical(z,.025)*std
82 printf "\nThe 95%% confidence interval is (%5.4f, %6.4f)\n",\
83 lb, ub
84

85 t_interval(ybar,std,10e10,.95)
86

87 clear
88 open "@workdir\data\table_c4.gdt"
89 summary y* --simple
90

91 scalar std = sqrt(10/30)
92 scalar crit = critical(z,.025)
93 matrix result
94 list yall = y*
95 loop foreach i yall
96 scalar lb = mean($i) - crit*std
97 scalar ub = mean($i) + crit*std
98 matrix result = result | (lb ˜ ub)
99 endloop

100 cnameset(result,"LowerBound UpperBound")
101 print result
102

103 # Example C.9
104 clear
105 open "@workdir\data\table_c4.gdt"
106 summary y* --simple
107

108 scalar crit = critical(t,29,.025)
109 matrix result
110 list yall = y*
111 loop foreach i yall
112 scalar lb = mean($i) - crit*sd($i)/sqrt($nobs)
113 scalar ub = mean($i) + crit*sd($i)/sqrt($nobs)
114 matrix result = result | (lb ˜ ub)
115 endloop
116 cnameset(result,"LowerBound UpperBound")
117 print result
118

119 # Example C.10
120 # Confidence interval
121 open "@workdir\data\hip.gdt"
122 scalar y_sd = sd(y)
123 scalar ybar_sd = y_sd/sqrt($nobs)
124 scalar lb = mean(y) - critical(t,$nobs-1,0.025)*ybar_sd
125 scalar ub = mean(y) + critical(t,$nobs-1,0.025)*ybar_sd
126 printf "\nThe 95%% confidence interval is (%5.4f, %6.4f)\n",lb,ub
127

128 # Example C.11 and C.13
129 # t-test
130 open "@workdir\data\hip.gdt"
131 scalar df = $nobs-1
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132 scalar y_bar = mean(y)
133 scalar y_sd = sd(y)
134 scalar ybar_sd = y_sd/sqrt($nobs)
135 scalar tstat = (y_bar-16.5)/(ybar_sd)
136 printf "\n The test statistic = %.3f\n\
137 One-sided critical value = %.3f\n\
138 Two-sided critical value = %.3f\n",\
139 tstat, critical(t,df,.05), critical(t,df,0.025)
140

141 printf "\n The p-vlaue for the one-sided test = %.4f\n",\
142 pvalue(t,df,tstat)
143

144 # Example C.12 and C.14
145 scalar tstat = (y_bar-17)/(ybar_sd)
146 scalar c = critical(t,df,0.025)
147 printf "\n The test statistic = %.3f\n\
148 Two-sided critical value = +/-%.3f\n",\
149 abs(tstat), critical(t,df,.025)
150

151 printf "\n The p-vlaue for the one-sided test = %.4f\n",\
152 2*pvalue(t,df,abs(tstat))
153

154 # Example C.15
155 # Jarque-Bera
156 scalar sig_tild = sqrt(sum((y-mean(y))ˆ2)/($nobs))
157 scalar mu3 = sum((y-mean(y))ˆ3)/($nobs)
158 scalar mu4 = sum((y-mean(y))ˆ4)/($nobs)
159 scalar skew = mu3/sig_tildˆ3
160 scalar kurt = mu4/sig_tildˆ4
161 scalar JB = ($nobs/6)*(skewˆ2+(kurt-3)ˆ2/4)
162 pvalue X 2 JB
163

164 /*---POE5 Example C.18---*/
165 # The "Wheel of Fortune" Game: Maximizing the Log-likelihood
166

167 nulldata 1000
168

169 series p=.001 * index
170 series lnl=2*ln(p)+ln(1-p)
171 setinfo p -d "Probability" -n "P"
172 setinfo lnl -d "ln(L(p))" -n "ln(L(p))"
173 gnuplot lnl p --fit=none --output=display
174

175 # Example C.19
176 eval(75/200)
177

178 /*---POE5 Example C.20---*/
179 # Testing a Population Proportion
180 nulldata 200
181 scalar p = 75/200
182 scalar se_p = sqrt((p*(1-p))/$nobs)
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183 scalar t = (p-0.4)/se_p
184 scalar pval = pvalue(t,$nobs-1,t)
185 scalar crit = critical(t,$nobs-1,.025)
186 print t pval crit
187

188 t_interval(p,se_p,$nobs-1,.95)
189

190 /*---POE5 Example C.21---*/
191 # Likelihood Ratio Test of the Population Proportion
192

193 scalar p = 75/200
194 scalar lnL_u = 75*ln(p)+(200-75)*ln(1-p)
195 scalar lnL_r = 75*ln(0.4)+(200-75)*ln(1-0.4)
196

197 scalar LR = 2*(lnL_u-lnL_r)
198 scalar pval = pvalue(C,1,LR)
199 scalar crit = critical(C,1,.05)
200 print lnL_u lnL_r LR pval crit
201

202 /*---POE5 Example C.22---*/
203 # Wald Test of the Population Proportion
204

205 matrix V = p*(1-p)/$nobs
206 matrix Wald = qform(p-0.4,inv(V))
207 scalar pval = pvalue(C,1,Wald)
208 scalar crit = critical(C,1,.05)
209 printf "The Wald statistic is: %.3g\n\
210 The 5%% critical value is: %.3f\n\
211 and the p-value is: %.3f\n", Wald, crit, pval
212

213 /*---POE5 Example C.23---*/
214 # Lagrange Multiplier Test of the Population Proportion
215

216 scalar c = 0.4
217 scalar score = 75/c - (200-75)/(1-c)
218 scalar LM = qform(score,(c*(1-c))/$nobs)
219 scalar pval = pvalue(C,1,LM)
220 scalar crit = critical(C,1,.05)
221 printf "The LM statistic is: %.3g\n\
222 The 5%% critical value is: %.3f\n\
223 and the p-value is: %.3f\n", LM, crit, pval
224

225 /*---POE5 Example C.24---*/
226 # Hip Data: Minimizing the Sum of Squares Function
227 open "@workdir\data\hip.gdt"
228 summary y
229 ols y const
230

231 # Appendix C.10
232 open "@workdir\data\kernel.gdt"
233 scalar bw = $nobsˆ(-.2)
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234 matrix d = kdensity(y,1,0)
235 cnameset(d,"y Density")
236 gnuplot 2 1 --matrix=d --with-lines --fit=none --output=display
237

238 matrix d = kdensity(y,2.5)
239 cnameset(d,"y Density")
240 gnuplot 2 1 --matrix=d --with-lines --fit=none --output=display
241

242 matrix d = kdensity(y,.2)
243 cnameset(d,"y Density")
244 gnuplot 2 1 --matrix=d --with-lines --fit=none --output=display
245
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Appendix D

Functions

The functions used in this work are found in two files. The first includes all of the functions,
except the ones used in Chapter 16, which are more specialized.

D.1 functions other

1 set echo off
2 set messages off
3 # function computes prediction standard errors
4 function series in_sample_fcast_error(series y, list xvars)
5 ols y xvars
6 scalar sig = $sigmaˆ2
7 matrix X = { xvars }
8 matrix f_e = sig*I($nobs)+sig*X*inv(X’X)*X’
9 series se = sqrt(diag(f_e))

10 return se
11 end function
12

13 # function estimates confidence intervals based on the t-distribution
14 function void t_interval(scalar b, scalar se, scalar df, scalar p)
15 scalar alpha = (1-p)
16 scalar lb = b - critical(t,df,alpha/2)*se
17 scalar ub = b + critical(t,df,alpha/2)*se
18 printf "\nThe %2g%% confidence interval centered at %.3f is\
19 (%.4f, %.4f)\n", p*100, b, lb, ub
20 end function
21

22 # function to compute diagonals of hat matrix
23 function series h_t (list xvars)
24 matrix X = { xvars }
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25 matrix Px = X*inv(X’X)*X’
26 matrix h_t = diag(Px)
27 series hats = h_t
28 return hats
29 end function
30

31 # delete-one variance function
32 function series delete_1_variance(series y, list xvars)
33 matrix sig = zeros($nobs,1)
34 loop i=1..$nobs --quiet
35 matrix e_t = zeros($nobs,1)
36 matrix e_t[i,1]=1
37 series et = e_t
38 ols y xvars et --quiet
39 matrix sig[i,1]=$sigmaˆ2
40 endloop
41 series sig_t = sig
42 return sig_t
43 end function
44

45 # model selection rules and a function
46 function matrix modelsel (series y, list xvars)
47 ols y xvars --quiet
48 scalar sse = $ess
49 scalar N = $nobs
50 scalar k = nelem(xvars)
51 scalar aic = ln(sse/N)+2*k/N
52 scalar bic = ln(sse/N)+k*ln(N)/N
53 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
54 matrix A = { k, N, $rsq, rbar2, aic, bic}
55 printf "\nRegressors: %s\n",varname(xvars)
56 printf "k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f, AIC = %.4f,\
57 and SC = %.4f\n", k, N, $rsq, rbar2, aic, bic
58 return A
59 end function
60

61 # Function to compute RMSE for t1, t2
62 function matrix rmse (series yvar, list xvars, scalar t1, scalar t2)
63 matrix y = yvar # Put yvar into matrix
64 matrix X_all = { xvars } # Put xvars into matrix
65 matrix y1 = y[1:t1,] # Estimation subset y
66 matrix X = X_all[1:t2,] # Sample restricted to 1-t2
67 matrix X1 = X_all[1:t1,] # Estimation subset regressors
68 matrix Px1 = X*inv(X1’X1)*X1’y1 # Yhat for entire 1:t2 sample
69 matrix ehat = y[1:t2,]-Px1 # Y-Yhat for entire 1:t2 sample
70 matrix ehatp = ehat[t1+1:t2,] # Residuals for the prediction sub-period
71 matrix RMSE = sqrt(ehatp’ehatp/(t2-t1))# Mean of squared prediction residuals
72 return RMSE
73 end function
74

75 # Breusch-Pagan test
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76 function void BP_test (series y, list xvars, list zvars)
77 ols y xvars --quiet
78 series ehat_2 = $uhatˆ2
79 ols ehat_2 zvars --quiet
80 scalar pval = pvalue(X,nelem(zvars)-1,$trsq)
81 printf "Z-Variables: %s", varname(zvars)
82 printf "\nBreusch-Pagan test: nR2 = %.3f\
83 p-value = %.3f \n", $trsq, pval
84 end function
85

86 # Example 9.8 Choosing lag lengths, SC criterion
87 # model selection rules and a function
88 function matrix modelsel (series y, list xvars)
89 ols y xvars --quiet
90 scalar sse = $ess
91 scalar N = $nobs
92 scalar k = nelem(xvars)
93 scalar aic = ln(sse/N)+2*k/N
94 scalar bic = ln(sse/N)+k*ln(N)/N
95 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
96 matrix A = { k, N, $rsq, rbar2, aic, bic}
97 printf "\nRegressors: %s\n",varname(xvars)
98 printf "k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f, AIC = %.4f,\
99 and SC = %.4f\n", k, N, $rsq, rbar2, aic, bic

100 return A
101 end function
102

103 # Same as modelsel except the print statements are supressed
104 function matrix modelsel_np (series y, list xvars)
105 ols y xvars --quiet
106 scalar sse = $ess
107 scalar N = $nobs
108 scalar k = nelem(xvars)
109 scalar aic = ln(sse/N)+2*k/N
110 scalar bic = ln(sse/N)+k*ln(N)/N
111 scalar rbar2 = 1-((1-$rsq)*(N-1)/$df)
112 matrix A = { k, N, $rsq, rbar2, aic, bic}
113 return A
114 end function
115

116 # Function returns a 1 if reject Hausman null
117 function scalar Hausman (series y, list xvars, list zvars)
118 list endogvars = xvars - zvars
119 ols endogvars zvars --quiet
120 series vhat = $uhat
121 ols y xvars vhat --quiet
122 scalar t = $coeff(vhat)/$stderr(vhat)
123 scalar reject = abs(t)>1.96
124 return reject
125 end function
126
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127 # Example 10.8
128 # canonical correlations in gretl--Weak IV example 3
129 function matrix cc(list Y, list X)
130 matrix mY = cdemean({Y})
131 matrix mX = cdemean({X})
132

133 matrix YX = mY’mX
134 matrix XX = mX’mX
135 matrix YY = mY’mY
136

137 matrix ret = eigsolve(qform(YX, invpd(XX)), YY)
138 return sqrt(ret)
139 end function
140

141 # Optional Fuller Modified LIML a=1
142 function void LIML (series depvar "dependent variable",
143 list xvars "regressor list",
144 list zvars "instrument list",
145 string a "Fuller or No Fuller")
146 list endogvars = xvars - zvars
147 list yvars = depvar endogvars
148 matrix Y = { yvars } # All Endogenous vars, y and Y
149 matrix y = { depvar }
150 matrix w = { zvars } # w=All instruments
151 matrix z = { xvars - endogvars } # z=Internal instruments only
152 matrix X = { xvars }
153

154 matrix Mz = I($nobs)-z*invpd(z’*z)*z’ # Projection off of Z
155 matrix Mw = I($nobs)-w*invpd(w’*w)*w’ # Projection off of w
156 matrix Ez = Mz*Y # Residuals
157 matrix Ew = Mw*Y # Residuals
158 matrix W0 = Ez’*Ez # SSE
159 matrix W1 = Ew’*Ew # SSE
160 matrix G = inv(W1)*W0
161 matrix l = eigengen(G, null)
162

163 if a == "Fuller"
164 scalar k=min(l)-(1/($nobs-nelem(xvars)))
165 else
166 scalar k=min(l)
167 endif
168

169 matrix kM = (I($nobs)-(k*Mw))
170 matrix b =invpd(X’*kM*X)*X’*kM*y
171 matrix sig2=(y-X*b)’*(y-X*b)/($nobs-nelem(xvars))
172 matrix covmat = sig2*invpd(X’*kM*X)
173 matrix se = sqrt(diag(covmat))
174 matrix results = b˜se˜b./se
175

176 cnameset(results, "Coeff Std_Error t-ratio")
177 rnameset(results, "mtr educ kidsl6 nwifeinc const ")

688



178 printf "\nThe LIML estimates using %s adjustment with k=%3f \n %12.3f\n", a, k, results
179 end function
180

181 function matrix gim_filter(series y, \
182 scalar mu, scalar theta, scalar delta, scalar alpha, \
183 scalar gam, scalar beta, series *h)
184

185 series lh = var(y) # initialize the variance series
186 series le = y - mu # initialize the residual series
187 scalar T = $nobs # Number of Observations
188 loop i=2..T --quiet
189 scalar ilag = $i - 1
190 scalar d = (le[ilag]<0) # Create the negative threshold
191 scalar e2lag = le[ilag]ˆ2 # Square the residual
192 lh[i] = delta + alpha*e2lag + gam*e2lag*d + beta*lh[ilag] # ht
193 le[i] = le[i] - theta*lh[i] # residual
194 endloop
195

196 series h = lh # Puts ht into series h (pointer in function)
197 matrix matvar = { le, h} # The matrix return
198 return matvar
199 end function

D.2 functions ch16

1 set echo off
2 # This function computes a t-dist confidence interval based on a statistic
3 function void t_interval (scalar b, scalar se, scalar df, scalar p)
4 scalar alpha = (1-p)
5 scalar lb = b - critical(t,df,alpha/2)*se
6 scalar ub = b + critical(t,df,alpha/2)*se
7 printf "\nThe %2g%% confidence interval centered at %.3f is\
8 (%.4f, %.4f)\n", p*100, b, lb, ub
9 end function

10

11 # This function computes t-dist confidence intervals after a model
12 function matrix t_interval_m (matrix b "Coefficients",
13 matrix v "Variance-covariance matrix",
14 int df "Degrees-of-freedom",
15 scalar p "Coverage probability for CI")
16

17 scalar alpha = (1-p) # Convert p to alpha
18 matrix c = critical(t,df,alpha/2) # alpha/2 critical value
19 matrix se = sqrt(diag(v)) # standard errors
20 matrix lb = b - c*se # lower bound
21 matrix ub = b + c* se # upper bound
22 matrix result = b ˜ se ˜ lb ˜ ub # put into matrix
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23

24 cnameset(result, "Estimate StdErr (Lower, Upper) ")
25 rnameset(result, "b")
26 printf "\nThe %2g%% confidence intervals\
27 (t-distribution)\n%10.4f\n", p*100, result
28 return result
29 end function
30

31 function matrix ame_binary(matrix *b "parameter estimates",
32 list x "Variables list",
33 int dist[1:2:2] "distribution" )
34 # Computes average marginal effects for probit or logit
35 matrix p = lincomb(x, b) # The index function
36 matrix d = (dist==1) ? exp(-p)./(1.+exp(-p)).ˆ2 : dnorm(p)
37 matrix ame_matrix = d*b’
38 cnameset(ame_matrix, x) # add column names
39 matrix amfx = meanc(ame_matrix) # find the means
40 cnameset(amfx, x) # add the column names to amfx
41 printf "\n Average Marginal Effects (AME):\
42 \n Variables: %s\n%12.4g \n", varname(x), amfx
43 return amfx
44 end function
45

46 function matrix ame_cov (matrix b "parameter estimates",
47 matrix covmat "Covariance",
48 list x "Variables list",
49 int dist[1:2:2] "distribution" )
50 # Computes std errs for AME probit/logit
51 # Requires ame_binary
52 matrix amfx = ame_binary(&b, x, dist)
53 matrix jac = fdjac(b, ame_binary(&b, x , dist))
54 matrix variance = qform(jac,covmat)
55 matrix se = sqrt(diag(variance))
56 matrix results = amfx’ ˜ se
57 rnameset(results, "b")
58 cnameset(results, "AME StdErr")
59 if dist == 1
60 printf "Logit:\n"
61 else
62 printf "Probit:\n"
63 endif
64 printf "%10.4f\n", results
65 return amfx|variance
66 end function
67

68 function scalar p_binary(matrix b "parameter estimates",
69 matrix x "Representative Point",
70 int dist[1:2:2] "distribution" )
71 # Computes the probability of a binary choice: 1 = logit
72 scalar p = x*b # The index function
73 scalar d = (dist==1) ? 1./(1.+exp(-p)) : cnorm(p)
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74 return d
75 end function
76

77 function void Probs (matrix b "parameter estimates",
78 matrix covmat "Covariance",
79 matrix x "Representative Point",
80 scalar df "Degrees of Freedom",
81 int dist[1:2:2] "distribution")
82 # Function computes std errors of binary predictions
83 # Requires p_binary
84 scalar p = p_binary(b, x, dist)
85 matrix jac = fdjac(b, p_binary(b, x , dist))
86 matrix variance = qform(jac,covmat)
87 matrix se = sqrt(diag(variance))
88 scalar crit = critical(t,df,0.025)
89 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
90

91 if dist == 1
92 printf "Logit:\n"
93 else
94 printf "Probit:\n"
95 endif
96

97 printf "95%% t(%.2g) confidence interval for probability at\n\
98 x = %8.4f\n", df, x
99 cnameset(results, " Lower ME Upper StdError" )

100 printf "%10.4f\n", results
101 end function
102

103 function scalar me_at(matrix *param "parameter estimates",
104 matrix xx "Representative Point",
105 scalar q "Parameter of interest",
106 int modl[1:2:2] "distribution" )
107 # Marginal effects at a point -- continuous variables only
108 scalar idx = xx*param
109 scalar d = (modl==1)? (exp(-idx)./(1.+exp(-idx)).ˆ2)*param[q] :\
110 dnorm(idx)*param[q]
111 return d
112 end function
113

114 function void MER (matrix *b "parameter estimates",
115 matrix covmat "Covariance",
116 matrix x "Representative Point",
117 int q "Parameter of interest",
118 int df "Degrees of Freedom",
119 int modl[1:2:2] "distribution")
120 # Std errors for Marginal effects at a point -- continuous vars only
121 scalar p = me_at(&b, x, q, modl)
122 matrix jac = fdjac(b, me_at(&b, x , q, modl))
123 matrix variance = qform(jac,covmat)
124 matrix se = sqrt(diag(variance))
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125 scalar crit = critical(t,df,0.025)
126 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
127 if modl == 1
128 printf "Logit:\n"
129 else
130 printf "Probit:\n"
131 endif
132 printf "95%% t(%.2g) confidence interval for b%.g at\n x =\
133 %9.2g \n", df, q, x
134 cnameset(results, " Lower ME Upper StdError" )
135 printf "%10.4f\n", results
136 end function
137

138 function void MER_lpmfx (matrix b "parameter estimates",
139 list XL "list of regressors",
140 matrix covmat "Covariance matrix",
141 matrix x_at "Representative point",
142 int dist[1:2:1] "distribution",
143 int df "degrees-of-freedom")
144 # The MER function to be used with lp-mfx.gfn
145 # available from gretl’s function server
146 matrix me = binary_dp_dx(b, XL, x_at, dist)
147 matrix jac = fdjac(b, binary_dp_dx(b, XL, x_at, dist))
148 matrix variance = qform(jac,covmat)
149 matrix se = sqrt(diag(variance))
150 matrix results = me’ ˜ se
151 if dist == 1
152 printf "Logit:\n"
153 else
154 printf "Probit:\n"
155 endif
156 scalar crit = critical(t,df,0.025)
157 matrix results = (me’-crit*se) ˜ me’ ˜ (me’+crit*se) ˜ se
158 cnameset(results, "Lower ME Upper StdErr")
159 rnameset(results, XL[2:nelem(XL)])
160 cnameset(x_at, XL )
161 printf "Representative Point\n%11.2g\n95%% CI for MER\n%10.4g\n",x_at, results
162 end function
163

164

165 # Poisson ME at point -- continuous variable
166 function scalar p_me_at(matrix b, matrix xx, scalar q)
167 scalar me = exp(xx*b)*b[q]
168 return me
169 end function
170

171 # Poisson ME at point -- indicator variable
172 function scalar p_me_at_d(matrix b, matrix x1, matrix x2)
173 scalar me = exp(x1*b)-exp(x2*b)
174 return me
175 end function
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176

177 function list mlogitprob(series y "Dependent variable",
178 list x "List of regressors",
179 matrix theta "Coefficient vector")
180 # computes probabilites of each choice for all data
181 list probs = null
182 matrix X = { x }
183 scalar j = max(y)
184 scalar k = cols(X)
185 matrix b = mshape(theta,k,j-1)
186 matrix tmp = X*b
187 series den = (1 + sumr(exp(tmp)))
188

189 loop i=1..j --quiet
190 if i == 1
191 series p$i = 1/den
192 else
193 scalar q = i - 1
194 series num = exp(X[q,]*b[,q])
195 series p$i=num/den
196 endif
197 list probs += p$i
198 endloop
199 return probs
200 end function
201

202 function matrix mlogitprob_at(series y "Dependent variable",
203 matrix x "Representative point 1xk",
204 matrix theta "Coefficient vector")
205 # computes probabilites of each choice at a representative point
206 matrix probs = {}
207 scalar j = max(y)
208 scalar k = cols(x)
209 matrix b = mshape(theta,k,j-1)
210 matrix tmp = x*b
211 scalar den = (1 + sumr(exp(tmp)))
212

213 loop i=1..j --quiet
214 if i == 1
215 scalar p$i = 1/den
216 else
217 scalar q = i - 1
218 scalar num = exp(x*b[,q])
219 scalar p$i=num/den
220 endif
221 matrix probs = probs ˜ p$i
222 endloop
223 return probs
224 end function
225

226 function series mlogitlogprobs(series y "Dependent Variable",
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227 matrix X "Independent variables",
228 matrix theta "Parameters")
229 # This function computes the log probabilites for MLE
230 # estimation of MNL
231 scalar n = max(y)
232 scalar k = cols(X)
233 matrix b = mshape(theta,k,n)
234 matrix tmp = X*b
235 series ret = -ln(1 + sumr(exp(tmp)))
236 loop i=1..n --quiet
237 series x = tmp[,i]
238 ret += (y==$i) ? x : 0
239 endloop
240 return ret
241 end function
242

243 function matrix mnl_se_lpfmx (matrix b "parameter estimates",
244 matrix covmat "Covariance of MNL",
245 list XL "list of regressors",
246 matrix x "vector of x-values",
247 int j "1-based index of outcome",
248 int m "number of possible outcomes",
249 int df "degrees of freedom for CI" )
250 # Computes MER and std errors for MNL
251 # must install and use lp-mfx.gfn
252 matrix p = mlogit_dpj_dx(b, XL, x, j, m)
253 matrix jac = fdjac(b, mlogit_dpj_dx(b, XL, x, j, m))
254 matrix variance = qform(jac,covmat)
255 matrix se = sqrt(diag(variance))
256 scalar crit = critical(t,df,0.025)
257 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
258

259 cnameset(results, "Lower ME Upper StdErr")
260 printf "95%% CI for MER\n%10.4f\n", results
261 return results
262 end function
263

264 # Several Functions for conditional logit.
265 # These are NOT general
266 # clprobs --Conditional logit probability scalar
267 # clprobs_mat --Conditional logit probabilities matrix
268 # clprobs_at --marginal effects at a point -> 1x3 vector
269 # cl_me --marginal effects continuous w/std errors
270 # cl_me_d --marginal effects discrete w/std errors
271

272 function scalar clprobs(list y "list of choices",
273 list x "list of independent variables",
274 matrix theta "parameters")
275 # computes the probabilities for Conditional Logit
276 # Used in user written MLE
277 matrix Y = { y }
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278 matrix p = { x }
279 scalar n = $nobs
280 matrix P = {}
281 loop i=1..n --quiet
282 scalar i1 = exp(theta[1]+theta[3]*p[i,1])
283 scalar i2 = exp(theta[2]+theta[3]*p[i,2])
284 scalar i3 = exp(theta[3]*p[i,3])
285 scalar d = i1+i2+i3
286 matrix pp = (Y[i,1]==1)*i1/d +\
287 (Y[i,2]==1)*i2/d +\
288 (Y[i,3]==1)* i3/d
289 matrix P = P | pp
290 endloop
291 return sumc(ln(P))
292 end function
293

294 function matrix clprobs_mat(list x, matrix theta)
295 matrix p = { x }
296 scalar n = $nobs
297 matrix P = {}
298 loop i=1..n --quiet
299 scalar i1 = exp(theta[1]+theta[3]*p[i,1])
300 scalar i2 = exp(theta[2]+theta[3]*p[i,2])
301 scalar i3 = exp(theta[3]*p[i,3])
302 scalar d = i1+i2+i3
303 matrix pp = i1/d ˜ i2/d ˜ i3/d
304 matrix P = P | pp
305 endloop
306 return P
307 end function
308

309 function matrix clprobs_at(matrix x, matrix theta)
310 scalar i1 = exp(theta[1]+theta[3]*x[1])
311 scalar i2 = exp(theta[2]+theta[3]*x[2])
312 scalar i3 = exp(theta[3]*x[3])
313 scalar d = i1+i2+i3
314 matrix pp = i1/d ˜ i2/d ˜ i3/d
315 return pp
316 end function
317

318 function scalar cl_me(matrix *x "vector for the desired point",
319 matrix *theta "parameters",
320 int q "variable index for own price",
321 int p "variable index for other price")
322 # Margial effects for CL model -- continuous case
323 # Function only works for 3 choice beverage model in poe
324 # Inputs: x = point at which to evaluate
325 # theta: Cond Logit MLE
326 # q: own price index
327 # p: other price index
328 # op: 1 if own price, 0 otherwise
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329 matrix mm = clprobs_at(x, theta)
330 if p == q
331 scalar me = mm[q]*(1-mm[q])*theta[3] # own price pepsi
332 else
333 scalar me = -mm[p]*mm[q]*theta[3] # cross price 7up
334 endif
335 return me
336 end function
337

338 function matrix cl_me_d(matrix *x1,
339 matrix *x2,
340 matrix *theta)
341 # Margial effects for CL model -- discrete case
342 matrix mm = clprobs_at(x1, theta)
343 matrix m2 = clprobs_at(x2, theta)
344 mat = m2-mm
345 return mat
346 end function
347

348 function matrix op_se_lpfmx (matrix b "parameter estimates",
349 matrix covmat "Covariance of MNL",
350 list XL "list of regressors",
351 matrix x "vector of x-values",
352 int j "1-based index of outcome",
353 int m "number of possible outcomes",
354 int df "degrees of freedom for CI",
355 int dist[1:2:1] "distribution" )
356 # Computes marginal effects and std errors for ordered probit/logit
357 # must install and use lp-mfx.gfn
358 matrix p = ordered_dpj_dx(b, XL, x, j, m, dist)
359 matrix jac = fdjac(b, ordered_dpj_dx(b, XL, x, j, m, dist))
360 matrix variance = qform(jac,covmat)
361 matrix se = sqrt(diag(variance))
362 scalar crit = critical(t,df,0.025)
363 matrix results = (p-crit*se) ˜ p ˜ (p+crit*se) ˜ se
364

365 cnameset(results, "Lower ME Upper StdErr")
366 printf "95%% CI for MER\n%10.4f\n", results
367 return results
368 end function
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Appendix E

Using R with gretl

Another feature of gretl that makes it extremely powerful is its ability to work with another
free program called R. R is actually a programming language for which many statistical procedures
have been written. Although gretl is powerful, there are still many things that it won’t do, at least
without some additional programming. The ability to export gretl data into R makes it possible
to do some sophisticated analysis with relative ease.

Quoting from the R web site

R is a system for statistical computation and graphics. It consists of a language plus
a run-time environment with graphics, a debugger, access to certain system functions,
and the ability to run programs stored in script files.

The design of R has been heavily influenced by two existing languages: Becker, Cham-
bers & Wilks’ S and Sussman’s Scheme. Whereas the resulting language is very simi-
lar in appearance to S, the underlying implementation and semantics are derived from
Scheme.

The core of R is an interpreted computer language which allows branching and looping
as well as modular programming using functions. Most of the user-visible functions
in R are written in R. It is possible for the user to interface to procedures written
in the C, C++, or FORTRAN languages for efficiency. The R distribution contains
functionality for a large number of statistical procedures. Among these are: linear and
generalized linear models, nonlinear regression models, time series analysis, classical
parametric and nonparametric tests, clustering and smoothing. There is also a large set
of functions which provide a flexible graphical environment for creating various kinds
of data presentations. Additional modules (add-on packages) are available for a variety
of specific purposes (see R Add-On Packages).

R was initially written by Ross Ihaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. In addition, a large
group of individuals has contributed to R by sending code and bug reports.
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Since mid-1997 there has been a core group (the R Core Team) who can modify the R
source code archive. The group currently consists of Doug Bates, John Chambers, Peter
Dalgaard, Seth Falcon, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka,
Friedrich Leisch, Uwe Ligges, Thomas Lumley, Martin Maechler, Duncan Murdoch,
Paul Murrell, Martyn Plummer, Brian Ripley, Deepayan Sarkar, Duncan Temple Lang,
Luke Tierney, and Simon Urbanek.

R has a home page at http://www.R-project.org/. It is free software distributed
under a GNU-style copyleft, and an official part of the GNU project (GNU S).

R can be downloaded from http://www.r-project.org/, which is referred to as CRAN
or the comprehensive R archive network. To install R, you’ll need to download it and follow the
instructions given at the CRAN web site. Also, there is an appendix in the gretl manual about
using R that you may find useful. The remainder of this brief appendix assumes that you have R
installed and linked to gretl through the programs tab in the File>Preferences>General pull
down menu. Make sure that the ‘Command to launch GNR R’ box points to the RGui.exe file
associated with your installation of R.

Constantin Colonescu had written a guide to using R for POE5. It is available in paperback on
Amazon.com.

E.1 Ways to Use R in gretl

The standard method of working with R is by writing scripts, or by typing commands at the
R prompt, much in the same way as one would write gretl scripts or work with the gretl console.
This section is a gentle introduction to using R in general with a few tips on using it with gretl.
As you will see, there are several ways in which to use R in gretl. For a more comprehensive guide,
see (Cottrell and Lucchetti, 2018, Chapter 39).

E.1.1 Using the foreign command

A foreign block can be used to execute R routines from within gretl and to pass results to
gretl for further processing. A foreign block has the basic structure:

Basic foreign block for R
1 foreign language=R --send-data --quiet
2 [ R code to create a matrix called ’Rmatrix’ ]
3 gretl.export(Rmatrix)
4 end foreign
5

6 matrix m = mread("@dotdir/Rmatrix.mat")
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The foreign command uses the language=R to open R and to ready it for further computing
outside of gretl. The --send-data option sends the current gretl data set to R. The --quiet
option prevents the output from R from being echoed in the gretl output. The block is closed and
R exited with the end foreign command. What appears in between are statements coded in R.
The last statement, gretl.export(Rmatrix), is used to export a matrix computation that I
have called ‘Rmatrix’ to gretl. R attaches a .mat suffix to Rmatrix automatically. The matrix is
written to the gretl working directory on your harddrive. To read the matrix and ready it for further
processing, use the mread command (matrix read). The mread("@dotdir/Rmatrix.mat")
tells gretl to look in the working directory (@dotdir)for Rmatrix.mat.

This achieves the same effect as submitting the enclosed R commands via the GUI in the
noninteractive mode (see section 30.3 of the Gretl Users Guide). In other words, it allows you to
use R commands from within gretl . Of course, you have to have installed R separately, but this
greatly expands what can be done using gretl.

E.1.2 Opening an R session

To illustrate, open the cola.gdt data in gretl.

open "@workdir\data\cola.gdt"

Now, select Tools>start GNU R from the pull-down menu. The current gretl data set, in this
case cola.gdt, will be transported into R’s required format. You’ll see the R console which is shown
in Figure E.1. The message in R tells you that the data are loaded into an R data frame called
gretldata. You can now use R with the data loaded from gretl. Gretl’s data import features
are very good and it makes an excellent front-end for getting data into R.

E.1.3 R Script from gretl

1Opening an R window and keying in commands is a convenient method when the job is small.
In some cases, however, it would be preferable to have R execute a script prepared in advance.
One way to do this is via the source() command in R. Alternatively, gretl offers the facility to
edit an R script and run it, having the current dataset pre-loaded automatically. This feature can
be accessed via the File>Script Files>New script>R script menu entry. By selecting User
file, one can load a pre-existing R script.

Figure E.2

1This is taken almost directly from the gretl Users Guide, chapter 30
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Figure E.1: The R console when called from gretl. Choose Tools>Start GNU R from the main
gretl window.

In either case, you are presented with a window very similar to the editor window used for
ordinary gretl scripts, as in Figure E.2.

There are two main differences. First, you get syntax highlighting for Rs syntax instead of
gretl’s. Second, clicking on the Execute button (the gears icon), launches an instance of R in
which your commands are executed. Before R is actually run, you are asked if you want to run R
interactively or not in this dialog box:

An interactive run opens an R instance similar to the one seen in the previous section: your
data will be pre-loaded (if the pre-load data box is checked) and your commands will be executed.
Once this is done, you will find yourself in R and at the R prompt. From here you can enter more
R commands.
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Figure E.2: Using R from the R script editor in gretl.

A non-interactive run, on the other hand, will execute your script, collect the output from R
and present it to you in an output window; R will be run in the background. This was the approach
taken in the canonical correlation analysis from chapter 10, since we did not have further use for
R and the results were being passed back to gretl.

E.2 A few basic commands and conventions

The first thing I usually do is to change the name to something less generic, e.g., cola, using

> cola <-gretldata

You can also load the current gretl data into R manually as shown below. To load the data in
properly, you have to locate the Rdata.tmp file that gretl creates when you launch R from the
GUI. Mine was cleverly hidden in C:/Users/leead/AppData/Roaming/gretl/Rdata.tmp.
Once found, use the read.table command in R as shown. The system you are using (Windows
in my case) dictate whether the slashes are forward or backward. Also, I read the data in as cola
rather than the generic gretldata to make things easier later. R.
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> cola <- read.table("C:/Users/leead/AppData/Roaming/gretl/Rdata.tmp",
+ header = TRUE )

The addition of Header = TRUE to the code that gretl writes for you ensures that the variable
names, which are included on the first row of the Rdata.tmp, get read into R properly. Then, to
run the regression in R.

R code to estimate a linear model and print results
1 fitols <- lm(price˜feature+display,data=cola)
2 summary(fitols)
3 anova(fitols)

The fitols <- lm(price feature+display,data=cola) command estimates a linear re-
gression model with price as the dependent variable. The results are stored into memory under the
name fitols. The variables feature and display are included as regressors. R automatically
includes an intercept. To print the results to the screen, you have to use the summary(fitols)
command. Before going further, let me comment on this terse piece of computer code. First, in R

Figure E.3: The fitols <- lm(price feature+display,data=cola) command estimates
a linear regression model with price as the dependent variable. The variables feature and
display are included as regressors.

the symbol <- is used as the assignment operator2; it assigns whatever is on the right hand side
(lm(y∼x,data=gretldata)) to the name you specify on the left (fitols). It can be reversed
-> if you want to call the object to its right what is computed on its left.

2You can also use =, but it only assigns in one direction–right is assigned to left.
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The lm command stands for ‘linear model’ and in this example it contains two arguments
within the parentheses. The first is your simple regression model. The dependent variable is price
and the independent variables feature, display, and a constant. The dependent variable and
independent variables are separated by the symbol which substitutes in this case for an equals
sign. The independent variables are separated by plus signs (+). In a linear model the meaning of
this is unambiguous. The other argument points to the data set that contains these two variables.
This data set, pulled into R from gretl, is by default called gretldata. We changed the name to
cola above and that is what we refer to here. There are other options for the lm command, and
you can consult the substantial pdf manual to learn about them. In any event, you’ll notice that
when you enter this line and press the return key (which executes this line) R responds by issuing
a command prompt, and no results! R does not bother to print results unless you ask for them.
This is handier than you might think, since most programs produce a lot more output than you
actually want and must be coerced into printing less. The last line asks R to print the ANOVA
table to the screen. This gives the result in Figure E.4. It’s that simple!

Figure E.4: The anova(olsfit) command asks R to print the anova table for the regression
results stored in olsfit.

To do multiple regression in R, you can also put each of your independent variables (other
than the intercept) into a matrix and use the matrix as the independent variable. A matrix is
a rectangular array (which means it contains numbers arranged in rows and columns). You can
think of a matrix as the rows and columns of numbers that appear in a spreadsheet program
like MS Excel. Each row contains an observation on each of your independent variables; each
column contains all of the observations on a particular variable. For instance suppose you have
two variables, x1 and x2, each having 5 observations. These can be combined horizontally into the
matrix, X. Computer programmers sometimes refer to this operation as horizontal concatenation.
Concatenation essentially means that you connect or link objects in a series or chain; to concatenate
horizontally means that you are binding one or more columns of numbers together.

The function in R that binds columns of numbers together is cbind. So, to horizontally
concatenate x1 and x2 use the command

X <- cbind(x1,x2)
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which takes

x1 =


2
1
5
2
7

 , x2 =


4
2
1
3
1

 , and yieldsX =


2 4
1 2
5 1
2 3
7 1

 .

Then the regression is estimated using

fitols <- lm(y˜X)

There is one more thing to mention about R that is very important and this example illustrates it
vividly. R is case sensitive. That means that two objects x and X can mean two totally different
things to R. Consequently, you have to be careful when defining and calling objects in R to get to
distinguish lower from upper case letters.

E.3 Packages

The following is section is taken with very minor changes from Venables et al. (2006).

All R functions and datasets are stored in packages. Only when a package is loaded are its
contents available. This is done both for efficiency (the full list would take more memory and would
take longer to search than a subset), and to aid package developers, who are protected from name
clashes with other code. The process of developing packages is described in section Creating R
packages in Writing R Extensions. Here, we will describe them from a users point of view. To see
which packages are installed at your site, issue the command library() with no arguments. To
load a particular package (e.g., the MCMCpack package containing functions for estimating models
in Chapter 16

> library(MCMCpack)

If you are connected to the Internet you can use the

install.packages() and update.packages()

functions (both available through the Packages menu in the Windows GUI). To see which packages
are currently loaded, use
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> search()

to display the search list.

To see a list of all available help topics in an installed package, use

> help.start()

to start the HTML help system, and then navigate to the package listing in the Reference section.

E.4 Stata Datasets

With R you can read in datasets in many different formats. Your textbook includes a dataset
written in Stata’s format and R can both read and write to this format. To read and write Stata’s
.dta files, you’ll have to load the foreign package using the library command:

1 library(foreign)
2 nels <- read.dta("c:/temp/nels_small.dta")
3 pse <- nels$psechoice
4 attach(nels)

Line 2 reads the Stata dataset using the read.dta command directly into R. It is placed into
an object called nels. Be sure to point it toward the appropriate directory and file. There are
two things to note, though. First, the slashes in the filename are backwards from the Windows
convention. Second, you need to point to the file in your directory structure and enclose the
path/filename in double quotes. R looks for the the file where you’ve directed it and, provided it
finds it, reads it into memory. It places the variable names from Stata into the object. Then, to
retrieve a variable from the object you create the statement in line 3. Now, you have created a new
object called pse that contains the variable retrieved from the nels object called psechoice.
This seems awkward at first, but believe it or not, it becomes pretty intuitive after a short time.

The command attach(nels) will take each of the columns of nels and allow you to refer
to it by its variable name. So, instead of referring to nels$psechoice you can directly ask for
psechoice without using the nels$ prefix. For complex programs, using attach() may lead
to unexpected results. If in doubt, it is probably a good idea to forgo this option. If you do decide
to use it, you can later undo it using detach(nels).
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E.5 Using R for Qualitative Choice Models

R is a programming language that can be very useful for estimating sophisticated econometric
models. In fact, many statistical procedures have been written for R. Although gretl is very
powerful, there are still many things that it won’t do out of the box. The ability to export gretl
data into R makes it possible to very fancy econometrics without having to program from scratch.
The proliferation of new procedures in R comes as some cost though. Although the packages that
are published at CRAN (http://cran.r-project.org/) have met certain standards, there is
no assurance that any of them do what they intend correctly.

To use any of the R packages, you’ll need a copy of R, internet access, and the ability to install
these to a local drive. A package is just a collection of programs and documentation written in R
that make it easier to use for specific tasks. In the appendix D we use a package to read in data
saved in Stata’s format and below another to estimate qualitative choice models using a Bayesian
approach.

The R software package that is used to estimate qualitative choice models is called MCMC-
pack. MCMCpack stands for Markov Chain Monte Carlo package and it can be used to estimate
every qualitative choice model in this chapter. We will just use it to estimate multinomial logit,
conditional logit, and ordered probit. So, let’s take a quick look at MCMCpack and what it does.

The Markov chain Monte Carlo (MCMC) methods are basic numerical tools that are often
used to compute Bayesian estimators. In Bayesian analysis one combines what one already knows
(called the prior) with what is observed through the sample (the likelihood function) to estimate
the parameters of a model. The information available from the sample information is contained in
the likelihood function; this is the same likelihood function discussed in your book. If we tell the
Bayesian estimator that everything we know is contained in the sample, then the two estimators
are essentially the same. That is what happens with MCMCpack under its defaults.

The biggest difference is in how the two estimators are computed. The MLE is computed
using numerical optimization of the likelihood function, whereas MCMCpack uses simulation to
accomplish virtually the same thing. See Lancaster (2004) or Koop (2003) for an introduction to
Bayesian methods and its relationship to maximum likelihood.

The MCMC creates a series of estimates–called a (Markov) chain–and that series of estimates has
an empirical probability distribution. Under the proper circumstances the probability distribution
of the chain will mimic that of the MLE. Various features of the chain can be used as estimates. For
instance, the sample mean is used by MCMCpack to estimate the parameters of the multinomial
logit model. MCMCpack uses variation within the chain to compute the MLE variance covariance
matrix, which is produced using the summary command.

One piece of information that you must give to MCMCpack is the desired length of your
Markov chain. In the examples here, I chose 20,000, which is the number used in the sample
programs included in MCMCpack. Longer chains tend to be more accurate, but take longer to
compute. This number gets us pretty close to the MLEs produced by gretl and by Stata.
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E.5.1 Multinomial Logit

Open the nels small.gdt data set and then open a new R script. The latter is done using
File>Script files>New script>R script. This opens a window called edit R commandsIn
the box, type in the following program The program code to estimate the multinomial logit example
is shown below:

1 nels <- gretldata
2 library(MCMCpack)
3 posterior <- MCMCmnl(nels$psechoice ˜ nels$grades, mcmc=20000)
4 summary(posterior)

The first line converts the data contained in gretldata, which is what gretl loads into R by
default, to nels. Then load the MCMCpack using the library command. A warning is in order.
If you have not installed MCMCpack, then this will cause gretl to crash. Be sure to save anything
of importance in gretl before trying this.

The next line calls the multinomial logit estimator (MCMCmnl). The first argument of MCMCmnl
is the dependent variable nels$psechoice, followed by a ∼, and then the independent variable
nels$grades. The last argument tells R how many simulated values to compute, in this case
20,000. The results of the simulation are stored in the object called posterior. Posterior is the
name given in the Bayesian literature to the probability distribution of the estimates. The mean
or median of this distribution is used as a point estimate (vis-a-vis the MLE). The last line of the
program requests the summary statistics from the Markov chain. The results appear in Figure E.5
In the MNL model, the estimates from MCMCpack are a little different from those produced by

Figure E.5: Multinomial logit results from the MCMCmnl estimator in R

gretl, but they are reasonably close. The quantiles are useful for several reasons. As you can see,
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the median is actually closer to the MLE than the mean of the posterior distribution. Also, 95%
confidence sets can be gleaned from the 2.5% and 97.5% quantiles.

E.5.2 Conditional Logit

In this example I’ll show you how to use MCMCpack in R to estimate the conditional logit
model.

The first order of business is to get the data into a format that suits R. This part is not too
pretty, but it works. The data are read into gretl from the cola.gdt data. Launching R from within
gretl transfers the data into R, where it is referred to as gretldata. It is renamed cola and
then attach(cola) is used to make referencing the variables easier to do. The attach(cola)
statement is not necessary, but including it will enable you to call each of the variables in the
object cola by name. For example, cola$price refers to the variable named price in the
object named cola. Once cola is attached, cola$price can be referred to simply as price.

The data in the original cola.gdt dataset are arranged

> cola[1:12,]
id choice price feature display

1 1 0 1.79 0 0
2 1 0 1.79 0 0
3 1 1 1.79 0 0
4 2 0 1.79 0 0
5 2 0 1.79 0 0
6 2 1 0.89 1 1
7 3 0 1.41 0 0
8 3 0 0.84 0 1
9 3 1 0.89 1 0
10 4 0 1.79 0 0
11 4 0 1.79 0 0
12 4 1 1.33 1 0

The MCMCpack routine in R wants to see it as

id bev.choice pepsi.price sevenup.price coke.price
1 3 1.79 1.79 1.79
2 3 1.79 1.79 0.89
3 3 1.41 0.84 0.89
4 3 1.79 1.79 1.33

where each line represents an individual, recording his choice of beverage and each of the three
prices he faces. The goal then is to reorganize the original dataset so that the relevant information
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for each individual, which is contained in 3 lines, is condensed into a single row. To simplify the
example, I dropped the variables not being used.

Most of the program below is devoted to getting the data into the proper format. The line

pepsi.price <- price[seq(1,nrow(cola),by=3)]

creates an object called pepsi.price. The new object consists of every third observation in
price, starting with observation 1. The square brackets [ ] are used to take advantage of R’s
powerful indexing ability. The function seq(1,nrow(cola),by=3) creates a seqence of numbers
that start at 1, increment by 3, and extends until the last row of cola i.e., [1 3 6 9 . . . 5466]. When
used inside the square brackets, these numbers constitute an index of the object’s elements that
you want to grab. In this case the object is price. The sevenup.price and coke.price lines
do the same thing, except their sequences start at 2 and 3, respectively.

The next task is to recode the alternatives to a single variable that takes the value of 1, 2 or 3
depending on a person’s choice. For this I used the same technique.

1 pepsi <- choice[seq(1,nrow(cola),by=3)]
2 sevenup <- 2*choice[seq(2,nrow(cola),by=3)]
3 coke <- 3*choice[seq(3,nrow(cola),by=3)]

The first variable, pepsi, takes every third observation of choice starting at the first row. The
variable will contain a one if the person chooses Pepsi and a zero otherwise since this is how the
variable choice is coded in the data file. The next variable for Seven-Up starts at 2 and the
sequence again increments by 3. Since Seven-Up codes as a 2 the ones and zeros generated by the
sequence get multiplied by 2 (to become 2 or 0). Coke is coded as a 3 and its sequence of ones and
zeros is multiplied by 3. The three variables are combined into a new one called bev.choice that
takes the value of 1,2, or 3 depending on a person’s choice of Pepsi, Seven-Up, or Coke.

Once the data are arranged, load the MCMCpack library and use MCMCmnl to estimate the
model. The conditional logit model uses choice specific variables. For MCMCmnl these choice-specific
covariates have to be entered using a special syntax: choicevar(cvar,"var","choice")
where cvar is the name of a variable in data, var is the name of the new variable to be created,
and choice is the level of bev.choice that cvar corresponds to.

1 cola <- gretldata
2 cola[1:12,]
3

4 attach(cola)
5 pepsi.price <- price[seq(1,nrow(cola),by=3)]
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6 sevenup.price <- price[seq(2,nrow(cola),by=3)]
7 coke.price <- price[seq(3,nrow(cola),by=3)]
8

9 pepsi <- choice[seq(1,nrow(cola),by=3)]
10 sevenup <- 2*choice[seq(2,nrow(cola),by=3)]
11 coke <- 3*choice[seq(3,nrow(cola),by=3)]
12

13 bev.choice <- pepsi + sevenup + coke
14

15 posterior <- MCMCmnl(bev.choice ˜
16 choicevar(coke.price, "cokeprice", "3") +
17 choicevar(pepsi.price, "cokeprice", "1") +
18 choicevar(sevenup.price, "cokeprice", "2"),
19 mcmc=20000, baseline="3")
20 summary(posterior)

In this example, we specified that we want to normalize the conditional logit on the coke choice;
this is done using the baseline="3" option in MCMCmnl.

The results appear in Figure E.6.

Figure E.6: Conditional logit results from the MCMCoprobit estimator in R
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E.5.3 Ordered Probit

MCMCpack can also be used to estimate the ordered probit model. It is very easy and the
results you get using the Markov chain Monte Carlo simulation method are very similar to those
from maximizing the likelihood. In principle the maximum likelihood and the simulation estimator
used by MCMCpack are asymptotically equivalent.3 The difference between MCMCpack and
Stata’s MLE results occurs because the sample sizes for the datasets used is small.

nels <- gretldata
attach(nels)

library(MCMCpack)
posterior <- MCMCoprobit(psechoice ˜ grades, mcmc=20000)
summary(posterior)

The first line converts the generic gretldata data frame that is loaded when you launch R from
within gretl. The second line creates the data object called nels. The attach(nels) statement
allows you to refer to the variables in nels data frame directly by their names.

The next line loads MCMCpack into R. Then the ordered probit estimator (MCMCoprobit)
is called. The first argument of MCMCoprobit is the dependent variable psechoice, followed by
a ∼, and then the independent variable grades. The last argument tells R how many simulated
values to compute, in this case 20,000. The results of the simulation are stored in the object called
posterior. The mean or median of this distribution is used as your point estimate (vis-a-vis the
MLE). The last line of the program requests the summary statistics from the simulated values of
the parameters. The results appear in Figure E.7. One important difference between MCMCpack
and the MLE is in how the results are reported. The model as specified in your textbook contains
no intercept and 2 thresholds. To include a separate intercept would cause the model to be perfectly
collinear. In MCMCpack, the default model includes an intercept and hence can contain only
one threshold.

The ‘slope’ coefficient β, which is highlighted in Figure E.7, is virtually the same as that we
obtained using the MLE in gretl. The other results are also similar and are interpreted like the
ones produced in gretl. The intercept in MCMCpack is equal to −µ1. The second cut-off in
POE5 ’s no-intercept model is µ2 = −(Intercept − γ2), where γ2 is the single threshold in the
MCMCpack specification.

The standard errors are comparable and you can see that they are equivalent to 3 or 4 decimal
places to those from the MLE.

3Of course, if you decide to use more information in your prior then they can be substantially different.
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Figure E.7: Ordered probit results from the MCMCoprobit estimator in R

E.6 Final Thoughts

A very brief, but useful document can be found at http://cran.r-project.org/doc/
contrib/Farnsworth-EconometricsInR.pdf (Farnsworth, 2008). This is a guide written
by Grant Farnsworth about using R in econometrics. He gives some alternatives to using MCMCpack
for the models discussed in Chapter 16. Also, see Constantin Colonescu’s companion manual for
POE5, which is available from Amazon.com.
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
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a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
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are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

715



If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
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G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
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of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if

718



the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of the same material does not give you
any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiau-
thor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . .
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.
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\, 14
gnuplot

literal, 415
dataset dsortby, 281
\n, 38
+=, 581
--byobs, 62
--graph-name=, 475
--quiet, 28
--robust, 292
--test-only, 176
--vcv, 29, 71, 133
--wald, 176
-o, 232
&&, 63
adf, 420

--gls, 425
ar1, 330

--pwe, 330
arima, 331
ar, 330
cdemean, 374
cdf, 651
chow, 240

--dummy, 240
cnameset, 199
cnorm, 547, 615
coint2, 430
coint, 431

--skip-df, 431
--test-down, 431

const, 26
corrgm, 309
corr, 84, 195, 206
critical, 55, 58
cum, 323
dataset addobs, 311
dataset sortby, 281

diff, 319, 407, 448
discrete, 230
dnorm, 547, 549, 615
dotdir, 7, 43
dummify, 247, 508
eigsolve, 374
eval, 262, 672
exit, 4
fcast, 311
fdjac, 149, 552
filter, 323, 335
foreach, 30
function, 59
garch, 485
genr, 17

dummy, 18, 452
time, 18, 452
unitdum, 18, 452

graphpg show, 110
graphpg

add, 108
gretlcli, 4
gretldir, 7
hausman,hausman

--matrix-diff, 526
heckit, 616

--two-step, 616
invcdf, 664
kdensity, 677
kpss, 426
lincomb, 551
listname.$i, 30
list, 393
logit

--multinomial, 578
logs, 89, 189
loop, 30

see loop 30
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matrix, 17
meanc, 551
mle, 489, 586

conditional logit, 590
MGARCH, 495
multinomial logit, 587

modelsel, 199
modeltab, 193
modtest, 95

--autocorr, 452, 457
--breusch-pagan, 283
--normality, 95
--white, 285

nlconfint, 160
nls, 329

params, 329
nlwaldtest, 160
normal(), 32
normtest

--all, 95
--jbera, 94

nulldata, 117
ols, 26
omit, 181

--chi-square, 181
--test-only, 181
syntax, 182

panel
--between, 528
--fixed-effects, 514
--random-effects, 523
--robust, 516

plot, 21, 260
printf, 37
psum,pshrink, 523
pvalue, 175, 664
qform, 150, 553
quantile, 583
rename, 582
reset, 201
restrict, 177, 569, 572

–full, 209
rfunc, 188
syntax, 180

rfunc, 188

scalar, 17
scatters, 407, 448
series, 17
set garch vcv, 485
set hac kernel, 325
setinfo, 23, 106, 267, 407

--description, 106
--graph-name, 106
-d, 24, 407
-n, 24, 407

setobs, 304
--special-time-series, 418
--time-series, 448

set
force hc, 325
hac kernel, 325
hac lag, 325

smpl,
texttt–permanent279, 413

--by, 246
--contiguous, 413
--full, 413
--restrict, 113, 248, 364

square, 142, 175
summary, 206, 649, 659

--simple, 413
tobit, 609
tsls, 362

--liml, 400
unitdum, 512
values, 523
varlist, 13
var, 465

--impulse-responses, 467
--lagselect, 465
--variance-decomp, 467

vif, 208
wls, 270
workdir, 7, 43
test-only—hyperpage, 181

t interval m, 543

accessors, 57, 461
$coeff, 28
$df, 82

725



$ess, 82
$h, 486
$mnlprobs, 582
$nobs, 82
$stderr, 57
$trsq, 282
$uhat, 92
$vcv, 71
$yhat, 91

add labels and descriptions to variables, 407
add logs of selected variables, 189
add variables, 88
adjusted R2, 132, 196
AIC, 197
AME

probit, 551
see average marginal effect, 549

ANOVA, 82, 131
AR(1), 330
ARCH, 478
augmented Dickey-Fuller, 419
autocorrelation, 308
average marginal effect, 549

bandwidth, 325
Bayesian Analysis, 706
between estimator, 527
BIC, 466
binary choice model, 541
Breusch-Pagan test for random effects, 522
bundle, 558

canonical correlations, 374
case sensitive, 10
censored sample, 608
central limit theorem, 662
Chow test, 240
Cochrane-Orcutt, 330
cointegration, 429
collinearity, 208
command line interface, 3
command reference, 11
conditional assignment operator, 41, 231, 289,

617
conditional logit, 589
confidence interval, 133, 665

console, 5, 10
constraint matrix, 188
continuation command, 14, 24
correlation, 84, 195
correlogram, 308
count data, 602
count loop, 32
Cragg-Donald F, 373
critical values, 56

data
exporting, 9
importing, 7, 8
open, 7

database server, 9, 502
dataset structure, 303, 502
dataset wizard, 304
dates, 303
delay multiplier, 320
delta method, 146, 148, 149, 552, 553, 560
DF-GLS test, 424
DFBETA, 97
DFFITS, 97
difference estimator, 246
difference in difference, 253
drop observations using wls, 289
dummy variable, 228

edit attributes, 23
elasticity, 28
endogenous regressor, 358
Engle-Granger test, 430, 463
error correction model, 432

feasible generalized least squares, 330
first difference Jacobian, 149, 552
fixed effects, 247, 505

one-way, 505
two-way, 505

forecast error variance decompositions, 467
foreign block, 698
format commands, 38
function, 59, 685

BP test, 283
G, 149
Hausman, 381
LIML, 401

726



MER lpmfx, 560
MER, 555
Probs, 561
ame binary, 550
ame cov, 564
cc (canonical correlations), 374
clprobs at, 593
clprobs me d, 597
clprobs me, 595
clprobs, 590
delete 1 variance, 101
gim filter, 495
h t, 100
in sample fcast error, 114
me at, 554
mlogitlogprobs, 587
mlogitprob at, 582
mlogitprob, 580
mnl se lpfmx, 585
modelsel np, 313
modelsel, 198
op se lpfmx, 601
p binary, 560
p me at d, 606
p me at, 606
rmse, 203
t interval m, 543
t interval, 60

function package server, 159, 541, 557
function reference, 12
functional form

linear-log, 89
log-linear, 34, 110, 111
log-log, 117

GARCH, 478
garch variance

$h accessor, 486
garch-in-mean, 494
generalized R2, 112
generating variables, 17
gnuplot

launch wgnuplot, 20
from the console, 20
scripts, 21

gnuplot, 18, 306

graph data, 25
Graph Page, 108
graphs

multiple time-series, 306
time-series, 306

growth model, 110

HAC standard errors, 324, 465
panel, 515

hansl, 10, 41
Hausman test, 371, 391, 524

regression method, 524
heatmap, 195
Heckit, 613, 616
Heckman’s two-step estimator, 613
help icon, 14
heteroskedasticity, 91, 92, 259

Breusch-Pagan test, 282
detection of, 265
Goldfeld-Quandt test, 278
linear probability, 287
multiplicative model, 272
White’s test, 285

heteroskedasticity robust standard errors, 263
Hildreth-Lu, 330
horizontal concatenation, 703
HQC, 466

ID #, 27
impact multiplier, 320
impulse response functions, 467
independently and identically distributed, iid, 22
index function, 545
Influential observation, 97
information criteria, 197
instrument, 358
instrumental variables estimator, 358, 360, 390
integrated series, I(1), 430
interaction, 141
interim multiplier, 320
intersection, 63
inverse Mill’s ratio, 613
inversion method, 654
irrelevant variables, 191

Jacobian, 147, 149, 552
Jarque-Bera, 93
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k -class estimator, 399
kernel, 325
KPSS, 426
kurtosis, 94, 662

lag operator, 420
Lagrange multiplier,score, 675
latent variable, 612
LATEX, 85, 87
least squares dummy variable estimator, 512
leptokurtosis, 476
leverage, 97
likelihood ratio test, 571
LIML, 399

Fuller’s modified method, 402
line continuation command, 38
linear congruential generator, 655
Linear Probability Model, 541
linear probability model, 244, 249, 287, 288, 549
list, 30, 248
loess, 268
log-linear model, 34, 89, 110, 111
log-log model, 117
logistic distribution, 562
logit model, 562
loop

--progressive, 30, 32, 61
--quiet, 32, 61
count, 32
foreach, 61
for, 494
print, 32, 42
progressive, 42
store, 32

marginal effect, 142
at the means, 549
probit, 548
tobit, 610

marginal effects
confidence intervals, 552
multinomial logit, 582
ordered probit, 600
poisson regression, 605
standard errors, 552

Markov chain Monte Carlo, 706

maximum likelihood, 489, 706
menu bar, 5
MGARCH, 494
misspecified model, 88
model selection, 195, 197
model table, 193
Monte Carlo, 5, 31, 381
multinomial logit, 578

probabilities, 579
multiple regression, 127
multiplicative heteroskedasticity, 272
multiplier analysis, 320

natural experiments, 250
new line, \n, 38
Newey-West standard errors, 324
Nonlinear least squares, 214
nonlinear least squares, 327, 433
normalization, 589

open data, 23
ordered logit, 579
ordered probit, 598
overall F -statistic, 179
overidentification, 371, 372

p-value finder, 650
package

waldTest, 159
panel, 504
panel data, 502
partial correlation, 370
partial correlations, 369
Plot controls dialog, 105
plots

gnuplot , 20
distribution, 652
types, 20

pointer, 551
pointers, 150, 551
poisson regression, 602
pooled least squares, 515
Prais-Winsten, 330
prediction interval, 113
print format, 37
probit

AME, 550
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predictions, 567
probit model, 545
pseudo-random numbers, 654

QML,quasi-maximum likelihood, 550
qualitative choice models, 540
quantiles, 583

R, 706
MCMCmnl, 707
MCMCoprobit, 711
MCMCpack, 706, 709, 711

conditional logit, 708
multinomial logit, 707
ordered probit, 711

attach, 705
cbind, 703
foreign, 705
lm, 702
read.dta, 705
summary(), 702
assignment operator, 702
packages, 704
Stata datasets, 705

R2, 82, 132
adjusted, 132
generalized, 112

random effects, 518
reduced form equations, 389
reference group, 235
relevant variables, 191
RESET, 200
residual plots, 91
restrictions, 177
robust covariance

panel, 515

sample-selection bias, 613
Sargan test, 372
SC, 197
scatter plot, 418
script, 3
script editor, 13
seed, 32
selection bias, 612
selectivity bias, 613
serial correlation, see autocorrelation

session, 15
session window, 15
significance test, 135
simple linear regression, 22
simultaneous equations, 388
skewness, 94, 662
spurious, 418
standard error, 133
standard error of the regression, 29
Stata, 8, 303
stationarity, 406
studentized residual, 97
summary statistics, 28, 649

ternary operator, 41
testing down, 421, 450
testing up, 451
tests

F -statistic, 175
add, 176
omit, 176
augmented Dickey-Fuller, 419, 424
Breusch-Pagan for random effects, 522
Cragg-Donald F, 373
DF-GLS, 424
Dickey-Fuller, 419
Engle-Granger, 430, 463
Hausman, 371, 391, 524
Johansen, 430
KPSS, 426
likelihood ratio, 571
normality, 93
Sargan, 372
Wald, 176, 292
weak instruments, 367

time, 303
time-series plots, 418
tobit regression, 608
toolbar, 11
total multiplier, 320
treatment effects, 246
trends

deterministic, 414
stochastic, 413

two-stage least squares, 358, 360, 390
two-tailed test, 669
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VAR
lag selection, 467

variable attributes
--graph-name=, 475

variable list, 248
variance inflation factor, 208
variance-covariance matrix, 29, 70, 132

--vcv, 71, 133
VECM, 447
vector error correction model, 447
volatility, 486

waldTest, 159
weak instruments, 367

consequences, 375
weighted least squares, 270
wildcard *, 666
working directory, 43
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