Using gretl for Principles of Econometrics, 5th Edition
Version 1.0

Lee C. Adkins
Professor of Economics
Oklahoma State University

August 26, 2018

Visit http://www.LearnEconometrics.com/gretl.html for the latest version of this book.

http://www.LearnEconometrics.com/gretl.html

License

Copyright (©2018 Lee C. Adkins. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Preface to 4th edition

The previous edition of this manual was about using the software package called gretl to do
various econometric tasks required in a typical two course undergraduate or masters level econo-
metrics sequence. This version tries to do the same, but several enhancements have been made
that will interest those teaching more advanced courses. I have come to appreciate the power and
usefulness of gretl’s powerful scripting language, now called hansl. Hansl is powerful enough to
do some serious computing, but simple enough for novices to learn. In this version of the book,
you will find more information about writing functions and using loops to obtain basic results. The
programs have been generalized in many instances so that they could be adapted for other uses
if desired. As I learn more about hansl specifically and programming in general, I will no doubt
revise some of the code contained here. Stay tuned for further developments.

As with the last edition, the book is written specifically to be used with a particular textbook,
Principles of Econometrics, 4th edition (POEJ) by Hill, Griffiths, and Lim. It could be used with
many other introductory texts. The data for all of the examples used herein are available as a
package from my website at http://www.learneconometrics.com/gretl.html. If you are
unfamiliar with gretl and are interested in using it in class, Mixon Jr. and Smith (2006) and
Adkins (2011a) have written a brief review of gretl and how it can be used in an undergraduate
course that you may persuade you to give it a try.

The chapters are arranged in the order that they appear in Principles of Econometrics. Each
chapter contains a brief description of the basic models to be estimated and then gives you the
specific instructions or gretl code to reproduce (nearly) all of the examples in the book. Where
appropriate, I've added a bit of pedagogical material that complements what you’ll find in the text.
I've tried to keep this to a minimum since this is not supposed to serve as a substitute for your
text book. The best part about this manual is that it, like gretl, is free. It is being distributed in
Adobe’s pdf format and I will make corrections to the text as I find errors.

Gretl’s ability to process user written functions greatly expands the usefulness of the application.
In several of the chapters functions are used to estimate models, select models, and to compute
various statistics. The scripting language, continues to evolve in useful ways, becoming more
transparent in use and more functional. Though not explored in this book, the ability to give
function writers access to the basic GUI and to package things into bundles is s very exciting
development.

ii

http://www.learneconometrics.com/gretl.html

Functions can be shared and imported easily through gretl, especially if you are connected to
the internet. If gretl doesn’t do what you want it to now, stay tuned. It soon may. If recent
activity is any indication, I am confident that the the gretl team will continue to improve this
already very useful application. I hope that this manual is similarly useful to those using Principles
of Econometrics.

There are some significant changes in the 4th edition of POE and that means there are some
changes in this book from the previous edition. As in the previous edition of this e-book, I have
attempted to provide gretl instructions for each and every example in the book. My solutions are
not necessarily the most elegant. In some cases elegance gives way to simplicity of programming,
especially with respect to the types of students who are likely to be using this book. I have made
an effort to generalize some of the script so that it will be easier to adapt to new needs. I've also
made liberal uses of loops and functions. These are powerful tools and a thorough understanding
of them can take your gretl and econometric skills to the next level. Feel free to send suggestions.

Another change in this version of the book is that I’ve made some effort to generalize some of
the scripts. Although that should make it easier to generalize them to a new use, it does mean that
they have become a little more complicated. A heavy reliance on user written functions is evident.
I invite users to take the time to work through these in order to advance your programming and
econometric skills.

To make things easier to find in the book, I have added an index. In the pdf, you can click on
the page number listed in the index and be taken to the relevant spot in the text. Also, the figure
numbers, equation numbers, and citations are also ‘hot’ and can be used in this fashion as well.
Since some may prefer to print the manual out rather than work from the .pdf, I opted to make
the ‘hot’ links black in color, which disguises their functionality.

Finally, I want to say that my conversion to gretl was not immediate. In fact I still use other
software as occasions require, though more infrequently. That said, I have become a true believer
in the power of gretl. It is now my go to software. I trust it. It is simple to use and to program.
In my opinion it combines the best of Gauss and Eviews. It is both a high level programming
language and a useful front-end for doing standard econometrics. The ease with which one can
move back and forth from both uses makes it truly unique. As a former Gauss user, I find gretl up
to the tasks that I choose. I heartily recommend that you take some time to work with it and to
learn it. You can’t help but come to appreciate its power. Its worth is derived from what it does,
not its price.

I want to thank the gretl team of Allin Cottrell and Riccardo Lucchetti for putting so much
effort into gretl. I don’t know how they find the time to make this such a worthwhile project. It
is a terrific tool for teaching and doing econometrics. It has many capabilities beyond the ones
I discuss in this book and other functions are added regularly. Also, Jack has kindly provided me
with suggestions and programs that have made this much better than it would have been otherwise.
Any remaining errors are mine alone.

I also want to thank my good friend and colleague Carter Hill for suggesting I write this and

iii

Oklahoma State University and our College of Business for continuing to pay me while I work on
it.

iv

Preface to 5th edition

Principles of Econometrics Hill et al. (2018) in now in its 5th edition and the book has undergone
significant updating. Since the purpose of this manual is to show you how to reproduce all of the
examples in POEDS, a lot has changed here as well. Also, gretl itself has evolved in the years since
the 2014 edition of this manual appeared.

There are several new commands (e.g., midasreg and kalman) and some of the options to
existing commands have changed. Minor changes to syntax have also been made (for instance,
logical equality is not g==1 rather than g=1, end loop is not endloop and so on. There have
been some additions to the available options and accessors. Some of the gretl menu tree has been
rearranged as well.

In this edition, I have spent more time manipulating gnuplot through the new plot command.
This command gives the user access to some of the important features of gnuplot in a relatively
straightforward way.

The printf commands are used more extensively to produce output. This makes what the
routines do more apparent with the passage of time. I've also used the assignment operator to
add model results to the session. This is a wonderful facility that makes accumulating results and
conducting subsequent tests very easy via the GUI.

I’ve also chosen to place the accompanying datasets into the working directory. Most operating
systems have a “documents” directory where the user places new files. This is where I locate my
working directory and it is where I choose to store the datasets (in a subdirectory called data).
When working on remote systems, this location is usually available to the user. This is a bit clumsy
in that gretl permits installation of the datasets into gretl itself. Once installed the datasets are
available from tabs in the gretl data files window. Feel free to install the data elsewhere, but take
care that the referenced file locations to the data files used in the supplied scripts will need to be
modified.

You'll notice that the manual has grown by 50% since the last edition, despite trying to reduce
redundancy by making better use of cross-referencing. A lot of this comes in Chapter 16 where
in POE5 the authors computed marginal effects AND their standard errors. Although this is
fairly easy to compute in gretl, it requires new functions and some rather messing looking code.
In this effort, I also used a very nice function package, Ip-mfr, written by Allin Cottrell that

computes various probabilities for qualitative choice models. Allin was also kind enough to let me
use his Hausman-Taylor function in Chapter 10. Other packages from the gretl database are used,
including HIP and GIG from Jack Lucchetti and waldTest by Oleh Komashko. Also, I want to
thank Sven Schreiber for cleaning up and maintaining the growing library of function packages
available from the server. Sven culled through every package to ensure that it was complete and in
working order. I also want to thank Allin, Jack, and Sven for their support and feedback on this
project.

Finally, I must remind users that the purpose of this manual is to supplement the textbook
POE5 Hill et al. (2018); it is not a stand alone work, though it is relatively self-contained. When
confusion arises, please consult POFS. This has been a fun project and I hope users find it helpful
as they explore the possibilities of gretl. It is fine software that is suitable for teaching and
research. If it had been available when my career started — and of course a computer to run it
— I’d have published a hundred papers by now (wishful thinking perhaps). I can confidently say,
however, that had gretl been available in its current form my grasp of econometric principles and
computing would be much stronger, especially earlier in my career. I hope others will find it as
inspiring to use as I do.

Copyright @ 2007, 2008, 2009, 2011, 2018 Lee C. Adkins.

vi

Contents

1 Introduction

1.1

1.2
1.3

1.4

What is Gretl? .

1.1.1 Installing Gretl

1.1.2 Gretl Basics

1.1.3 Common Conventions o o e

Importing Data . .

Using the gretl Language L oo

1.3.1 Console . .
1.3.2 Scripts . . .
1.3.3 Sessions . .

1.34 Generating New Variables 0 oL

GNUPLOT

2 Simple Linear Regression
Simple Linear Regression Model

2.1
2.2
2.3
24

2.5
2.6
2.7

2.8

2.9

Retrieve the Data
Graph the Data .

Estimate the Food Expenditure Relationship

2.4.1 Elasticity .
2.4.2 Prediction .

2.4.3 Estimating Variance oL

Repeated Sampling

Estimating Nonlinear Relationships
Regression with an Indicator Variable

2.7.1 Using printf

Monte Carlo Simulation

2.8.1 MC Basics

2.8.2 A Simple Example
2.8.3 MC using fixed regressorso oo e
2.84 MC using random regressors . . . o. ..o e e e e

Script

3 Interval Estimation and Hypothesis Testing
Confidence Intervals e

3.1
3.2
3.3

Functions in gretl
Repeated Sampling

vii

N O W N =

10
10
13
15
17
18

22
22
22
25
25
28
28
29
30
33
36
37
39
39
40
40
43
44

55
95
99
61

3.4
3.5

3.6
3.7

3.8

Monte Carlo Experiment
Hypothesis Tests
3.5.1 Omne-sided Tests e
3.5.2 Two-sided Tests
Linear Combination of Parameters
Monte Carlo Simulations e
3.7.1 Fixed Regressors e
3.7.2 Random Regressors
Script . . . e

4 Prediction, Goodness-of-Fit, and Modeling Issues

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

Prediction in the Food Expenditure Model
Coefficient of Determination
Reporting Results
Choosing a Functional Form
4.4.1 Linear-Log Specification
4.4.2 Residual Plots
4.4.3 Testing for Normality
Influential Observations L Lo
4.5.1 Leverage, Influence, and DFFits
4.5.2 The Hat and Residual Maker matrices
4.5.3 DFBETA e
Polynomial Models
4.6.1 Wheat Yield o
4.6.2 Combining graphs L Lo
Log-Linear Models
4.7.1 Growth Model
4.7.2 Wage Equation Lo
4.7.3 Generalized R-square
4.7.4 Predictions in the Log-Linear Model
Prediction Intervals
4.8.1 The fcast Command o
Log-Log Model

4.10 Script . . .o e

5 Multiple Regression Model

5.1
5.2
5.3
5.4

9.5

Preliminary Chores
Linear Regression
Big Andy’s Burger Barn
Goodness-of-Fit
5.4.1 Variances and Covariances of Least Squares
5.4.2 Confidence Intervals L
5.4.3 t-Tests, Critical Values, and p-values
Polynomials
5.5.1 Marginal Effects o
5.5.2 Interaction in a Wage Equation oo

viil

62
64
64
68
70
72
72
74
76

80
80
82
85
87
89
91
93
97
99
99
102
104
105
107
110
110
111
112
112
113
114
117
118

5.6

5.7

5.8
5.9

Nonlinear Combinations of Parameters

5.6.1

5.6.2
POES5

5.7.1

Optimal level of advertising 0L
How much experience maximizes wage?
Appendix 5 L
Condence interval using the delta method

waldTest e

Script

6 Further Inference in the Multiple Regression Model

6.1

6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

F-test
6.1.1
6.1.2
6.1.3

Regression Significanceo Lo
Relationship Between ¢- and F-tests
Optimal Level of Advertising

Nonsample Information

Model

Model
6.4.1
6.4.2
6.4.3
6.4.4

Specification Lo
Selection
Adjusted R-square
Information Criteria
A gretl Function to Produce Model Selection Rules
RESET e

Prediction
Collinearity in Rice Production
Influential Observations Lo
Nonlinear Least Squares L

Script
6.9.1

7 Using Indicator Variables
Indicator Variables

7.1

7.2

7.3
7.4

7.5
7.6

7.1.1
7.1.2

Creating indicator variables oL
Estimating a Regression Lo

Applying Indicator Variables L

7.2.1
7.2.2
7.2.3
7.2.4

Interactions L
Regional indicators Lo
Testing Equivalence of Two Regions
Log-Linear Models with Indicators

Linear Probability
Treatment Effects

7.4.1

Using Linear Probability to Verify Random Assignment

Differences-in-Differences Estimation

Script

8 Heteroskedasticity
Food Expenditure Example o o

8.1

8.1.1
8.1.2

The plot block command
Robust Covariance Estimation,

X

174
174
179
182
183
189
191
195
196
197
197
200
201
205
212
214
218
218

228
228
230
233
234
234
236
238
243
244
246
249
250
253

8.2 Detecting Heteroskedasticity using Residual Plots
8.3 Weighted Least Squares
8.3.1 Heteroskedastic Modelo
8.3.2 Grouped Data
8.4 Maximum Likelihood Estimation
8.5 Detecting Heteroskedasticity using Hypothesis Tests
8.5.1 Goldfeld Quandt Test
8.5.2 Lagrange Multiplier Tests 0.
8.9.3 The White Test e
8.5.4 Variance Stabilizing Transformation
8.6 Heteroskedasticity in the Linear Probabilty Model
8.7 Heteroskedastic-Consistent Standard Errors
8.8 Monte Carlo simulation of OLS, GLS and FGLS
8.9 Script e e e e
9 Regression with Time-Series Data: Stationary Variables
9.1 Data Structures: Time Series e
9.2 Time-Series Plots e
9.3 Serial Correlation in a Time-Series Lo
9.4 Forecasting e
9.5 Model Selection
9.6 Granger Causality test L
9.7 Serial Correlation in Residuals o000
9.8 Tests for Autocorrelation
9.9 CaseStudies
9.9.1 Okun’s Law e
9.9.2 Phillips Curve
9.9.3 Least Squares and HAC Standard Errors
9.94 A Consumption Function,
9.10 Script

10 Random Regressors and Moment Based Estimation

10.1 Basic Model e
10.2 IV Estimation L
10.2.1 Least Squares Estimation of a Wage Equation
10.2.2 Two-Stage Least Squares
10.3 Specification Tests oL
10.3.1 Testing for Weak Instruments
10.3.2 Partial Correlations L
10.3.3 Hausman Test
10.3.4 Sargan Test L
10.3.5 Multiple Endogenous Regressors and the Cragg-Donald F-test
10.4 Simulationo
10.5 Script e

11 Simultaneous Equations Models

302
302
305
308
311
312
314
315
316
318
318
323
324
332
339

358
358
359
359
360
367
367
369
371
372
373
381
383

388

11.1 Truffle Example oL 388

11.2 The Reduced Form Equations., 389
11.3 The Structural Equations 389
11.4 Fulton Fish Example 392
11.5 Systems of Equations L 395
11.6 Alternatives to TSLS e 399
11.7 Script e 402
12 Regression with Time-Series Data: Nonstationary Variables 406
12.1 Series Plots o 406
12.2 Deterministic Trends 413
12.3 Spurious Regressions Lo 417
12.4 Tests for Stationarity 419
12.4.1 Other Tests for Nonstationarity 424

12.5 Integration and Cointegration oL 429
12.6 Error Correction 432
12.7 Script 438
13 Vector Error Correction and Vector Autoregressive Models 447
13.1 Vector Error Correction and VAR Models 447
13.1.1 Series Plots—Constant and Trends 448
13.1.2 Selecting Lag Length oL 449
13.1.3 Cointegration Test L 453
13.1.4 VECM: Australian and U.S. GDP 454
13.1.5 Using gretl’s vecm Command 455
13.2 Vector Autoregression 462
13.3 Impulse Response Functions and Variance Decompositions 467
13.4 Script e 469
14 Time-Varying Volatility and ARCH Models 475
14.1 ARCH and GARCH 478
14.2 Testing for ARCH 479
14.3 GARCH e 486
14.4 Threshold ARCH 488
14.5 Garch-in-Mean e e 494
14.6 Script 498
15 Pooling Time-Series and Cross-Sectional Data 502
15.1 A BasicModel 504
15.2 Estimation e 507
15.3 Random Effects 518
15.4 Specification Tests L 522
15.4.1 Breusch-Pagan Test 522
15.4.2 Hausman Test e 524

15.5 Between Estimator L o 527
15.5.1 Mundlak Approach 528

X1

15.5.2 Hausman-Taylor

15.6 Scripto
16 Qualitative and Limited Dependent Variable Models
16.1 Introduction e
16.2 Linear Probability
16.3 Probit and Logit L
16.3.1 Marginal Effects and Average Marginal Effects
16.3.2 Standard Errors and Confidence Intervals for Marginal Effects
16.3.3 Using lp-mfx
16.3.4 Logit. e
16.3.5 Hypothesis Tests
16.4 Endogenous Regressors L L
16.5 Multinomial Logit L
16.5.1 Using the mle Command for MNL
16.6 Conditional Logit
16.7 Ordered Probit e
16.8 Poisson Regressiono
16.9 Tobit
16.10 Selection Bias. e
16.11 Simulationo
16.12 Script o e
A Gretl Commands
B Some Basic Probability Concepts
C Some Statistical Concepts
C.1 Summary Statistics
C.2 Central Limit Theorem
C.3 Sample Moments L
C.4 Interval Estimation
C.5 Hypothesis Tests o e
C.6 Testing for Normality
C.7 Maximum Likelihood
C.7.1 Other Hypothesis Tests
C.8 Kernel Density L
C.9 Script
D Functions
D.1 functions_other
D.2 functionschl6
E Using R with gretl
E1l WaystoUse Ringretl
E.1.1 Using the foreign command
E.1.2 Opening an Rosession

xii

540
540
541
544
548
552
557
562
567
573
978
586
589
598
602
608
612
617
619

643

647

658
659
660
662
665
668
670
671
673
677
678

685
685
689

E.1.3 R Script from gretl
E.2 A few basic commands and conventions
E.3 Packages e
E.4 Stata Datasets
E.5 Using R for Qualitative Choice Models
E.5.1 Multinomial Logit
E.5.2 Conditional Logit
E.5.3 Ordered Probit Lo
E.6 Final Thoughts o

GNU Free Documentation License

1. APPLICABILITY AND DEFINITIONS
VERBATIM COPYING e e e e
COPYING IN QUANTITY e e e e e
MODIFICATIONS e e e e e e e e e e
COMBINING DOCUMENTS e e e
COLLECTIONS OF DOCUMENTS e
AGGREGATION WITH INDEPENDENT WORKS
TRANSLATION e e e e
9. TERMINATION e e e e e
10. FUTURE REVISIONS OF THIS LICENSE
11. RELICENSING e e e e
ADDENDUM: How to use this License for your documents

PN O W

List of Figures

Chapter 1

1.1 Opening the command line interface version of gretl from a command prompt.

1.2 Opening the command line interface version of gretl using Start>Run
1.3 The command line version of gretl
1.4 The main window for gretl’s GUL
1.5 Working directory dialog
1.6 Opening a Sample file using the GUI
1.7 Datafilewindow L e
1.8 Data packages on Server dialog 0.
1.9 Listing variables in your dataset
1.10 Open file dialog e
1.11 Data file window

xiil

—_
— O © © 000 Ot = = W

—

1.12 The toolbar appears at the bottom of the main menu.
1.13 The command reference window
1.14 Using the tree of the command reference window . . .
1.15 The function reference window
1.16 Script editor
1.17 The session window L.
1.18 Savingasession
1.19 The General tab of the preferences dialog
1.20 The GNUPLOT program window
Chapter 2
2.1 Main gretl window
2.2 Editing data attributes
2.3 Variable edit dialog box
2.4 Plotting dialog box
2.5 XY plot of the food expenditure data
2.6 Opening the OLS dialog box
2.7 OLSdialogbox
2.8 Gretlconsole
2.9 models window: least squares results
2.10 Summary statistics
2.11 Elasticity calculation
2.12 OLS covariance matrix
2.13 Define named list
2.14 Monte Carloresults
2.15 Price versus size from nonlinear models
2.16 Price and its natural logarithm
2.17 Add distribution graph dialog
2.18 Two normal distributions
Chapter 3
3.1 Critical values dialog
3.2 Critical values using the dialog
3.3 Coefficient confidence intervals from the dialog
3.4 Confidence intervals from 10 samples
3.5 P-valueutility o0
3.6 P-valueresults
Chapter 4
4.1 Selecting ANOVA
42 ANOVA table
4.3 Summary statistics: R?

Xiv

12

12
13
14
15
15

16

19
21

23
24
24

25
26

49
49
50
50
50
ol
51
52
52
93
93
93
o4

56
o6
o8
62
65
65

83
83
84

4.4 Adding fitted values to the data 84
4.5 Highlight variables 85
4.6 Correlation matrix Lo 86
4.7 IATEX options from the models window 86
4.8 Output options e e 88
4.9 Adding new variables to the data 88
4.10 Linear-Log graph 90
4.11 Residuals plot L 92
4.12 Heteroskedastic residuals Lo L 93
4.13 Residuals plot 94
4.14 Residuals from linear fit to quadratic data 95
4.15 The summary statistics for the least squares residuals. 96
4.16 Normatity test results L 96
4.17 Graph produced by modtest from the GUL 97
4.18 Leverage, Influence, DFFITS 98
4.19 Output from the DFBETA (income) in the food expenditure model. 104
4.20 Wheat yield XY plots 105
4.21 Graph choices 106
4.22 Graph dialog L 107
4.23 Wheat yield XY plot 108
4.24 Wheat yield XY plots with fit oo 109
4.25 Linear and cubic wheat yield XY plotso 124
4.26 Wage prediction interval from fcasto 125
4.27 Wage prediction interval from aloop L. 125
4.28 Chicken demando 126
Chapter 5
5.1 The OLS shortcut button on the toolbar. 129
5.2 Confidence intervals from GUL, 134
5.3 Significance tests L. 136
5.4 Histograms from simulations oL L oL 172
5.5 Histogram of estimates go for n = 40 and n = 200. 10000 Monte Carlo samples. . 173
Chapter 6
6.1 Tests pull-down menu L 176
6.2 Omit variable dialog box L 177
6.3 Results from omit variable dialog 178
6.4 Linear restriction dialog box o L o 179
6.5 Ovwerall F-test 180
6.6 Adding logarithms of your variables 190
6.7 Themodeltab commands 192
Chapter 7
7.1 Variable attributes 231

XV

7.2 Chow test dialog L 241
Chapter 8
8.1 Food expenditure regression.o 261
8.2 Food expenditure residuals o 261
8.3 Absolute value of least squares residuals against income using with loess fit 261
8.4 gnuplot options grapho o 263
85 Plot yagainst x L 264
8.6 Robust standard errors check box o o0 265
8.7 Options dialog box e 266
8.8 Plot residuals against regressor Lo 268
8.9 Food expenditures with loess fit 269
8.10 OLS and GLS residuals. 272
8.11 Sorting data L 281
8.12 Levels of household entertainment expenditures. 287
8.13 Natural Log of household entertainment expenditures. 287
Chapter 9
9.1 Dataset structure wizardo 304
9.2 Dataset structure wizard confirmation. 304
9.3 Time-Series graphs of U.S. Unemployment 350
9.4 Time-Series graphs of U.S. Growth 350
9.5 Multiple time-series graphs of U.S. macrodata 351
9.6 Unemployment vs lagged unemployment 351
9.7 Correlogram for U.S. Unemployment 352
9.8 Correlogram for U.S. GDP growth 352
9.9 Editdatabox 353
9.10 Granger Causality test result. 0oL 353
9.11 Residual Correlogram ARDL(2,1) 354
9.12 Residual Correlogram ARDL(1,1) 354
9.13 Changes in Australian Unemployment and Growth 355
9.14 Inflation and change in unemployment, OZ 355
9.15 Phillips curve residuals 356
9.16 Lagged variables added to dataset via GUT 356
9.17 Lag Weights from Okun’s Law 357
Chapter 10
10.1 Two-stage least squares estimator from the pull-down menus 360
10.2 Two-stage least squares dialog box oo 361
10.3 Hausman test for endogeneity of regressor. 372
Chapter 12
12.1 Selecting variables for multiple scatter plots 408
12.2 Scatters for time series e 409

xXvi

12.3 Plots of inflation, 3-year bond, and fed fundsrates. 410
12.4 Useedit controls tosuit. oo 411
12.5 Autocorrelations and partial autocorrelations for GDP 412
12.6 Autocorrelations and partial autocorrelations for changes in GDP. 412
12.7 Plot of Wheat Yield for Toodyay Shire 415
12.8 Plot of Rainfall for Toodyay Shire, 416
12.9 Random walk series appear to berelated oL 443
12.10 ADF test dialog box 444
12.11 The dialog box for the cointegration test. 444
12.12 Engle-Granger test resultso 445
12.13 Plots of Real Consumption Expenditures and Real Disposable Income. 446
Chapter 13
13.1 Plots of U.S. and Australian GDP and their differences 449
13.2 vecmoutputo 457
13.3 The VECM dialog box e 458
13.4 Error correction plot 459
13.5 Error correction plot L 460
13.6 Output from VECM e 461
13.7 Natural logs of consumption and income and their differences. 463
13.8 ADF tests of In(RPCE) 464
13.9 ADF tests of In(RPDI) 464
13.10 The VAR dialog box 468
13.11 Impulse responses dialog box oo 469
13.12 Impulse Responses« L 470
Chapter 14
14.1 Times series of stock indices L 476
14.2 Histograms of stock indices. e 477
14.3 Simulated examples of constant and time-varying variance. 480
14.4 Histograms for simulated examples of constant and time-varying variance. 481
14.5 Returns for BYD Lighting o 482
14.6 Returns for BYD Lighting 483
14.7 Estimating ARCH from the dialog box 485
14.8 Plotting ARCH variances 487
14.9 Predicted returns and variance from a GARCH(1,1) 488
14.10 Threshold GARCH script 490
14.11 TGARCH results e 491
14.12 Plot produced by gig for TARCH residuals and :I:\/l?t 493
14.13 MGARCH script o o o e e e 496
14.14 Estimated mean and variances of GARCH-in-mean that includes a threshold. . . 497
Chapter 15
15.1 Data structure wizard 503

15.2 Database server Lo e e e e e 504
15.3 Databases on theserver L 505
15.4 Series in the Barro-Lee data o 506
Chapter 16
16.1 Probit model dialog box 549
16.2 Database server packageso 558
16.3 HIP from the menus. e 577
16.4 HIP dialog box e 578
16.5 MNL probabilities 580
16.6 The ordered probit dialog box oo 599
16.7 Count data dialog box 603
16.8 Heckit dialog box e 642
Chapter B
B.1 Obtaining summary statistics 0L 649
B.2 Results for summary statisticso L L o 650
B.3 P-value finder dialog utility 651
B.4 P-valueresults 651
B.5 Uniforms from LCG e 656
B.6 Uniforms from LCG 656
Chapter C
C.1 Histogram of the triangular mean: N=3 663
C.2 Histogram of the triangular mean: N=10 663
C.3 Histogram of the triangular mean: N=30 663
C.4 Kernel density: Bandwidth scaler =1, 679
C.5 Kernel density: Bandwidth scale =2.5 679
C.6 Kernel density: Bandwidth scale =0.2 679
Chapter E
E.1 TheRconsole 700
E.2 Using R from the R script editor in gretl. 701
E.3 Leastsquaresusing R. L o 702
E.4 ANOVAresultsfrom R 703
E.5 Multinomial logit results from R o 0oL 707
E.6 Conditional logit from R o 710
E.7 Ordered probit results from R L 712

xviil

Chapter 1

Introduction

Some of the basic features of gretl are introduced in this chapter. You’ll learn how to install
it, how to get around the various windows in gretl, and how to import data. At the end of the
chapter, gretl’s powerful scripting language, hansl, will be introduced as well.

1.1 What is Gretl?

Gretl is an acronym for Gnu Regression, Econometrics and Time-series Library. It is a software
package for doing econometrics that is easy to use and powerful. It features a very user-friendly
interface that makes it snap to use in a classroom. Its flexibility, extensibility, and accuracy make
it well-suited for research as well. Gretl is distributed as free software that can be downloaded from
http://gretl.sourceforge.net and installed on your personal computer. Unlike software
sold by commercial vendors (SAS, Eviews, Stata to name a few) you may redistribute and/or
modify gretl under the terms of the GNU General Public License (GPL) as published by the Free
Software Foundation. That means that you are free to patch or extend gretl as you see fit.

Gretl comes with many sample data files and its internet capabilities give access to several very
useful databases served by Wake Forest University. From the gretl website, you can download and
install sample data sets from many of the leading textbooks in econometrics, including the one that
this book is based on, Principles of Econometrics by Hill et al. (2018).

Gretl offers a full range of least-squares based estimators, either for a single equation and for
a system, including vector autoregressions and vector error correction models. Several specific
maximum likelihood estimators (e.g., probit, ARIMA, GARCH) are also provided natively; more
advanced estimation methods can be implemented by the user via generic maximum likelihood or
nonlinear GMM. Gretl uses a separate Gnu program called gnuplot to generate graphs and is
capable of generating output in ITEX format. Gretl is under constant development so expect an
occasional bug, but in my experience it is quite stable to use with my Windows and Ubuntu Linux

systems. The main developers, Allin Cottrell and Jack Lucchetti, participate daily in discussions
on the gretl forums and quickly sort out any bugs that are reported.

Which brings me to the final plug for gretl, which is inspired by its openness. As seen with
a lot of the better quality open source software, a community of developers and users are woven
together via active user and developer forums. The input from their many participants helps to
make gretl quite dynamic. If gretl will not estimate what you want today, tune-in tomorrow and
someone may have written the code to estimate your econometric problem.

Furthermore, gretl is enhancing its scripting language to facilitate sophisticated add-ons to its
basic functionality. In short, gretl is quickly becoming software worth getting to know for research
as well as for pedagogical uses.

1.1.1 Installing Gretl

To install gretl on your system, you will need to download the appropriate executable file
for the computer platform you are using. For Microsoft Windows users the appropriate site is
http://gretl.sourceforge.net/win32/. One of the nice things about gretl is that macOS
and Linux versions are also available. If you are using some other computer system, you can
download the source code and compile it on whatever platform you’d like. This is not something
you can do with any commercial software package.

Gretl depends on some other (free) programs to perform some of its magic. If you install gretl
on your Mac or Windows based machine using the appropriate executable file provided on gretl’s
download page then everything you need to make gretl work should be installed as part of the
package. If, on the other hand, you are going to build your own gretl using the source files, you
may need to install some of the supporting packages yourself. I assume that if you are savvy enough
to compile your own version of gretl then you probably know what to do. For most, just install
the self-extracting executable, gretl_install.eze, available at the download site. Gretl comes with
an Adobe pdf manual that will guide you through installation and introduce you to the interface.
I suggest that you start with it, paying particular attention to the first 3 chapters, which discuss
installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Principles of Econometrics, 5th edition (POE5)
by Hill et al. (2018), you should also download and install the accompanying data files that go with
this book. The file is available at

http://www.learneconometrics.com/gretl/.

There you will find compressed zip files that can be downloaded and installed on your computer.
For the scripts in this book, I have mine installed in my documents folder

\Documents\gretl\poe5\data

http://gretl.sourceforge.net/win32/
http://www.learneconometrics.com/gretl/

directory of your computer’s harddrive.! If you have installed gretl in any place other than

\Documents\gretl\poe5\data then unzip the files into the new location. Another likely place
on a Windows system is in your user directory (mine is \leead, which is in my Users directory
on the C: drive.):

C:\Users\leead\AppData\Roaming\gretl\data\poeb

If you unzip the data file here, they you will need to change the included script files so that they
point to the proper data location. If located here, you can simply issue an open datasetname.gdt
to open your file.

1.1.2 Gretl Basics

There are several different ways to work in gretl. Until you learn to use gretl’s rather simple
and intuitive language syntax, the easiest way to use the program is through its built-in graphical
user interface (GUI). The graphical interface should be familiar to most of you. The GUI allows
you use your computer’s mouse to open dialog boxes. Fill in the desired options and execute the
commands by clicking on the OK button. Gretl is using your input from the dialogs, delivered by
mouse-clicks and a few keystrokes, to generate computer code that is executed in the background.
Of course, you can generate your own programs directly, either by using a command line version
or by using the GUI via the gretl console or through scripts.

Gretl’s command line version is a separate executable that gives you access to gretl commands
directly from your computer’s command prompt. This bypasses the GUI altogether. To open the
command line version of gretl in Windows, open a command window and type "C:\Program
Files\gretl\gretlcli.exe" (Figure 1.1). Be sure to use the correct path to your gretl

EX Command Prompt — O x

rosoft Windows [Version 18.8.17134.48]
2818 Microsoft Corporation. All rights reserved.

C:\Usersileead>"C:\Program Files\gretl\gretlcli”g

Figure 1.1: Opening the command line interface version of gretl from a command prompt.

installation and to enclose everything in quotes if there are spaces in any of the file or directory
names.

My system is 64-bit. If your copy of Windows is 32-bit then your directory structure is likely to be different from
mine.

In Windows 10 the Run dialog box allows you to browse for the file. Choose Start>Run to
open the dialog shown in Figure 1.2. In the box, use Browse button to locate the directory in

Fun >

Type the name of a program, folder, document, or Internet
resource, and Windows will open it for you,

Open: | "“C:\Program Files\grethgretlcli.exe”

Cancel Browse...

Figure 1.2: Opening the command line interface version of gretl using Start>Run
which gretl is installed. Click OK and the command line version shown in figure 1.3 opens. There

B Ch\Program Files\grethgreticliexe - O it

"help” gives a list of commands

Type "open filename" to open a data set
3

Figure 1.3: The command line version of gretl

are a couple of messages that certain entries could not be found in the Windows registry, which
in this case means that these programs are not installed or registered on my particular machine.
If you receive these, don’t be alarmed. Gretl will still operate. The question mark (?) is the
command prompt. To open one of the data sets that installs with gretl, type open engel at
the prompt. The gretl data set engel.gdt opens and some information about how much data and
which variables it contains are printed to the screen. From here one can issue gretl commands or
run scripts. To close the window, type exit.

If you are in fact using the Microsoft Windows operating system, then you probably won’t be
using gretl from the command line very often anyway. This version of the program is probably
the most useful for Linux users wishing to run gretl from a terminal window. If your machine is
resource constrained, the command line interface is a way to free resources that would otherwise

be used to operate the graphical interface. The command line version will not be discussed further
in this manual.

A better way to execute single gretl commands is through the gretl console. In normal
practice, the console is easier to use than the gretlcli.exe. It offers some editing features and
immediate access to other ways of using gretl that aren’t available in the straight command line
version of the program. The console and its use is discussed in section 1.3.1.

To execute a series of commands, use scripts. One of the great things about gretl is that it
accumulates commands executed singly from the console into a command log that can be run in
its entirety at another time. This topic can be found in section 1.3.2. So, if you have completed
an analysis that involves many sequential steps, save the commands in a script file which can be
reopened and run in one step to reproduce the results.

The script environment is often used to conduct Monte Carlo simulations in econometrics.
Monte Carlo studies use computer simulation (sometimes referred to as experiments) to study the
properties of statistics. This is especially useful when the mathematical properties of your statistic
is particularly difficult to derive analytically. In the exercises below, there are rudimentary examples
of how these experiments can be constructed and used in econometrics. Also, you can consult a
separate paper of mine Adkins (2011b) that can be found at http://www.learneconometrics.
com/pdf/MCgretl/index.htm.

The main window of the graphical user interface, which is opened using gretl.exe, is shown below
in Figure 1.4.

B grev Menu Bar S
IEiIe Tools Data View Add Sample VYarisble Model Help | Working Directory B
food.gdt I C:\Users\leead\Documents\gretl\poeSI
ID# 4 Variable name 4 Descriptive label 1

0 const

1 food_exp household feod expenditure per week

2 income weekly household income

Toolbar

Undated: Full range 1 - 40

O G I E o= R S =

Figure 1.4: The main window for gretl’s GUI

Across the top of the window you find the menu bar. From here you import and manipulate
data, analyze data, and manage output. At the bottom of the window is the gretl toolbar. This
contains a number of useful utilities that can be launched from within gretl. Among other things,
you can get to the gretl web site from here, open the pdf version of the manual, or open the MS
Windows calculator (very handy!). More will be said about these functions later. Also, on the
right-hand-side you’ll see the current working directory. For this manual, I've created a \gretl\
poeb directory in my documents folder to serve as my working directory. To set your working

http://www.learneconometrics.com/pdf/MCgretl/index.htm
http://www.learneconometrics.com/pdf/MCgretl/index.htm

directory choose File>Working directory from the pull-down menu to open the dialog box
shown in figure 1.5.

ﬁ gretl: working directory *

Working directory: | C:\Userstleead\Documentsigrethpees| | hd | |Br0w5e...|

On start-up, gretl should use:
@) the directory selected above

() the current directory as determined via the shell

The file selection dialog should:
@) remember the last-opened folder

() always start in the working directory

Show working directory in main window

| Open working director}rl

| e | | f aopy || Bancel || Dox |

Figure 1.5: Use this dialog to change the working directory. The working directory is where gretl
reads and writes files.

1.1.3 Common Conventions

In the beginning, I will illustrate examples using a number of figures (an excessive number to
be sure). These figures are screen captures of gretl’s windows as they appear when summoned
from the pull-down menus. As you become familiar with gretl the appearance of these figures will
diminish and I will direct you to the proper commands that can be executed from the console or as
a script using commands only. More complex series of commands use gretl scripts, which as noted
above, can be executed in a single batch.

Dialog selection via the GUI will refer to the menu path as A>B>C which indicates that you
click on option A on the menu bar, then select B from the pull-down menu and further select
option C from B’s pull-down menu. All of this is fairly standard practice, but if you don’t know
what this means, ask your instructor now.

There are a few tricks used in this manual to make scripts work on various platforms without
much modification. Gretl contains special macros for the location of commonly used files. The
working directory is where gretl reads and writes to. To refer to this location generically, use the
@workdir macro. The gretl installation directory is referenced by @gretldir, and temporary
storage can be accessed via @dotdir. If any of these directories have spaces in their names,
then be sure to enclose the command in double quotes. For example, on my Windows 10 system,
gretl is installed in the c:\Program Files\gretl directory. The data sets for POES5 are in

"@workdir\data\". To refer to this location I can simply use "@workdir\data\".

1.2 Importing Data

Obtaining data in econometrics and getting it into a format that can be used by your software
can be challenging. There are many softwares use proprietary data formats that make transferring
data between applications difficult. You’ll notice that the authors of POES5 have provided data in
several formats for your convenience. In this chapter, we will explore some of the data handling
features of gretl and show (1) how to access the data sets that accompany your textbook (2) how
to bring one of those data sets into gretl (3) how to list the variables in the data set and (4) how
to modify and save your data. Gretl offers great functionality in this regard. Gretl provides access
to a very large number of high quality data sets from other textbooks as well as from sources in
industry and government. Furthermore, once opened in gretl these data sets can be exported to a
number of other software formats.

First, load the food expenditure data used in Chapter 2 of POFES5. The data set contains two
variables named z and y. The variable y is weekly expenditures on food in a household and z is
weekly income measured in $100 increments. From the main gretl window click on File>Open
data>Sample file as shown in Figure 1.6.

ﬁ gretl

Tools Data View Add Sample Variable Model Help

[Userfile.., Ctrl+Q
Append data... |r£'.
E Save data Ctrl+5
Save data as...
Export data...
(3 Send To..

1. pubcoll.gdt
2. table_c3.gdt
3. baseadjusted_9.gdt

rE Clear data set

Working directory...

e

Seript files

e

Session files

Databases

WO

Function packages

8] Quit Ctrl+Q

Figure 1.6: Opening sample data files from gretl’s main window

Alternately, you could click on the open dataset button on the toolbar. The button looks like a
folder and is on the far right-hand side of the toolbar. This opens another window (Figure 1.7) that
contains tabs for each of the data compilations that are installed in the gretl/data directory of
your gretl program. If you installed the data sets that accompany this book into gretl’s installation
directors (e.g., c: \Program Files\gretl) then a tab will appear like the one shown in Figure
1.7.

Ed arett: datafiles — d X

= 0 =
Gretl | Greene | POE 3th ed. | Ramanathan

File Summary IE‘

bangla Price and Area for farmers

beer Mmmmrm!

bond Ad railroad bond yields

br 1080 home sales in Baton Rouge, LA during mid-2003

br2 1020 heme sales in Baton Rouge, LA during mid-2003
brumm Brumm's Money Growth, Output Growth, and Inflation
byd returns to shares in BrightenYourDay (BYD) Lighting
canada Canada / U.5. Foreign Exchange Rate

capmd monthly rates of return

cars Data on 392 cars taken frem consumer choice magazines,
cattle 27 annual time series observations [~]

[«] i | E|

Figure 1.7: This is gretl’s data files window. Notice that in addition to POFES, data sets from
Ramanathan (2002), Greene (2003), are installed on my system.

As of May 2018, there are data sets from several other prominent texts available on the gretl
website. Click on the look on server icon in the data files dialog (third from the left). This reveals
the following list (Figure 1.8) with links to the available downloads.

Click on the POE 5th ed. tab and scroll down to find the data set called ‘food’, highlight
it using the cursor, and open it using the ‘open’ button E| at the top of the window. This will
bring the variables of the food expenditure data set into gretl. At this point, select Data on the
menu bar and then Display values as shown in Figure 1.9.

From the this pull-down menu a lot can be accomplished. You can edit, add observations, and
impose a structure of your dataset. The structure of your dataset is important. You can choose
between time series, cross sections, or panel data structures. The options Gretl gives you depend
on this structure. For instance, if your data are structured as a time series, gretl will allow you
to take lags and differences of the variables. Certain procedures that can be used for time-series
analysis will only be available to you if your dataset has been structured for it. If a gretl command
is not available from the defined dataset structure, then it will be greyed out in the pull-down
menus.

Gretl gives you the opportunity to import data. Expanding this (File>Open data>User
file) launches an open file dialog box shown in Figure 1.10. Expanding the scroll arrows reveals
a list of supported import formats. These include CSV, Stata, Excel, Eviews, SPSS, and SAS (if
installed). For instance, simply dragging a Stata dataset onto the main gretl window will bring
the data into gretl.

EA gretl: data packages on server — O s

= L 4B

File Source Date

dougherty Christopher Dougherty, Introduction to Econometrics 2008-10-14
ETM Davidson and MacKinnen, Ecenometric Theory and Metheds 2003-12-14
gujarati Damodar Gujarati, Basic Econometrics 2011-09-07
koop Gary Koop, Analysis of Economic Data 2009-01-14
POE4data Hill, Griffiths and Lim, Principles of Econometrics, 4e 2011-06-29
stock_watson_2 Stock and Watson, Introduction to Econometrics, 2e 2006-08-21
stock_watson Stock and Watson, Introeduction to Econometrics 2004-07-12
verbeek Marno Verbeek, Guide to Modern Econometrics 2008-12-30
wocldridge Jeffrey Woeldridge, Introductory Econometrics 2008-09-06

Metwork status: OK

Figure 1.8: These sets of data from various textbooks are available for installation into gretl.

Highlight the one you want to install and click on the diskette icon.?

ﬂ gretl

File Tools View Add Sample Variable Meodel Help

Unsaved data Select all Ctrl+4 | ChUsers'

Dz | varii Tk Find variable... Ctrl+F

__ 0o Define or edit Jist...

ﬁ Set selection from list... ceed = 1234567

3w (€ p) seed = 987654321

Ea|t valles
Add ohservations...

Figure 1.9: Use the cursor to highlight all of the variables. Then click Data>Display values to
list the data set.

Also, from the File pull-down menu you can export a data set to another format. The export
feature is particularly useful for getting data into R.

If you click on File>Databases>On database server (Figure 1.11) you will be taken to a
web site (provided your computer is connected to the internet) that contains a number of high
quality data sets. You can pull any of these data sets into gretl in the same manner as that
described above for the POES5 data sets. If you are required to write a term paper in one of your
classes, these data sets may provide you with all the data that you need. The database server is
discussed in more detail below.

Ed oretl: openfile *

| .?| | < ||E'Ieead || Dacuments || gretl || poe5|

Places Mame A Size Modified |

':r::;,. Search =

@ Recently Used [scripts Yesterday at 17:11

[gret & coef.gdt 69.0 kB Yesterday at 17:12 || =

E‘ leead

= Desktop

£ . Local Disk (C:) . il
D ==

'{Il:' | Gretl datafiles (*.gdt, *.gdth)]

| ‘%Qancel || = Open |

Figure 1.10: The open file dialog allows you to open gretl data sets and to import others in various
formats.

1.3 Using the gretl Language

The gretl GUI is certainly easy to use. However, you can get results even faster by using gretl’s
language. The language can be used from the console or by collecting several lines of programming
code into a file and executing them all at once in a script. Gretl now has a name for its scripting
language, hansl. Hansel is a recursive acronym for hansl’s a neat scripting language (or handy
scripting language), and it is certainly that. There are many things you can do using this powerful
tool. Hansl’s syntax is particularly easy to use, in my opinion, and I strongly recommend that you
learn to use it.

An important fact to keep in mind when using gretl is that its language is case sensitive. This
means that lower case and capital letters have different meanings in gretl. The practical implication
of this is that you need to be very careful when using the language. Since gretl considers z to be
different from X, it is easy to make programming errors. If gretl gives you a programming error
statement that you can’t quite decipher, make sure that the variable or command you are using is
in the proper case.

1.3.1 Console

Gretl’s console provides you a way to execute programs interactively. A console window opens
and from the prompt (7) you can execute gretl commands one line at a time. You can open the
gretl console from the Tools pull-down menu or by a left mouse click on the “Gretl console”

button on the toolbar. This button is the third one on the left side of the toolbar in Figure
1.4. From the console you execute commands, one by one by typing gretl code after the command

10

Ef gretl: databases on server — O *

=R =

Database Source Local status =i
bh UK Mational Statistics Blue Book Mot installed
bcan Bank of Canada (money, credit) Mot installed
beih Dept of Commerce (Business Cycle Indicators 1945-1993) Mot installed
be Banco de Espana (Spanish macro data) Mot installed
beana Bureau of Economic Analysis (US national accounts) Mot installed
beapira Bureau of Economic Analysis (Income and Population Data) Mot installed
ct UK Mational Statistics Consurmer Trends Mot installed =
ech European Central Bank (macro, monetary) Mot installed
et UK Mational Statistics Economics Trends Mot installed
etas UK Mational Statistics Economic Trends Annual Supplement Mot installed
fedbeg Federal Reserve Board (interest rates) Mot installed
fedstl St Louis Fed (various series, large) Up to date
fhib Federal Housing Finance Board (mortgages) Mot installed
fred_intl 5t Louis Fed (internaticnal series) Mot installed
fsc UK Mational Statistics Financial Statistics Consistent Mot installed =
gdpo UK Mational Statistics GDP statistics, output method Mot installed
imf_debt IMF govt debt/GDP data Mot installed
japan Bank of Japan (macro, monetary data) Mot installed
jolts 5t Louis Fed (JOLTS) Mot installed
ks13 eh.net 19th century labor survey Mot installed
ks14 eh.net 19th century labor survey Mot installed [v)

Metwork status: OK

Figure 1.11: There are a number of databases that contain useful data for use in your own projects.
The left-most icon on the tool bar will list the series in the database. The diskette icon will install
the series into your

prompt. Each command that you type in is held in memory so that you can accumulate what
amounts to a “command history.” To reuse a command, simply use the up arrow key to scroll
through the commands you've typed in until you get to the one you want. You can edit the
command to fix any syntax errors or to make any changes you desire before hitting the enter key
to execute the statement.

From the command prompt, ‘7 you can type in commands from the gretl language. For
instance, to estimate the food expenditure model in section 2.4 using least squares type

? ols y const x

The results will be output to the console window. You can use the window’s scroll bar on the right
hand side to scroll up (or down) as needed.

Remember, (almost) anything that can be done with the pull-down menus can also be done
through the console. Of course, using the console requires the correct language syntax, which can
be found in the Gretl Command Reference. The command reference can be accessed using
CTRL+H or from Help on the menu bar in the main gretl window.

Clicking on anything in blue will take you to the desired information for that command. Ob-

11

al ~H = 2 8 B
1 | l | ‘
Seript | Session ‘ oLS grttl

H-:elp
Calculator Graph database
I
Console Function open
Packages dataset

Figure 1.12: The toolbar appears at the bottom of the main menu.

viously, the keyboard shortcut F1 will also bring up the command reference (Figure 1.13). You’ll
also notice that .pdf versions of the command and function references can also be retrieved from
the Help drop-down menu.

B oetico [m} * |
®R Q | | this page Cl B I
| e .
b Tests Gretl Command Reference
D Statistics
add adf anova append ar arl |
P Dataset arbond arch arima arma kiprobit boxplot |
I Estimation break catch chow clear coeffsum coint
3 Graphs coint2 COXrr CoOYrgm cusum data dataset
: debug delete diff difftest discrete dpanel
P Programming dummi fy duration elif else end endif
I Transformations endloop eqnprint egquation estimate eval frast
i b Printing flush foreign fractint freg function garch |
b Utiliti genr [=200140 gnuplot graphpg hausman heckit
| e nelp hiplot nsk nurst if include |
P Prediction info install intreg join kpss labels
lad lags 1diff leverage lewvinlin logistic
logit logs loop mahal makepky markers
meantest midasreg mle modeltak modprint modcestc
npols negbin nls normtest nulldata ols
omit open orthdev outfile panel pca
pergm plot poisson print printf probit
pvalue glrtest gopelot gquantreg quit rename
reset restrict rmplot run runs scatters
sdiff set setinfo setmiss setobs setopt
shell smpl spearman sprinct square store
Summary sSystem takbprint textplot tobkit tsls
var wvarlist VArtest vecm vif wls
RCOXTrgm Htak

Figure 1.13: The command reference can be accessed in a number of ways: The ‘life-saver’ icon on
the toolbar, Help>Command reference from the pull-down menu, or keyboard shortcut F1.

Commands can be searched by topic from the command reference window. An index appears in
the left side panel (see Figure 1.14). Choose the desired category from the list and select a command
(e.g., Estimation>arch). The words indicated in blue text are links to related commands. For
instance, clicking on arch takes you to the reference entry for ARCH modeling.

The function reference is a relatively new addition to gretl that will help you to locate the

names gretl uses to temporarily store results (called accessors), to transform variables, and to
write your own programs. To access the function reference, click Help>Function reference from

12

4] |
Q Q [thispege 2| 29 |

Index | | azck
P Tests X
o Arguments: order depvar indepvars
P Statistics Example: arch 4 v 0 x1 x2 X3

This command is retained at present for backward compatibility, but you are better off using the
maximum likelihood estimator offered by the garch command; for a plain ARCH model, set the
first GARCH parameter to 0.

Estimates the given model specification allowing for ARCH (Autoregressive Conditional
Heteroskedasticity). The model is first estimated via OLS, then an auxiliary regression is run, in
which the squared residual from the first stage is regressed on its own lagged values. The final
step is weighted least squares estimation, using as weights the reciprocals of the fitted error
arma variances from the auxiliary regression. (If the predicted variance of any observation in the
auxiliary regression is not positive, then the corresponding squared residual is used instead).

......... biprobit

""""" dpanel The alpha values displayed below the coefficients are the estimated parameters of the ARCH
--------- duration process from the auxiliary regression. |

equation .
; See alse garch and modtest (the ——zrch option).
--------- estimate

......... garch

(<)

Figure 1.14: Finding help on the arch command using the Command Reference

the pull-down menu as shown in Figure 1.15.

In addition, the current list of available accessors can be summoned using the varlist com-
mand:

1 varlist —--type=accessor

By default varlist prints a listing of the series in the current dataset (if any); 1s may be used
as an alias. When the ——type option is given, it should be followed (after an equals sign) by one
of the following typenames: series, scalar, matrix, list, string, bundle or accessor.
The effect is to print the names of all currently defined objects of the named type. The varlist
command can quickly become your best friend in gretl.

1.3.2 Scripts

Gretl commands can be collected and saved into a file that can be executed at once and used
again. This starts by opening a new script from the file menu. The command File>Script
files>New script>gretl script from the pull-down menu opens the script editor shown in Figure
1.16. Type the commands you want to execute in the box using one line for each command.

13

B4 gretl: function reference - m} *

Q Q =
I b
D Accessors Gretl Function Reference
P Mathematical
Sahat Saic Sbic Schisg Scoeff
b Statistical Scommand Scompan Sdatatype Sdepvar sdf
P Strings Sdiagpval Sdiagtest Sdwpval Sec Serror
b Data utilities Sess Sevals Sfcast Sfcse Sfewd
) S$Fstat Sgmmerit $h Shausman Shqo Accessors
b Numerical methods Shuge Sjalpha Zibeta Sivbeta Slang
b Filters £11t £1nl Smacheps Smnlprobs fmodel
P Probability $ncoeff $nobs $nvars Sobsdate Sobsmajor
. fobsmicro Sobsminor Spd Spi Sfpvalus
3 Linear algebra - - &t = =z
Sglrbreak $rho Srsg Ssample
P Transformations Sgigma Sstderr Sstopwatch Ssysh 5
P Matrix building $sysGamma Ssysinfo 5T 5tl s
D Matrix shaping itest :.\t,rr.a):] :_‘t,rsq. j‘.m%.t, :]
Svewv $vecGamma Sversion Svma Swindows
P Calendar sxlist Sxtxinv Syhat Sylist
P MIDAS
b Statespace abs acos acosh aggregate argname
array asin asinh atan atanh
atof bessel BFGSmax BFGSmin BFGScmax Functions =
BFGScmin bkfilt boxcox bread bwfiltc
bwrite cdemean cdf cdiv cdummi vy
ceil cholesky chowlin crult CROTm
cnumber cnameget cnameset cols corr
COXrTgm oo cosh cowv critical
cum curl dayspan defarray defbundle

Figure 1.15: The function reference can be accessed by Help>Function reference from the
pull-down menu.

The continuation command, the backslash (\), is used when there is a very long command
that exceeds one line. To save the file, use the “save” button at the top of the box (first one from
the left). If this is a new file, you’ll be prompted to provide a name for it; this one I called engel_ch1,
which shows up at the top of the editor window.

To run the program, click the mouse on the “gear” button. In the figure shown, the engel.gdt
gretl data file is opened. The series commands are used to take the logarithm of y and z, and
the o1s command discussed in section 2.4 is used to estimate a simple linear regression model that
has In(foodexp) as its dependent variable and In(income) as the independent variable. Note, the
model also includes constant.

A new script file can also be opened from the toolbar by mouse clicking on the “new script”

button Ei or by using the keyboard command, Ctrl+N.*

One of the handy features of the command script window is how the help function operates. At

=
the top of the window there is an icon that looks like a lifesaver = . Click on the lifesaver button
and the cursor changes into a question mark. Move the question mark over the command you want
help with and click. Voila! You either get an error message (Sorry, help not found) or you are
taken to the topic from the command reference. Generally, this works successfully on commands
that are highlighted in color in the script editor.

44Ctrl4+N” means press the “Ctrl” key and, while holding it down, press “N”.

14

B3 gretl: script editor — O et
DB EE&#w D0ARGeXEEH D
chi6ing 3£ | appendixb.inp 3£ | ch0linp 3%

cpen engel
logs income foodexp
ols 1 foodexp const 1 income

B

(<]

Figure 1.16: The script editor is used to collect a series of commands into what gretl calls a script.
The script can be executed as a block, saved, and rerun at a later time.

1.3.3 Sessions

Gretl also has a “session” concept that allows you to save models, graphs, and data files into
a common “iconic” space. The session window appears below in Figure 1.17. The session window

B8 oretl: icon view — O ot
j AIEIC
; o 1Pl
i 4
z
Data info Data set Surmmary Correlations
H.i.id =]
Model table Scalars Motes Graph page

3

Figure 1.17: The session window

is very handy. It contains icons that give you immediate access to information about the data set,
that opens the edit data window, that display any scalars you have computed, summary statistics,
correlations and any notes you have made.

Objects are represented as icons and these objects can be saved with the session for later use.
When you re-open a saved session, these objects are available again. To add a model to your session,
use the File>Save to session as icon option from the model’s pull-down menu. Or, most gretl
estimation and graph commands can be assigned to an object using the assignment operator <-.
For instance, to assign a least squares estimated model to a session icon called ml in a script, use:

15

1 ml <- ols 1_foodexp const 1_income

To add a graph, right click on the graph and choose the option save to session as icon. Most
graphs can also be assigned to an icon from a script as well. Don’t forget to save the session before
exiting gretlif future access to these is desired; right click on the session window and choose Save
session or from the main gretl window, select File>Session files>Save session as shown below
in Figure 1.18.

ﬁ gretl

Tocls Data View Add Sample Narable Model Help

Dpen data >
Append data... bel
E Save data Ctrl+5
E Save data as... =
Export data... ehold Income in Belgian Francs
9 Send To... i
e

tﬁ Clear data set

Working directory...

Script files >
| = Open session...
Databases > | E
Function packages | & Save session as...
gl Quit Ctrl+ |

Figure 1.18: Saving a session

Once a model or graph is added, its icon will appear in the session icon view window. Double-
clicking on the icon displays the object, while right-clicking brings up a menu which lets you display
or delete the object. You can browse the dataset, look at summary statistics and correlations, and
save and revisit estimation results (Models) and graphs.

The model table is a way of combining several estimated models into a single table. This is
very useful for model comparison. From the gretl manual (Cottrell and Lucchetti, 2018, pp. 16):

In econometric research it is common to estimate several models with a common depen-
dent variable the models contain different independent variables or are estimated using
different estimators. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates
and standard errors) for a given model, and each row contains the estimates for a given
variable across the models.

16

In the Icon view window gretl provides a means of constructing such a table (and
copying it in plain text, IWTEX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display
window, under the File menu, select Save to session as icon or Save as icon
and close.

2. Repeat step 1 for the other models to be included in the table (up to a total of six
models).

3. When you are done estimating the models, open the icon view of your gretl session,
by selecting Icon view under the View menu in the main gretl window, or by
clicking the session icon view icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled Model table. Decide which model you
wish to appear in the left-most column of the model table and add it to the table,
either by dragging its icon onto the Model table icon, or by right-clicking on the
model icon and selecting Add to model table from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second
model selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on
its icon. Under the Edit menu in the window which appears, you have the option
of copying the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on
the model table icon and select Clear table. Then go back to step 4 above and
try again.

In section 6.3 you’ll find an example that uses the model table and an example on page (192).

1.3.4 Generating New Variables

In this manual, new variables are created, statistics are computed based on gretl output, and
matrix calculations are performed using gretl’s scripting language. This means that we will be
generating series, scalars, matrices, lists, and even strings. How does gretl handle these?

Gretl is very forgiving in the generation of new results. The ‘mother’ command for doing this is
genr. The genr command pretty much does it all. In the appropriate context, series, scalar
and matrix are synonyms for this command.

To create a new scalar result, say create a constant c that is equal to 3, you could use scalar c
= 3orgenr ¢ = 3. The scalar and genr commands let gretl know that you are calculating
something and calling it c.

To create a new variable, one can use the series command or genr. Suppose there is a
variable in the dataset called food_exp. You want to create a new variable as the natural log-

arithm of food_exp. This can be done using series or genr (e.g., series 1_food_exp =

17

1n (food_exp)). In the context of a genr or series formula, variables must be referenced by
their names, not their ID numbers. The formula should be a well-formed combination of variable
names, constants, operators and functions. Further details on some aspects of this command can
be found in the Gretl Users Guide.

So, the genr command may yield either a series or a scalar result. For example, the formula
x2 = x * 2 naturally yields a series if the variable x is a series and a scalar if x is a scalar. The
formulae x = 0 and mx = mean (x) naturally return scalars. The genr command handles both
cases seamlessly.

You may want a scalar result to be expanded into a series or vector. This is done using series
as an “alias” for the genr command. For example, series x = 0 produces a series all of whose
values are set to 0. You can also use genr as an alias for scalar. It is not possible to coerce a
vector result into a scalar, but the keyword indicates that the result should be a scalar: if it is not,
an error OCcurs.

In many cases, genr, series, scalar, or matrix statements can be omitted and gretl will
figure out what to compute based on what is on the right-hand side of your equation. This is
dangerous though, because you may inadvertently be trying to compute objects with incompatible
dimensions or of incompatible types.

I am told by members of the gretl team that it is better practice to call things what they are
and so series, scalar, and matrix are better than the generic (but equally effective) genr.
I think there are good reasons to get started on the right foot by adopting good programming
practices.® There are at least three commands that demand the use of genr, rather than series.
These involve creating a time index (genr time) and dummy variables (genr unitdum and
genr dummy). These cases will be pointed out when we get to them.

One of the advantages of using descriptive prefixes to series, scalars, and matrices occurs when
writing and debugging functions. Gretl functions are a powerful way to extend gretl’s capabilities.
They can be finicky though. The inputs must be identified by type as does any output. Type
mismatches are a common source of error. So, the more thought that goes into daily use will pay
dividends later should you decide to start writing your own gretl functions. Note, there are many
user written functions in this manual, so be prepared.

1.4 GNUPLOT

At the end of each chapter that follows you will find listings of the entire gretl script used to
generate the results that are contained in it. When a graph is generated using gnuplot (which
is actually pronounced "new plot”) in a script or from the console, the output may be written
to a file that is placed in the working directory of gretl. If you are not sure where that is, click

5 Astute programmers will note that my own programming leaves much to be desired. Adopting better practices
when learning to program would have made doing econometrics much easier.

18

File>Working directory in the main gretl window to find or change this location. The location
of the file will also be echoed to the screen so it should be fairly easy to locate.

To view the graph and to edit it requires opening the gnuplot program. Before launching

gnuplot for the first time, open gretl’s preference and enable Allow shell commands in the
General preferences tab (see Figure 1.19).

‘W |

|

|’:“

| General | Programs | Editor | Network | HCCME | MPI

|

| Main gretl directory [C:\Program Files\ gretl, l | Browse... |
Use locale setting for decimal poin Allow shell commands

| Show icon view autemnatically Model viewer uses tabs
Prompt to save session Display working directory

| S

|| Theme preference |Clearlook5 < |
Language preference |Aut0matic S |
Default graph scale | 1.0 | |

PDF manual preference | English (US letter paper) < |

o Apply H ¥ cancel H ok |

Figure 1.19: The General tab of the preferences dialog. To launch gnuplot from the console
you need to enable Allow shell commands.

In MS Windows, open the gretl console and type:

open engel

gnuplot foodexp income --output=tmp.plt
launch wgnuplot

This will look like

19

Eq qretl console - O x

HEDDA &
gretl console: type "help' for a list of commands

? open engel

Read datafile C:\Program Files\gretlidata\misc\engel.gdt
periodicity: 1, maxcobs: 235
okservations range:!: 1 to 235

Listing 3 wvariables:
0} const 1) foodexp 2} incoms

? gnuplot foodexp income --output=tmp.plt
wrote C:\Usershleead\Documents\gretl\poeS\tnp.plt
? launch wgnuplot

Now, navigate to the gnuplot window shown in Figure 1.20 and at the gnuplot command prompt
type

pwd

This will reveal the current directory and it should should be your working directory, which is
the default place where graphs are stored using gretl. If not, then use gnuplot’s file>change
directory dialog to get to the desired location. The path and filename inside the single quotes
locates the file on your harddrive. Gretl places these plots into your working directory, which can
be set using File>Working directory from the main gretl window. Figure 1.20 shows what this
looks like.

Another way to do this is to open a command window (Figure 1.2) and type "C:\Program
Files\gretl\wgnuplot" at the command prompt. The double quotes are necessary since the
folder name has a space in it. This will launch the gnuplot program shown in Figure 1.20, from
which you can search for and open graphs that are written to the harddrive. This implementation
has improved since the last version of this manual and is better documented in the gretl Users
Guide. Although scripts are given to generate graphs in this text, the best way to do it is by using
the GUI or from the console. Graphs generated via GUI or the console open to the screen; graphs
created in scripts are saved in the working directory by default, but may be directed to the screen
using the appropriate option.

Once the graph is generated and visible on screen, a right-click of the mouse allows you to edit
the graph and to save it in a variety of useful formats. That is what I have done in a number of
graphs that follow to make them easier to read from the .pdf.

There are a number of other types of plots you can make in gretl. These include boxplots,

histograms, qqplots, mixed frequency time series, and range/mean plots. The underlying engine
that generates these is gnuplot, but gretl gives you easy access to their generation. You can also

20

¥a| gnuplat B O x
File Plot Expressions Functions General Axes Chart Styles 3D Help

fEdH PSS 005

atchlevel 2 last modified 2817-11-15

Copyright (C) 1986-1993, 1998, 2884, 2887-2817
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info
faq, bugs, etc: type "help FAQ™
immediate help: type "help" (plot window: hit 'h')

Terminal type is now 'windows'
gnuplot> pwd
C:WUsershyleead\Documentshgretlipoes
gnuplot> load "tmp.plt'

gnuplot> _

encoding: cpl252

Figure 1.20: The GNUPLOT program window. This is opened from within gretl by typing 1aunch
wgnuplot from the console. Type load ’filename’ to load ' filename’, which should in-
clude the correct path. In this case the file to load is ' tmp.plt’.

access gnuplot by script through File>Script files>New script>gnuplot script from the main
mentu.

Finally, there is a new set of commands in gretl that provide an alternative to the gnuplot
command. The plot block provides may be more convenient when you are producing an elaborate
plot (with several options and/or gnuplot commands to be inserted into the plot file). The plot
block accepts gretl options as well as gnuplot commands. The syntax to employ literal gnuplot
commands in gretl is tricky, if only because gnuplot commands themselves have their own peculiar
syntax. There are many examples in this manual that demonstrate some of these.

21

Chapter 2

Simple Linear Regression

In this chapter you are introduced to the simple linear regression model, which is estimated
using the principle of least squares. A simple food expenditure model is estimated by least squares.
An elasticity is computed, predictions are made, data are graphed and some other statistics com-
puted using least squares results are considered. At the end of the chapter, a simple Monte Carlo
simulation is conducted to explore the properties of least squares in repeated sampling.

2.1 Simple Linear Regression Model

The simple linear regression model is
food_exp; = By + Baincome; +e; t=1,2,....n (2.1)

where food_exp; is the dependent variable, income; is the independent variable, e; is random error,
and (1 and [are the parameters to be estimated. The errors of the model, e;, have an average
value of zero for each value of income;; each has the same variance, o2, and are uncorrelated
with any of the other residuals. The independent variable, income;, must take on at least two
different values in your dataset. If not, a slope cannot be estimated! The error assumptions can
be summarized as e;|income; iid N(0,02). The expression iid stands for independently and
identically distributed and means that the errors are statistically independent from one another
(and therefore uncorrelated) and that each has the same probability distribution. Taking a random
sample from a single population accomplishes this.

2.2 Retrieve the Data

The first step is to load the food expenditure and income data into gretl. The data file is
included in your gretl sample files—provided that you have installed the Principles of Econometrics

22

data supplement that is available from our website. See section 1.1.1 for details.

E gre - O >
File Tools Data View Add 3Sample Variable Model Help '1_'|
food.gdt Cih\Users\leead\ Documents'\gretl\poed
D # Variable name Descriptive label
0 const
2 income weekly household income
(4] i B

Undated: Full range 1 - 40

m &] = o~ 8 3 B

Figure 2.1: The main gretl window. The food expenditure data is loaded from food.gdt using
File>Open data>Sample file and choosing the food dataset from the sample files that accom-
pany POES.

Load the data from the data file food.gdt. Recall, this is accomplished by the commands
File>Open data>Sample file from the menu bar.! Choose food from the list. When the file
containing the data are loaded into gretl, the main window will look like the one in Figure 2.1.
Notice that the Descriptive label column contains some information about the variables in the
program’s memory. For some of the datasets included with this book, it may be blank. These
descriptions, when they exist, are used by the graphing program to label your output and to help
you keep track of variables that are available for use. Before graphing output or generating results
for a report or paper, consider adding meaningful labels to your variables to make the output easier
to understand. This can be accomplished by editing the attributes of the variables.

To do this, highlight the variable whose attributes you want to edit, right-click, and the menu
shown in (see Figure 2.2) appears. Select Edit attributes to open a dialog box (Figure 2.3) where
the variable’s name can be changed, a description assigned, and a display name given. Describe and
label the variable food_exp as ‘Food Expenditure’ and income as ‘Weekly Income ($100).” The
dialog can also be opened using F2 from the main gretl window or using the keyboard shortcut,
CTRLHE. Finally, the setinfo command can be used to set the description and the label used
in graphs.

In the following example a script opens the food.gdt dataset, adds variable descriptions, and
assigns a label to be used in subsequent graphs.

1 open "@workdir\data\food.gdt"
2 setinfo food_exp -d "household food expenditure per week" \
3 -n "Food Expenditure/Week"

! Alternately, you could click on the open data button on the toolbar. It is the one that looks like a folder on the
far right-hand side.

23

“ gretl - O hd
File Tools Data View Add 5ample Variable Model Help |E|
food.gdt ChUsershleead\Documents grethpoe3
D= Variable name Descriptive label
0 const
ood_exp ousehold food expenditure per wee Disol | |
2 income weekly household income 1=pley values

Edit values
Summary statistics
Frequency distribution

| et— [|

Undated: Full range 1 - 40

W @2 ~EL 82 8B

Delete

Figure 2.2: Highlight the desired variable and right-click to bring up the pull-down menu shown
here. You can also use F2 or keyboard shortcut ‘CTRL~+e’ to bring up the dialog.

“ gretl: variable attributes

] ID number:

Name: [food_exp

Description:

[householdfood expenditure per week]]

Display name (shown in graphs): [Food Expenditures/ Week

[Treat this variable as discrete

[J Mumeric values represent an encoding

l x Close

(&]

Figure 2.3: Variable edit dialog box

4 setinfo income -d "weekly household income" -n "Weekly Income"
5 labels

The —d flag is given followed by a string in double quotes. It is used to set the descriptive label.
The —n flag is used similarly to set the variable’s name in graphs. Notice that in line 2 setinfo
uses the continuation command (\) since this command is too long to fit on a single line. The
labels command in line 5 will have gretl print the current descriptions to the screen.

24

-
“ gretl: define graph = | E] S

XY scatterplot
food_exp X-axis vaniable
¥-axis variables
food_exp
Help I l Clear I [Cancel I [oK
= &

Figure 2.4: Use the dialog to plot of the food expenditure against Weekly Income

2.3 Graph the Data

One way to generate a graph of the food expenditure data that resembles the one in Figure

2.6 of POESJ, is to use the L button on the gretl toolbar (fourth icon from the right). Clicking
this button brings up a dialog to plot the two variables against one another. Figure 2.4 shows this
dialog where x is placed on the x-axis and y on the y-axis. The result appears in Figure 2.5. Notice
that the labels applied above now appear on the axes of the graph.

Figure 2.5 plots weekly food expenditures on the y axis and weekly income on the x. Gretl,
by default, also plots the fitted regression line. The benefits of assigning labels to the variables
becomes more obvious. Both X- and Y-axes are informatively labeled and the graph title is changed
as well. More on this later.

2.4 Estimate the Food Expenditure Relationship

Now you are ready to use gretl to estimate the parameters of the food expenditure equation.
food_exp; = p1 + Paincome; +¢e; t=1,2,....n (2.2)

From the menu bar, select Model>Ordinary Least Squares from the pull-down menu (see
Figure 2.6) to open the dialog box shown in Figure 2.7. From this dialog you’ll need to tell gretl

25

B4 grett: graph - X

Food Expenditure/Week versus Weekly Income (with least squares fit)
600

T T
¥ =834+ 10.2X +

350 B

Food Expenditure/Wweek

3 10 15 20 23 30
Weekly Income

Figure 2.5: XY plot of the food expenditure data

which variable to use as the dependent variable and which is the independent variable. Notice that
by default, gretl assumes that you want to estimate an intercept (f;) and includes a constant as
an independent variable by placing the variable const in the list by default. To include z as an
independent variable, highlight it with the cursor and click the green Add arrow button.

The gretl console (see section 1.3.1) provides an easy way to run a regression. The gretl

console is opened by clicking the console button on the toolbar, . The resulting console window
is shown in Figure 2.8.

At the question mark in the console simply type

ols foodexp const income

to estimate your regression function. The syntax is very simple, ols tells gretl that you want
to estimate a linear regression using ordinary least squares. The first variable listed will be your
dependent variable and any that follow, the independent variables. These names must match the
ones used in your data set. Since ours in the food expenditure example are named, foodexp and
income, respectively, these are the names used here. Don’t forget to estimate an intercept by
adding a constant (const) to the list of regressors. Also, don’t forget that gretl is case sensitive
so that x and X are different entities.

26

Table 2.1: OLS estimates using the 40 observations 1-40.

OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t¢-ratio p-value
const 83.4160 43.4102 1.9216 0.0622

income 10.2096 2.09326 4.8774 0.0000
Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884 P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

This yields window shown in Figure 2.9 below. The results are summarized in Table 2.1. An
equivalent way to present results, especially in very small models like the simple linear regression,
is to use equation form. In this format, the gretl results are:

food_exp = 83.4160 + 10.2096 income
(43.410) (2.0933)

n=40 R®>=0.3688 F(1,38)=23.789 & =89.517

(standard errors in parentheses)

Finally, notice in the main gretl window (Figure 1.4) that the first column has a heading called
ID #. An ID # is assigned to each variable in memory and you can use the ID # instead of its
variable name in your programs. For instance, the following two lines yield identical results:

1 ols food_exp const income
2 ols 1 0 2

One (1) is the ID number for food_exp and two (2) is the ID number of income. The constant
has ID zero (0). If you tend to use long and descriptive variable names (recommended, by the way),
using the ID number can save a lot of typing (and some mistakes). It can also make figuring out
which variables are in the model, difficult so choose your poison.

27

2.4.1 Elasticity

Elasticity is an important concept in economics. It measures how responsive one variable is to
changes in another. Mathematically, the concept of elasticity is fairly simple:

i percentage change in y Ay/y (2.3)

percentage change in x Ax/x

In terms of the regression function, we are interested in the elasticity of average food expenditures
with respect to changes in income:

AE(y)/E(y) z

T PRy

E(y) and z are usually replaced by their sample means and [, by its estimate. The mean of
food_exp and income can be obtained by using the cursor to highlight both variables, use the
View>Summary statistics from the menu bar and equation (2.4) can be computed by hand.
This yields the output shown in Figure 2.10.

(2.4)

Or from the console type:

1 summary foodexp income

So, using the numbers from the regression and the summary statistics we get 10.2096%19.605/283.57 =
0.705855.

This can be made easier by using the gretl language to do the computations—no calculator
needed! Simply open up a new script and type in:

1 ols food_exp const income --quiet
2 scalar elast=$coeff (income) *mean (income) /mean (food_exp)

Following a least squares regression, gretl stores the least squares estimates of the constant and
the slope in variables called Scoeff (const) and $coeff (income), respectively. In addition,
it uses mean (income) and mean (food_exp) to compute the mean of the variables income and
food_exp. The ——quiet option is convenient when you don’t want or need the output from the
regression printed to the screen. The result from this computation appears below in Figure 2.11.

2.4.2 Prediction

Similarly, gretl can be used to produce predictions. The predicted food expenditure of an
average household having weekly income of $2000 is:

food_exp; = 83.42 + 10.21income; = 83.42 + 10.21(20) = 287.61 (2.5)

28

Remember, income is measured in $100, so 20 in the above expression represents 20*$100=$2,000.
The gretl script is:

scalar yhat = $coeff (const) + Scoeff (income) *20

which yields the desired result, 287.61.

2.4.3 Estimating Variance

In section 2.7 of POES, you are given expressions for the variances of the least squares estimators
of the intercept and slope as well as their covariance. These estimators require an estimate of the
overall variance of the model’s errors, o2. Gretl does not explicitly report the estimator, 42, but
rather, its square root, . Gretl calls this “S.E. of regression” which from the output is 89.517.
Thus, 89.517% = 8013.29. Gretl also reports the sum of squared residuals, equal to 304505.2, from
which 62 can be calculated. Dividing the sum of squared residuals by the estimator’s degrees of
freedom yields 62 = 304505/38 = 8013.29.

The estimated variances and covariance of the least squares estimator can be obtained once the
model is estimated by least squares by selecting the Analysis>Coefficient covariance matrix
command from the pull-down menu of the model window as shown in Figure 2.12. The result is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const
4.38175 income

So, estimated variances of the least squares estimator of the intercept and slope are 1884.44 and
4.38175, respectively. The least squares standard errors are simply the square roots of these num-
bers. The estimated covariance between the slope and intercept —85.9032.

You can also obtain the variance-covariance matrix by specifying the ——vcv option when esti-
mating a regression model. For the food expenditure example use:

1 ols food_exp const income --vcv

to estimate the model using least squares and to print the variance covariance matrix to the results
window.

29

2.5 Repeated Sampling

Perhaps the best way to illustrate the sampling properties of least squares is through an ex-
periment. In section 2.4.3 of POES5 are presented with results from 10 different regressions (POES
Table 2.2). These were obtained using the dataset table2-2.gdt which is included in the gretl
datasets that accompany this manual. To reproduce the results in this table you could estimate 10
separate regressions

open "@workdir\datal\table2_2.gdt"
ols yl const x
ols y2 const x

ols y10 const x

The ten regressions can be estimated more compactly using one of gretl’s loop constructs. The
first step is to create a list that contains the variable names for the dependent variables as in line 1
of the script below. The statement 1ist ylist is used to put data series into a collection called
ylist; each of the series, y1, y2, ..., y10 are included. Such named lists can be used to make
scripts less verbose and easier to modify. In gretl lists are series ID numbers and can be used
only when a dataset is in place. The foreach loop in line 2 uses an index variable, i, to index a
specified list of strings. The loop is executed once for each string in the list. The numerical value
of the index starts at 1 and is incremented by 1 at each iteration. To refer to elements of the list,
use the syntax listname.$i. Be sure to close the loop using endloop.

1 open "@workdir\dataltable2_2.gdt"

2 list ylist = vyl y2 y3 yv4 yv5 y6 y7 y8 y9 y10
3 loop foreach i ylist

4 ols ylist.$1i 0 x

5 endloop

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main
window, via the item Define or edit list. This dialog is shown in Figure 2.13

A simple modification of the hansl script collects the results of the 10 samples and finds the
average values of the estimated coefficients. Simply add the progressive option to line 3 as in:

3 loop foreach i1 ylist —-—-progressive

30

This shows how easy it is to conduct a Monte Carlo simulation in gretl. This will be discussed at
length below in section 2.8.

You can also generate your own random samples and conduct a Monte Carlo experiment using
gretl. In this exercise 100 samples of data from the food expenditure data are generated, the slope
and intercept estimated with each data set, and the sampling performance of the least squares
estimator over those 100 different samples is summarized. What will become clear is that the
outcome from any single sample is a poor indicator of the true value of the parameters.

Start with the food expenditure model:
food_exp;, = B1 + Baincome; + e; (2.6)

where food_exp; is total food expenditure for the given time period and income; is income over the
same period. Suppose further that we know how much income each of 40 households earns in a
week. Additionally, we know that on average a household spends at least $80 on food whether it
has income or not and that an average household will spend ten cents of each new dollar of income
on food. In terms of the regression this translates into parameter values of 51 = 80 and 2 = 10.

Our knowledge of any particular household in a population is considerably less. We don’t know
how much it actually spends on food in any given week and, other than differences based on income,
we don’t know how its food expenditures might otherwise differ. Food expenditures will vary for
reasons other than differences in family income. Some families are larger than others, tastes and
preferences differ, and some may travel more often or farther making food consumption more costly.
It is impossible for us to know beforehand exactly how much any household will spend on food,
even if we know how much income it earns. All of this uncertainty is captured by the error term
in the model. For the sake of experimentation, suppose we also know that e; ~ N (0, 882).

With this knowledge, the properties of the least squares estimator can be studied by generating
samples of size 40 using the known data generation mechanism. One hundred food expenditure
samples are created using the known parameter values, the model estimated for each using least
squares, and then summary statistics are used to determine whether least squares, on average
anyway, is either very accurate or precise. So in this instance, we know how much each household
earns, how much the average household spends on food that is not related to income (57 = 80),
and how much that expenditure rises on average as income rises. What is unknown is how any
particular household’s expenditures responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic component of food
expenditure for the i** household is 80+ 10 x income;. This differs from its actual food expenditure
by a random amount that varies according to a normal distribution having zero mean and standard
deviation equal to 88. So, we use computer generated random numbers to generate a random error,
e;, from that particular distribution. Repeat this for the remaining 39 individuals. This generates
one Monte Carlo sample and which is used to estimate the parameters of the model. The results
are saved and then another Monte Carlo sample is generated and used to estimate the model and
SO on.

In this way, as many samples of size 40 as desired can be created. Furthermore, since the

31

underlying parameters are for these samples are known, we can determine how close our estimators
get to revealing their true values.

Now, computer generated sequences of random numbers are not actually random in the true
sense of the word; they can be replicated exactly if you know the mathematical formula used to
generate them and the ‘key’ that initiates the sequence. In most cases, these numbers behave as if
they randomly generated by a physical process.

To conduct an experiment using least squares in gretl use the script found in below:

2 open "@workdir\data\food.gdt"
3 set seed 3213789

4 loop 100 —--progressive —--quiet
5 series u = normal (0, 88)

6 series yl= 80+10xincome+u
7 ols yl const income

8 endloop

The first line opens the food expenditure data set that resides in the data folder of the working
directory. The next line, which is actually not necessary to do the experiments, sets the key, referred
to as the seed, that initiates the pseudo-random numbers at a specific point. This is useful, since
it will allow one to get the same results each time the script runs.

In Monte Carlo experiments loops are used to estimate a model using many different samples
that the experimenter generates and to collect the results. The simplest loop construct in gretl
begins with the command loop NMC —--progressive —-quiet and ends with endloop. This
is called a count loop. NMC in this case is the desired number of Monte Carlo samples and
the option ——progressive is a command that prevents the output at each iteration from being
printed to the results window; the ——quiet option will suppress some printing to the screen as
well.

There are a couple of useful commands that can be added to the program. The print command
collects (scalar) statistics that you have computed and finds their averages and standard deviations.
The store command stores these in a gretl data file. These are discussed further below.

Within the loop itself, each new sample is generated and instructions are given about how it
should be used and where to store desired results. The series command generates new variables.
In the first line u is generated using the gretl command normal (), which when used without
arguments produces a computer generated standard normal random variable. In this case, the
function contains two arguments (e.g., series u = normal (0,88)). The normal function
takes an ordered pair as inputs (commonly referred to as ‘arguments’), the first of which is the
desired mean of the random normal and the second is its standard deviation. The next line adds
this random element to the systematic portion of the model to generate a new sample for food
expenditures (using the known values of income from the dataset).

32

Next, the model is estimated using least squares. After executing the script, gretl prints out
some summary statistics to the screen. These appear as a result of using the ——progressive
loop option. The result appears in Figure 2.14. Note that the average value of the intercept is
about 88.147. This is getting close to the truth. The average value of the slope is 9.55972, also
reasonably close to the true value. If you were to repeat the experiments with larger numbers of
Monte Carlo iterations, you will find that these averages get closer to the values of the parameters
used to generate the data. This is what it means to be unbiased. Unbiasedness only has meaning
within the context of repeated sampling. In your experiments, you generated many samples and
averaged results over those samples to get close to finding the truth. In actual practice, you do not
have this luxury; you have one sample and the proximity of your estimates to the true values of
the parameters is always unknown.

In section 2.8 and in the script at the end of this chapter, you will find another example of
Monte Carlo that is discussed in POFE$S. In this example, a sample of regressors is generated using
a simple loop and the properties of least squares is examined using 1000 samples. The use of the
print and store commands will be examined in section 2.8 as well.

2.6 Estimating Nonlinear Relationships

Since economic relationships are often not linear, we need to be able to create models that allow
the independent and dependent variable to be nonlinearly related. Consider the following simple
regression

price = 1 + Pasqft + e (2.7)

The parameter, 8o measures the expected change in price given an additional square foot of living
space in the home. As specified, this marginal effect is the same for homes of every size. It might
make more sense to allow the marginal effect to depend on the size of the house. Larger houses
also tend to be more luxurious and therefore another square foot of living area might add more to
the average home price. This can be modeled by using a quadratic term in the model.

price = oy + agsqft + e (2.8)

The marginal effect of another square foot is now dprice/dsqft = 22 sqft. The estimated elasticity

is equal to
sqft?
€ = slope x —— = (262) X —
price price

(2.9)

Obviously, the slope and elasticity depend on the size and price of the home. The user must select
values at which these are to be evaluated. This is done in the script below where slopes for houses
of size 2000, 4000, and 6000 square feet are computed. The elasticities are computed for prices
of $117,461.77, $302,517.39, and $610,943.42. The scalar and series variable types used here
are not strictly necessary in gretl. I've used them to make things more clear and it is a good
programming practice in general.

33

open "@workdir\datal\br.gdt"

series sqgft2 = sqgft”2

ols price const sqgft2

scalar slope_2000 = 2%Scoeff (sqft2)*2000
scalar slope_4000 = 2+S$Scoeff (sqft2) 4000
scalar slope_6000 = 2%Scoeff (sgqft2) 6000
scalar elast_2000 = slope_2000%x2000/117461.77
scalar elast_4000 = slope_4000%x4000/302517.39
scalar elast_6000 = slope_6000%x6000/610943.42

© 0w N O s W N

The output from the regression is

price = 55776.6 + 0.01542 sqft2
(2890.4) (0.000313)

n=1080 R>=0.6921 F(1,1078) =2426.0 & = 68207.

(standard errors in parentheses)

and the graph of home price against size is shown on the righthand side of Figure 2.15.

Another way to estimate a nonlinear relationship between price and sgft is to alter the functional
form of the model. A log-linear model uses the logarithm of a variable as the dependent variable,
and the untransformed value of regressor as the independent variable. In the simple home price
model this is

In(price) = y1 + y2sqft+ e (2.10)

The logarithmic transformation is often used on data that come from a heavily skewed distribution
that has a long-tail to the right. Taking a look at the histograms for price and it natural logarithm
shown in Figure 2.16 reveals just this sort of data and how the natural log can ‘regularize’ the series.
These graphs were produced by first taking the natural log and then using the freqg function to
generate the histograms. The code is

1 series 1_price = ln(price)
2 freq price
3 freq 1_price

Finally, the log-linear model is estimated and the predicted values from the regression are plotted
against house size.

logs price

ols 1_price const sqgft

series 1_yhat = $yhat

series yhat = exp(l_yhat)

gnuplot price yhat sqgft -—--output=display —--suppress—-fitted

Gl W N =

34

In the first line, an alternative method of generating the natural logarithms is used. The logs
command can be handy, especially when finding the logarithms of several series; just list all of the
desired series after the 1ogs command. The regression is estimated in line 2, the predicted values
from the regression saved to a new series called yhat in line 3, and then converted back to price
by taking the antilog in line 4. The price and predicted values are plotted against sqgft in the last
line, with the output sent to the computer display.

The estimated equation is:

—

In(price) = 10.839 + 0.0004113 sqft
(0.0246) (9.708e—006)
n=1080 R>=0.6244 F(1,1078) =1794.8 & = 0.32147

(standard errors in parentheses)

The graph appears on the left-hand side of Figure 2.15. Comparing the log-linear model to
the quadratic shows that the nonlinearity estimated by the log-linear is similar, but a bit more
pronounced.

Several useful statistics can be generated using these estimates. For instance, a quick prediction
could be made about home prices for houses of given size.

price = exp(10.839 + 0.0004113sqf?)

At 2000 and 4000 square feet, the simple prediction is:

1 scalar p_2000 = exp(Scoeff (const)+Scoeff (sqgft)«2000)
2 scalar p_4000 exp ($coeff (const) +Scoeff (sqgft) «4000)

which yields p_2000=115975 and p_4000=263991.

Marginal effects

dpric _ _
5’87;6 — Ayprice = 0.0004113price

For houses priced at $100,000 and $500,000 this is computed:

1 scalar me_100k = Scoeff (sqgft)*100000
2 scalar me_500k = S$Scoeff (sqgqft)+500000

This produces me_100 = 0.0411269 and me_500 = 0.205634.
Elasticities are the marginal effects multiplied by z/y. In this model it becomes 49 sqft

35

1 scalar e_2000 Scoeff (sqgft) «2000
2 scalar e_4000 = S$coeff (sqgft) 4000

which yields e_2000 = 0.822538 and e_4000 = 1.64508

2.7 Regression with an Indicator Variable

An indicator variable is a variable that can be equal to one of two possible values. Commonly,
this an indicator variable can be a 1 or a 0. So for instance, if a house is located in the University
Town subdivision the variable is given the value of 1 and if not it is equal to 0.

1 if house is in University Town
utown = (2.11)

0 if not

One can look at the empirical distributions of the two sets of home prices using histograms. In this
case, the smpl command is used to limit the sample to each of the two cases.

1 open "@workdir\datalutown.gdt"

2 smpl utown == 0 —--restrict

3 freq price --plot=display —--nbins=13
4 smpl utown == 1 --replace —--restrict
5 freq price —-plot=display —-—nbins=13

In line 2 the ——restrict option of the smpl command is used to restrict the sample to the
observations for which the series utown is zero. The double equal sign is a logical operator (as
opposed to an assignment operator). In this line it checks to see whether the value of utown
is equal to 0. The freqg command is used to generate the histogram for the price series. The
——-plot=display option will send the plot to the computer screen and the ——nbins=13 option
sets the number of bins for the histogram to 13. The latter ensures that the plots look just like the
ones in Figure 2.18 of POFES.

The regression model becomes
price = 1 + [Bautown + e (2.12)

As pointed out in POFE$, taking the expected value of a regression is very useful when it contains
an indicator variable. This will reveal how to interpret its coefficient. In this model

b1+ B2 if utown =1

2.13
51 if utown =0 ()

E[price|utown] = B1 + Pautown = {

36

So, estimating the model using the utown.gdt data yields

price = 215.732 + 61.5091 utown
(1.3181) (1.8296)

n=1000 R%*=0.5306 F(1,998)=1130.2 & = 28.907

(standard errors in parentheses)

This implies that the average home price (in $1000) in University Town is 215.7325 + 61.5091 =
277.2416 and the average price elsewhere is 215.7325.

The script that produces the same result is straightforward:

1 open "@workdir\datalutown.gdt"

2 ols price const utown —-—quiet

3 scalar ut = $coeff (const)+Scoeff (utown)
4 scalar other = S$Scoeff (const)

5 printf "\nThe average home price: \n \
6 University Town = $%.2f \n \

7 Elsewhere = $%.2f\n", \

8 ut+*1000, other+«1000

The output is

The average home price:
University Town = $277241.60
Elsewhere = $215732.49

The last command in this script uses a function called printf. printf stands for print
format and it is used to gain additional control over how results are printed to the screen. In the
next section contains a brief explanation of how to use it.

2.7.1 Using printf

The printf command can be very useful in programming gretl to produce output that is
comprehensible and neat. In the preceding example I have combined descriptive text and numerical
results. The syntax of printf comes from the C programming language and it can be a bit tricky
to use, so I will try to explain a little about it. I use it extensively in the rest of this book so that
you get the used to it. Once used, its mystery quickly evaporates—the syntax is really quite elegant.

The print £ function is divided into two parts. The first part consists of what you want written
to the screen, and the second contains the computations that you want placed within the text.

37

1 printf "\nThe average home price: \n \
2 University Town = $%.2f \n \

3 Elsewhere = $%.2f\n", \

4 ut*1000, other+1000

The first part, called the format string, is enclosed in double quotes and occupies the first three
lines. The \n command stands for ‘new line’ and it tells gretl to issue a line feed (in old computer
lingo, that means go to a new line). It is used at the beginning and the end of the format string
and is not strictly necessary. In this case, a line feed is given before and after the format string to
give a little more white space to your printed output. If you want line feeds, be sure to put these
inside the double quotes that enclose the format string.

The \ that follows the line feed is the line continuation command. Putting the entire command
on several lines makes it easier to code and harder to make an error.

Within this ‘sentence’ or ‘format string’ are two format commands. A format command
tells gretl how the numerical results are to be printed. A format command begins with the %
symbol and is followed by instructions about how many digits and what kind of format to use for
the numerical result you want printed. These formats are also adopted from the C programming
language. The format %f is a fixed point format and the number that falls between the percent
sign % and the desired format f indicates the overall width of what is to be printed and the number
decimal places to print. So, %.2f tells gretl to print only two numbers to the right of the decimal
without limiting the overall number of characters for the number. Note, the dollar sign ($) that
precedes the format command % . 2f) is actually part of the string that will be printed to the screen

(e.g., University Town = $).

Recognized numeric formats for the format command are $s, $e, $E, $f, g, %G and $d,% in
each case with the various modifiers available in C. Examples: the format %.10g prints a value
to 10 significant figures; $12.6f prints a value to 6 decimal places, with a width of 12 characters.
The format %$s should be used for strings.

The second part of the printf command contains the values to be printed at each of the
format commands. There must be one result for each format command. These are separated by
commas. Since there are two format commands, gretl is expecting two results to be listed. The
result computed and stored in ut will be printed at the first format command, %.2f, and the one
in other will be printed at the second %.2£. Also, note that these can be operated on within the
printf command. Each of these scalars is being multipled by 1000.

The values to be printed must follow the format string, separated by commas. These values
should take the form of either (a) the names of variables, (b) expressions that are valid for the
genr command, or (c¢) the special functions varname () or date ().

2%e is for scientific notation with lower case e, $E is scientific upper case, $g picks the shorter of $e or %f, and

%G picks the shorter of $E or $f. The format command %d is for a signed decimal integer.

38

Finally, there is a trick to get printf to print a percent sign. Since % is used to mark the
placement of numbers. To print a percent sign it must be preceded by another percent symbol, %;
hence, 90%% prints as 90%.

2.8 Monte Carlo Simulation

Appendix 2H in POFE5 discusses some of the rudimentary features of Monte Carlo simulations.
Figure 2H.1 plots true pdfs for two normal random variables. One is N (200, 50%) and the other is
N (300, 50%). The essential features of this graph can be generated in gretl from the GUL

From the menu bar select, Tools>Distribution graphs from the pull-down menu. This opens
the add distribution graph dialog shown in Figure 2.17. In this instance we choose the normal
tab and set mean to 200 and std. deviation to 50. Click OK. Find the menu icon on the graph
located in the lower right corner of the graph window. Click on it and select Add another curve
from the fly-out menu. Then, return to the dialog and change the mean to 300 and click OK. This
produces the graph shown in Figure 2.18

2.8.1 MC Basics

The first step in a Monte Carlo exercise is to model the data generation process. This requires
what Davidson and MacKinnon (2004) refer to as a fully specified statistical model. A fully
specified parametric model “is one for which it is possible to simulate the dependent variable
once the values of the parameters are known” (Davidson and MacKinnon, 2004, p. 19). First you’ll
need a regression function, for instance:

E(yil%) = b1 + Baxi (2.14)

where y; is your dependent variable, x; the dependent variable, €2; the current information set,
and 1 and (2 the parameters of interest. The information set 2; contains z; as well as other
potential explanatory variables that determine the average of y;. The conditional mean of y; given
the information set could represent a linear regression model or a discrete choice model. However,
equation (2.14) is not complete; it requires some description of how the unobserved or excluded
factors affect y;|€;.

To complete the the specification we need to specify an “unambiguous recipe” for simulating the
model on a computer (Davidson and MacKinnon, 2004, p. 17). This means we’ll need to specify a
probability distribution for the unobserved components of the model and then use a pseudo-random
number generator to generate samples of the desired size.

39

2.8.2 A Simple Example

In this example the data generation process will be as follows. We will let n = 40 and based on
the food expenditure model discussed above.

foodexp; = By + Paincome; +e; i=1,2,---,40. (2.15)
The errors of the model will #id N(0,88). The parameters 1 = 80 and f2 = 10.

1 # Monte Carlo simulation

2 open "@workdir\data\food.gdt"

3 set seed 3213789

4 loop 1000 —--progressive —-—-quiet
5 series u = normal (0, 88)

6 series yl= 80+10xincome+u

7 ols yl const income

8 endloop

The food.gdt data are loaded and a seed for the pseudo-random number generator is chosen. A
progressive loop of 1000 iterations is initiated. The errors are generated from normals variates
having a mean of zero and a standard deviation of 83. These are added to the systematic part of
the model that depends on the income variable in the data as well as the chosen parameters for
the simulation. Finally, the regression is run and the loop closed. The progressive option takes care
of collecting results and printing them to the screen.

OLS estimates using the 40 observations 1-40
Statistics for 1000 repetitions
Dependent variable: yl

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
const 79.7886 43.3898 42 .6064 5.00518
income 10.0183 2.09756 2.05451 0.241353

You can see that the average estimate of the mean over 1000 samples of size 40 is 79.8, which is
very close to our parameter, 80. Likewise the slope is very close to 10.

2.8.3 MC using fixed regressors

In this example a set of regressors is generated and used repeatedly to generate new samples
of the dependent variable using known parameters. This is what we did in the preceding section

40

using the food expenditure data.
Y =B+ Pomi +e; i=1,2,---,40. (2.16)

In this example we set the intercept 1 = 100 and the slope 3 = 10. The errors are N (0,50%).
The errors of the model will iid N(0,88). The parameters 5; = 100 and Sy = 10. Finally, let
r1,%2, -+ ,x20 = 10 and let xo1, x99, -+ , x40 = 20. This gives us enough information to simulate
samples of y; from the model. The nulldata command opens an empty dataset containing 40
observations. The series x is generated using gretl’s conditional assignment operator.®> Here
is how it works. The series x is created. The statement in parentheses is checked. The question
mark (?) is the conditional assignment. If the statement in parentheses is true, then x is assigned
the value to the left of the colon. If false it gets the value to the right. So, when index (a gretl
default way of identifying the observation number) is greater than 20, x is set to 20, if index is less
than or equal to 20 it is set to 10.

Normal random variates are added to the model, it is estimated by ols, and several statistics
from that computation are retrieved, printed, and stored in a specified location.

The hansl script is

Generate systematic portion of model
nulldata 40

Generate X

series x = (index>20) ? 20 : 10

Generate systematic portion of model
series ys = 100 + 10*x

© 0 N s W N

loop 10000 —--progressive —-—-quiet

series y = ys + normal (0, 50)

ols y const x

scalar bl Scoeff (const)

scalar b2 = S$coeff (x)

scalar sig2 = $sigma”2

print bl b2 sig2

store "@workdir\coef.gdt" bl b2 sig2
endloop

R e R R R e
& o B @ 0 R~ O
Il

-
<Y

This loops from 1 to 10000 in increments of 1.

The print statement used in this context actually tells gretl to accumulate the things that
are listed and to print out summary statistics from their computation inside the loop. The store
command tells gretl to output b1, b2, and sig2 to an external file. The ——progressive option

3A ternary operator has three parts. In this case, the parts give us a fancy way of creating if/else statements. The
first part, a, lies to the left of 2, the second, b, falls between the question mark and the colon and the last, c, is to
the right of the colon, e.g., a?b:c. If a is true, then b if not, then c.

41

to the loop command alters the print and store commands a bit, and you can consult the Gretl
Users Guide for more information about how.

Here is the output from the Monte Carlo. First, the output from the progressive loop:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: vy

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
const 100.275 25.0830 24.8378 2.86075

X 9.97793 1.58222 1.57088 0.180930

Statistics for 10000 repetitions

In a progressive loop, gretl will print out the mean and standard deviation from the series of
estimates. It works with all single equation estimators in gretl and is quite useful for Monte Carlo
analysis. From this you can see that the average value of the constant in 1000 samples is 100.491.
The average slope was 9.962. The third column gives the mean of the standard error calculation
from the simulation. If the standard errors are being estimated consistently, then these should be
fairly close to the standard deviation of estimated coefficients to their left. The outcome from the
print command is:

mean std. dev

bl 100.275 25.0830
b2 9.97793 1.58222
sig2 2500.41 574.421

When the print command is issued, it will compute and print to the screen the ‘mean’ and
‘std. dev.” of the estimated scalar. Notice that bl and b2 match the output produced by the
—-—progressive option. The print command is useful for studying the behavior of various
statistics (like tests, confidence intervals, etc) and other estimators that cannot be handled properly
within a progressive loop (e.g., mle, gmm, and system estimation commands).

The store statement works behind the scenes, but yields this informative piece of information:

store: using filename C:\Users\leead\Documents\gretl\poe5\coef.gdt
wrote C:\Users\leead\Documents\gretl\poe5\coef.gdt

This tells you where gretl wrote the dataset that contains the listed scalars, and that is was written
properly. Now you are ready to open it up and perform additional analysis. In this example, we

42

have used the @workdir macro. This tells gretl to write the file to the currently defined working
directory. You could write files to gretl’s temporary directory using @dotdir\coef.qgdt.

The data set is opened and the summary statistics generated (again, if needed)

1 open "@workdir\coef.gdt"

2 summary

3 freq b2 —--normal --plot=display

From here you can plot frequency distribution and test to see whether the least squares estimator

of slope is normally distributed.

ﬂ gretl: graph
0.3 T T T
b2
N(9.9803,1.5717)

T T T
Test statistic for normality:
Chi-square(2) = 1.560 [0.4584]

Density

EE OB

The histogram certainly appears to be normally distributed compared to the line plot of the normal.
Also, the hypothesis test of the normality null against nonnormality cannot be rejected at any

reasonable level of significance.

2.8.4 MC using random regressors
In this simulation we replace the fixed regressors with random draws from a N(15,1.62) distri-

bution.
43

1 # Generate systematic portion of model
2 nulldata 40

3 loop 10000 —--progressive —--quiet

4 series x = normal (15,1.6)

5 series y = 100+10%x + normal (0, 50)
6 ols y const x

7 scalar bl = S$coeff (const)

8 scalar b2 = S$coeff (x)

9 scalar sig2 = S$sigma”2

10 print bl b2 sig2

11 store "@workdir\coef_random.gdt" bl b2 sig2
12 endloop

= =
=W

open "@workdir\coef_random.gdt"
summary
freq b2 --normal --plot=display

=
o w

The simulation results are:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated
Variable coefficients coefficients std. errors std. errors
const 101.469 78.2445 76.4855 12.5717

X 9.89660 5.18802 5.07225 0.835130

Although the means have not changed much, the coefficients are much more variable when the
regressors are random. The standard deviation of the coeflicients is roughly three times what is
was in the fixed regressor case. The results are quite similar to those in Table 2H.2 in POFES5.

2.9 Script

The script for Chapter 2 is found below. These scripts can also be found at my website http:
//www.learneconometrics.com/gretl.

1 set echo off
2 open "@workdir\data\food.gdt"

44

http://www.learneconometrics.com/gretl
http://www.learneconometrics.com/gretl

setinfo food_exp —-d "household food expenditure per week" \

-n "Food Expenditure/Week"
setinfo income -d "weekly household income" -n "Weekly Income"
labels

#Least squares

ols food_exp const income —--vcv

10 ols 1 0 2

11

12 #Summary Statistics

13 summary food_exp income

14

15 #Plot the Data

16 gnuplot food_exp income --output=display
17

18 #List the Data

19 print food_exp income --byobs

20

21 #Elasticity

22 0ols food_exp const income —-—-quiet

23 scalar elast=S$coeff (income) *mean (income) /mean (food_exp)
24

25 #Prediction

26 scalar yhat = S$coeff (const) + $coeff (income) x20
27

28 #Table 2.2

29 open "@workdir\dataltable2_2.gdt"

© o N O s W

30 list ylist = vyl y2 y3 y4 y5 y6 yv7 yv8 yv9 y10
31 loop foreach i ylist
32 ols ylist.$i const x

33 endloop

34

35 #Find the averages using progressive loop
36 open "Q@workdir\datal\table2_2.gdt"

37 list ylist = vyl y2 y3 v4 y5 y6 yv7 y8 y9 y10
38 loop foreach i ylist —--progressive
39 ols ylist.$i const x

40 endloop

41

42 # slopes and elasticities at different points
43 open "@workdir\data\br.gdt"

44 series sqgft2 = sqgft”2

45 o0ls price const sqgft2

46 scalar slope_2000 = 2+Scoeff (sgft2)x2000

47 scalar slope_4000 = 2+S$Scoeff (sqgft2) 4000

48 scalar slope_6000 = 2+x$Scoeff (sqft2)x6000

49 scalar elast_2000 = slope_2000%x2000/117461.77
50 scalar elast_4000 = slope_4000x4000/302517.39
51 scalar elast_6000 = slope_6000x6000/610943.42
52

53 # histogram for price and log(price)

45

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

96
97
98
99
100
101
102
103
104

series 1_price = 1ln(price)
freq price
freq 1_price

estimate the quadratic model

open "@workdir\datalbr.gdt"

square sqgft

ols price const sqgft

ols price sqg_sqgft

series yhat = $yhat

gnuplot price yhat sgft —--output=display —-suppress—fitted

Example 2.7

estimate the log-linear model

logs price

ols 1_price const sqgft

series 1_yhat = $yhat

series yhat = exp(l_yhat)

Figure 2.17

gnuplot price yhat sgft -—--output=display —--suppress-fitted

marginal effects at $100,000 and $500,000

scalar me_100k = S$Scoeff (sgqft)*100000

scalar me_500k = S$Scoeff (sqgft)+500000

predicted prices at 2000 and 4000 square feet
scalar p_2000 = exp(Scoeff (const)+$coeff (sqgft)*2000)
scalar p_4000 exp ($coeff (const) +Scoeff (sgft) «4000)
elasticity at 2000 and 4000 square feet

scalar e_2000 = S$Scoeff (sqgft) 2000

scalar e_4000 Scoeff (sqgft) «4000

semi-elasticity

scalar se = S$Scoeff (sgft)*100

generate Figure 2.18 in POE4
open "@workdir\datalutown.gdt"

smpl utown = 0 —-restrict
freq price —--show-plot —--nbins=13
smpl utown = 1 —--replace —--restrict

freq price --show-plot —--nbins=13

regression using indicator wvariables

open "@workdir\datal\utown.gdt"

logs price

ols 1_price const utown —-—-quiet

scalar ut = S$coeff (const)+Scoeff (utown)

scalar other = $coeff (const)

printf "\nThe average in Utown is %.4f and the \

Q

average elsewhere is %.4f\n",ut,other

Appendix 2H.4
open "@workdir\data\mcl_fixed_x.gdt"

46

106 ols y const x

107

108 # Monte Carlo simulation

109 open "@workdir\datal\food.gdt"
110 set seed 3213789

111 loop 1000 —--progressive —-—-quiet
112 series u = normal (0, 88)

113 series yl= 80+10xincome+u
114 ols yl const income

115 endloop

116

117 # Monte Carlo simulation #2

118 # Generate systematic portion of model
119 nulldata 40

120 # Generate X

121 series x = (index>20) ? 20 : 10

122

123 # Generate systematic portion of model

124 series ys = 100 + 10+*x

125

126 loop 10000 —-—-progressive ——-quiet

127 series y = ys + normal (0, 50)

128 ols y const x

129 scalar bl = $coeff (const)

130 scalar b2 = S$Scoeff (x)

131 scalar sig2 = S$sigma’2

132 print bl b2 sig2

133 store "Q@workdir\coef.gdt" bl b2 sig2

134 endloop

135

136 open "@workdir\coef.gdt"

137 summary

138 freq b2 --normal --plot=display

140 # Monte Carlo simulation #3
141 # Generate systematic portion of model
142 nulldata 40

143 loop 10000 —--progressive —-—-quiet

144 series x = normal (15,1.6)

145 series y = 100+10%x + normal (0, 50)

146 ols y const x

147 scalar bl = S$coeff (const)

148 scalar b2 = S$Scoeff (x)

149 scalar sig2 = S$sigma”2

150 print bl b2 sig2

151 store "Qworkdir\coef_random.gdt" bl b2 sig2

152 endloop

153

154 open "@workdir\coef_random.gdt"
155 summary

47

156

freq b2 —--normal --plot=display

48

Ed ogren - O >

File Tools Data View Add Sample Variable 228 Help %
food.gdt Ordinary Least Squares grethpoed
ID# Variable name Descriptive label Instrumental variables >
0 const Other linear models >
1 food_exp household food expenditul Limited dependent variable > _
2 income weekly household income Time series 5
Panel >
Robust estimation >
Menlinear Least Squares

Maxirmum likelihood [>]

Undated: Full ~ GMM
El {5 @ = & 3 B Simultaneous equations

Figure 2.6: From the menu bar, select Mlodel>Ordinary Least Squares to open the least squares
dialog box.

E8 oreti: specify model — O >
const Dependent variable

[] Set as default

Regressors

const

e

["] Robust standard errors
l @ﬂelp l [égear l [anncel

[& |

Figure 2.7: The specify model dialog box opens when you select Mlodel>Ordinary least squares

49

E8 oretl consale — m} *

|EaDA D

gretl conscle: type "help' for a list of commands
? ols foodexp const income

Figure 2.8: The gretl console window. From this window you can type in gretl commands directly
and perform analyses very quickly—if you know the proper commands.

E8 oretl: models — O

X

File Edit Tests 5ave Graphs Analysis LaTeX [E|

model 3

Model 3: OLS, using observations 1-40
Dependent variable: food exp

coefficient std. error t-ratio p-value

const 83.41e0 43.4102 l.822 0.0622 ®
income 10.2096 2.09326 4.877 1.95e-05 ##%*

Mean dependent wvar 283.5735 5.D. dependent var 112.6752

Sum squared resid 304505.2 5.E. of regression 89.51700
E-squared 0.385002 Ldjusted R-sgquared 0.368E818
F(l, 38) 23.78884 P-value (F) 0.00001%9
Log-likelihood -235.5088 Akaike criterion 475.0176
Schwarz criterion 478 ,3854 Hannan-Quinn 476.238%8

Figure 2.9: The models window appears with the regression results. From here you can conduct
subsequent operations (graphs, tests, analysis, etc.) on the estimated model.

B4 gretl: summary statistics - O X
B & DG m =
Mean Median Minimuam Maximuam
food_exp 283.57 264 .48 109.71 587.66
income 19.605 20.030 3.6%900 33.400
Std. Dev. c.V. Skewness Ex. kurtosis
food_exp 112.68 0.39734 0.49208 -0.14848
income 6.8478 0.34529 -0.62651 0.27973
5% pexc. 95% perc. IQ range Miszsing obs.
food_exp 114.97 481,44 173.48 Q
income 4.4080 29,361 7.7825 Q

Figure 2.10: Summary statistics

50

B oretl console — O it

| & 00X S

gretl console: type 'help' for a list of commands
? ols food exp const income —-—gquiet

7 scalar elast=%coeff (income) *mean |income) ,’mean(food_expj

Generated scalar elast = 0.70584
rl

Figure 2.11: Results from commands written to the console that compute an elasticity based on a
linear regression.

ﬂ gretl: models —]

e —.
File Edit Tests Save Graph ‘m YaTex ®
model 3

Model 3: CLS5, using obsg -
Dependent wvariable: foo =

X

Play actual, fitted, residual

Eorecasts...
C

onfidence intervals for coefficients

coefficien

const 83.4160 =R

3 2 x

income 10.2096 Influential chservations _Qg www
ANOVA
Mean dependent wvar 28 2.6752
N Bootstrap...

Sum sgquared resid 30 - .51700

RE-sguared 0.385002 Adjusted B-sguared 0.368818

Fil, 38) 23.78884 P-value (F) 0.00001%9

Log-likelihood —235.5088 Bkaike criterion 475.017&

Schwarz criterion 478.3954 Hannan-Quinn 476.2389

Figure 2.12: Obtain the matrix that contains the least squares estimates of variance and covariance
from the pull-down menu of your estimated model.

51

B pefine st oy

Define named list

const Mame of list
x1 [yhﬂ | Vl
¥
y2 ¥l
E y2
¥4 ¥3
¥3 ¥4
b ¥3
¥7 yb
y8 ¥7
¥9 ¥8
yio y9
y10

[¢4 Clear H & Cancel

(s |

Figure 2.13: Choose Data>Define or edit list from the gretl menu bar

QLS estimates using the 40 observations 1-40
Statistics for 100 repetitions
Dependent wariakle: vyl

mean of std. dewv. of mean of std. dewv. of
estimated estimated estimated estimated
Variable coefficients coefficients =td. errors =ztd. errors
const 88.1474 40,3705 42,1154 4,459704
income 9.58723 2.0152% 2.03102 0.216850

Statistice for 100 repetitions

Variable mean std. dev.
bl 88.1474 40.3705
b2 9.58723 2.01529

store: using filename c:\temph\coeff.gdt
Data written CKE.

Figure 2.14: The summary results from 100 random samples of the Monte Carlo experiment.

52

Actual vs Predicted from Log-Linear Model Actual vs. Predicted from the Quadratic Model

1.6e+006 T T T T E 1.6e+006 5 T T T T T
price + price +
yhat % yhat X
1.4e+006 |- + g 1.4e+006 - + B
x
+ +
+ X + «
1.2e+006 - x 7 1.2e+006 ®
x
x
1e+006 +x g 1e+006 [% B
x
o + L
£ 800000 4 £ 800000 1
I &

600000 - 600000 -
400000 - 400000 —
+ +
200000 = 200000 1
L I o L3 L L
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
sgft sqft

Relative frequency
Relative treguency

— ! - ! TR
0 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 1.6e+006 10 10.5 11 11.5 12 12.5 13 13.5 14
price I_price

Figure 2.16: Price and its natural logarithm.

Bl gretl: add distribution graph — O *

normal | t] chi-square m binomial] poisson] weibull l

mean [300 |

std. deviation |50 |

[J CDF instead of density

[x Close

[&]

Figure 2.17: This dialog allows you to graph various distributions. It can be used multiple times
to overlay graphs.

53

Ed orett: graph - *

T
N(200, 2500) ——

N(300, 2500)

0.008 i
0.007 b E
0.006 4
0.005 4
0.004 - q
0.003 4
0.002 - 4
0.001 4

o I

-100 0 100 200 300 400 500

600
Menu Icon * @'1_"

Figure 2.18: Figure 2H.1 in POES5 plots two normal distributions having different means. Using
the menu icon select Add another curve before returning the Add distribution graph dialog
to insert the second graph. This similar graph is produced using one of the Tools in gretl.

54

Chapter 3

Interval Estimation and Hypothesis
Testing

In this chapter, I will discuss how to generate confidence intervals and test hypotheses using
gretl. Gretl includes several handy utilities that will help you obtain critical values and p-values
from several important probability distributions. As usual, you can use the dialog boxes or hansl
— gretl’s programming language — to do this.

3.1 Confidence Intervals

It is important to know how precise your knowledge of the parameters is. One way of doing
this is to look at the least squares parameter estimate along with a measure of its precision, i.e.,
its estimated standard error. The confidence interval serves a similar purpose, though it is much
more straightforward to interpret because it gives you upper and lower bounds between which the
unknown parameter will lie with a given frequency in repeated samples.!

In gretl you can obtain confidence intervals either through a dialog or by manually building
them using saved regression results. In the ‘manual’ method one can use the genr or scalar
commands to generate upper and lower bounds based on regression results that are stored in
gretl’s memory, letting gretl do the arithmetic. You can either look up the appropriate critical
value from a table or use the gretl’s critical function. Both are demonstrated below.

!This is probability in the frequency sense. Some authors fuss over the exact interpretation of a confidence interval
(unnecessarily I think). You are often given stern warnings not to interpret a confidence interval as containing the
unknown parameter with the given probability. However, the frequency definition of probability refers to the long
run relative frequency with which some event occurs. If this is what probability is, then saying that a parameter
falls within an interval with given probability means that intervals so constructed will contain the parameter that
proportion of the time.

95

Consider the equation of a confidence interval from POFES
P[bk — tcse(bk) < B < b+ tcse(bk)] =1—« (31)

Recall that by is the least squares estimator of S, and that se(by) is its estimated standard error.
The constant t. is the «/2 critical value from the ¢-distribution and « is the total desired probability
associated with the “rejection” area (the area outside of the confidence interval).

You’ll need to know the critical value t., which can be obtained from a statistical table,
the Tools>Statistical tables dialog contained in the program, or using the gretl command
critical. First, try using the dialog box shown in Figure 3.1. Pick the tab for the ¢ distribution
and tell gretl how much weight to put into the right-tail of the probability distribution and how
many degrees of freedom your ¢-statistic has, in our case, 38. Once you do, click on OK. You'll get
the result shown in Figure 3.2. It shows that for the ¢(38) with «/2 right-tail probability of 0.025
and o = 0.05, the critical value is 2.02439.2

B greth: critical values — O X

normal | t | chi-square | F | binemial | poisson | weibull | DW

|df 38 |]

right-tail probability [.025 |

| Mose || Dok |

Figure 3.1: Obtaining critical values using the Tools>Statistical tables dialog box.

5]
= =N]

T (38)

right-tail probability = 0.025
complementary probability = 0.875
two-talled prokbakility = 0.05

Critical walue = 2.0243%5

Figure 3.2: The critical value obtained from Tools>Statistical tables dialog box.

2You can also get the a level critical values from the console or in a script by issuing the command scalar ¢ =
critical (t, 38, a). Here « is the desired area in the right-tail of the ¢-distribution.

56

Example 3.1 in POES5

This example is based on the food expenditure model first considered in Chapter 2.
food_exp; = B1 + Baincome; +e; i=1,2,....n

The goal is to estimate a 95% confidence interval for the slope, B5. Using a combination of accessors
and output from the critical value finder dialog we can generate the lower and upper bounds (using
the gretl console) with the commands:

1 open "@workdir\data\food.gdt"

2 ols food_exp const income

3 scalar 1lb = S$coeff (income) - 2.024 * S$stderr (income)
4 scalar ub = $coeff (income) + 2.024 * S$stderr (income)
5

print 1lb ub

The first line opens the dataset. The second line (ols) solves for the estimates that minimize
the sum of squared errors in a linear model that has food_exp as the dependent variable with a
constant and income as independent variables. The next two lines generate the lower and upper
bounds for the 95% confidence interval for the slope parameter S2. The last line prints the results
of the computation.

The gretl language syntax needs a little explanation. When gretl makes a computation, it
will store certain results like coefficient estimates, their standard errors, sum of squared errors in
volatile memory. These results can be accessed and used to compute other statistics, provided
you know the accessor’s name. These so-called accessors carry a $ prefix and a list of what
can be accessed after estimation can be found in the function reference or by using varlist
-—type=accessor. Lines 3 and 4 use accessors for the coefficients ($Scoeff (income)) and
standard errors ($stderr (income)) of the variable in parentheses. The list of accessors is growing
rapidly in response to user requests, so I recommend checking it whenever you are looking for a
stored result to use in a computation.

In the above example, gretl uses the least squares estimates and their estimated standard er-
rors to compute confidence intervals. Following the ols command, least squares estimates are
stored in $Scoeff (variable name). Since f35 is estimated using the variable income, its co-
efficient estimate is saved in $coeff (income). The corresponding standard error is saved in
$stderr (income). Consult the function reference (Figure 1.15) to see a list of accessors.

Equivalently, you could use gretl’s built-in critical function to obtain the desired critical
value. The general syntax for the function depends on the desired probability distribution. This
follows since different distributions contain different numbers of parameters (e.g., the ¢-distribution
has a single degrees of freedom parameter while the standard normal has none!). This example
uses the t-distribution and the script becomes:

57

1 open "@workdir\data\food.gdt"

2 ols food_exp const income

3 scalar lb = S$Scoeff (income) - critical(t, $df,0.025) x S$Sstderr (income)
4 scalar ub = $coeff (income) + critical(t, $df,0.025) + S$stderr (income)
5

print 1lb ub

The syntax for the ¢-distribution is critical (t, degrees-of-freedom, «/2). The
degrees-of-freedom from the preceding regression are accessed with $df and for a 1 — a = 95%
confidence interval, set the last parameter to o/2 = 0.025.

The example found in section 3.1.3 of POES5 computes a 95% confidence interval for the income
parameter in the food expenditure example. The gretl commands above were used to produce the
output found below.

5.97205
14.4472

Replaced scalar 1b
Replaced scalar ub

b = 5.9720525

ub = 14.447233

To use the dialogs to get confidence intervals is easy as well. First estimate the model using least
squares in the usual way. Choose Model>Ordinary least squares from the main pull-down
menu, fill in the dependent and independent variables in the ols dialog box (Figure 2.7) and click
OK. The results appear in the models window (Figure 2.9). Now choose Analysis>Confidence
intervals for coefficients from the models window’s pull-down menu to generate the result shown
in Figure 3.3. The boxed « icon can be used to change the size of the confidence interval, which

ﬁ gretl: coefficient confidence intervals = O X
& 0 Ao =]
T (38, 0.025) = 2.024
VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const £3.4160 —-4.46328 171.285
incomes 10.20%¢6 5.97205 14.4472

Figure 3.3: The 95% confidence interval for the income coefficient in the food expenditure example
using the dialog.

can be set to any (integer) percentage level you desire.

58

A gretl Function to Compute Confidence Intervals

Since confidence intervals like this based on a t-distributed random variable are common, I
wrote a simple program to produce them with minimal effort and to provide better looking output.
This function is used throughout the remainder of this manual and can be found in the
following section.

Since confidence intervals are computed for many models, it is worth writing a function in
gretl that can be reused. The use of functions to perform repetitive computations makes programs
shorter and reduces errors (unless your function is wrong, in which case every computation is
incorrect!) In the next section, gretl functions are introduced and one that computes the model
selection rules discussed above is presented.

3.2 Functions in gretl

Gretl provides a mechanism for defining functions, which may be called via the console, in the
context of a script, or (if packaged appropriately) via the programs graphical interface. The syntax
for defining a function is:

function return-type function-name (parameters)
function body
end function

The opening line of a function definition contains these elements in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must
be one of the following types: void (if the function does not return anything), scalar,
series, matrix, list, string or bundle.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; anything longer will be truncated. Function names
cannot contain spaces. You will get an error if you try to define a function having the same
name as an existing gretl command. Also, be careful not to give any variables (scalars,
matrices, etc.) the same name as one of your functions.

4. The functions parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown.

The confidence interval function is designed to compute a 1 — a% confidence interval centered
at a t-distributed random variable and print the results to the screen. Its basic structure is:

59

function void t_interval (scalar b, scalar se, scalar df, scalar p)
[some computations]
[print results]
[return results]

end function

As required, it starts with the keyword function. The next word, void, indicates that the
function will returned nothing when used. The next word is t_interval, which is the name
given to the function. The t_interval function has four arguments that will be used as inputs.
The first, b, is a t-distributed scalar statistic that is the interval’s center, next is a scalar, se, that
contains the estimated standard error of b, df is a scalar for the degrees of freedom, and p is the
desired coverage probability of the interval. The inputs are separated by a comma and there are
spaces between the list of inputs.

1 function void t_interval (scalar b "statistic for interval’s center",

2 scalar se "standard error of b",

3 scalar df "degrees-of-freedom for the t-distribution",

4 scalar p "coverage probability for the interval")

5 scalar alpha = (1-p)

6 scalar 1lb = b - critical (t,df,alpha/2) *se

7 scalar ub = b + critical (t,df,alpha/2) *se

8 printf "\nThe %.2f confidence interval centered at %.2f is\
9 (%.2f, %.2f)\n", p, b, 1lb, ub

10 end function

In line 5 the p is converted to « to be used in the critical value function inputs. Lines 6 and
7 compute the bounds of the interval and the final statement, printf produces output to the

screen.3

At this point, the function can be highlighted and run. Then, run the regression and call the
function using the appropriate arguments.

1 ols food_exp const income
2 t_interval (Scoeff (income), $stderr (income), $Sdf, .95)

which produces the output:

The 95% confidence interval centered at 10.21 is (5.972, 14.447)

The function performs as expected.

3See section 2.7.1 for information on how to use printf.

60

3.3 Repeated Sampling

Tables 3.1 and 3.2 in POES5

In this section, ten samples found in table2_2.gdt are used to produce ten sets of 95% confidence
intervals. To make the program simpler, the loop construct introduced in Chapter 2 is employed.
The script to estimate these in the loop is:

1 open "@gretldir\data\poeltable2_2.gdt"

2 list ylist =yl y2 y3 y4 y5 y6 yv7 y8 y9 y10

3 loop foreach i ylist —--progressive —--quiet

4 ols ylist.$i const x

5 scalar bl = S$coeff(const) # in gretl you can use genr or scalar
6 scalar b2 = S$coeff (x)

7 scalar sl = $stderr (const)

8 scalar s2 = $stderr (x)

9

10 # 2.024 is the .025 critical value from the t (38) distribution
11 scalar clL = bl - critical(t,$df, .025)*sl

12 scalar clR = bl + critical(t, $df, .025)*sl

13 scalar c2L = b2 - critical(t,$df, .025)*s2

14 scalar c2R = b2 + critical (t, $df, .025)*xs2

15

16 scalar sigma2 = $sigma”2

17 store @workdir\coeff.gdt bl b2 sl s2 clL clR c2L c2R sigma2
18 endloop

As in Chapter 2, the dataset is opened and a 11ist is created that contains each of the ten samples
of the dependent variable. The foreach loop is initiated in line 3 and the ——-progressive
and ——quiet options are chosen. The model is estimated using least squares and the coefficients,
standard errors, lower and upper confidence limits and variance are generated and stored in the

dataset coeff.gdt, which is placed in the user designated working directory @workdir on your
harddrive.

As if that is not easy enough, there is an even simpler syntax that will accomplish the same
thing. It uses the fact that the dependent variables all begin with the letter ‘y’ and have number
suffixes. In this case the foreach loop can be simplified by replacing lines 2-4 with:

2 list ylist = yx # use the wildcard
3 loop foreach i ylist —-—-progressive
4 ols $i const x

Once this is executed, one can open coeff.gdt and perform further analysis. In this case, I will print

61

the upper and lower confidence bounds as Hill et al. have done in Table 3.2 of POES.

1 open @workdir\coeff.gdt
2 print clL clR c2L c2R —--byobs

The ——byobs option is used with the print command, otherwise each of the series will be printed
out separately. The result appears below in Figure 3.4. Recall that the true value of 83 = 10 and

ra N
E& gret!: script output [= | E &J
Baoas:ong
-
? print clL clR c2L c2R —--byobs
clL clR c2L cZ2R
1 49.54218 213.8462 2.51842%8 10.44127
2 -9.83110 124.3235 7.648383 14.11739
3 28.55668 179.2635 4.505533 11.77271
4 -20.95544 113.9680 8.648168 15.15445
5 0.93117 167.5339 5.271201 13.30488
& -66.04485 11%.3018 5.0818385 18.01541
7 -0.62975 129.0463 T.806178 14.05823
8 19.15472 140.1291 6.848891 12.68042 |
9 38.31570 156.2870 5.206310 10.89496 3
10 20.69174 171.2318 4.139676 11.39880
1 n 3
L A

Figure 3.4: Confidence intervals for 10 samples.

each of the estimated intervals contains it. The actual value of the intercept is 80, and 5y falls also
falls within the estimated boundaries in each of the samples. In a large number of samples, we
expect about 5% of the intervals will not contian the true value of the parameters. This is explored
in the next simulation.

3.4 Monte Carlo Experiment

Once again, the consequences of repeated sampling can be explored using a simple Monte Carlo
study. In this case, 100 samples are generated and we count the number of times the confidence
interval includes the true value of the parameter. The simulation will be based on the food.gdt
dataset. A more thorough set of experiments can be found in sections 3.7.1 and 3.7.2 .

The new script looks like this:

62

open "@workdir\datal\food.gdt"
set seed 3213798

1

2

3

4 loop 100 —--progressive —--quiet

5 series u = normal (0, 88)

6 series y = 80 + 10%income + u
7 ols y const income

8
9

scalar clL = S$coeff(const) - critical (t,$df, .025)*S$Sstderr (const)

const) + critical(t, $df, .025)«*S$stderr (const)
income) - critical(t, $df, .025)«S$stderr (income)

10 scalar clR Scoeff
11 scalar c2L = S$Scoeff

(
(
(
(

12 scalar c2R = $coeff (income) + critical (t,$df, .025)*S$Sstderr (income)
13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar pl = (80>clL && 80<clR)

16 scalar p2 = (10>c2L && 10<c2R)

17

18 print pl p2

19 store @workdir\cicoeff.gdt clL clR c2L c2R

20 endloop

The results are stored in the gretl data set cicoeff.gdt. Opening this data set (open @workdir\
cicoeff.gdt) and examining the data will reveal interval estimates that vary much like those in
Tables 3.1 and 3.2 of POFES5. In line 5 of this script, pseudo-random normals are drawn using the
normal (mean, sd) command, and the mean has been set to 0 and the standard deviation to 88.
The samples of y are generated linearly (80+10*food_exp) to which the random component is
added in line 6. A regression is estimated. Then, the upper and lower bounds are computed. In
lines 15 and 16 gretl’s “and” logical operator, &&, is used to determine whether the coefficient (80
or 10) falls within the computed bounds. The operator && yields the intersection of two sets so
if 80 is greater than the lower bound and smaller than the upper pl, then the condition is true
and pl is equal to 1. If the statement is false, it is equal to zero. Averaging pl and p2 gives the
proportion of times in the Monte Carlo that the condition is true, which amounts to the empirical
coverage rate of the computed interval.

With this seed, I get the following

OLS estimates using the 40 observations 1-40
Statistics for 100 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
const 84.9634 45.3240 41.7692 4.92305
income 9.76211 2.15209 2.01414 0.237393

63

Statistics for 100 repetitions

mean std. dev
pl 0.950000 0.217945
P2 0.940000 0.237487

You can see that the intercept falls within the estimated interval 95 out of 100 times and the
slope within its interval 94% of the time.

3.5 Hypothesis Tests

Hypothesis tests allow us to compare what we assume to be true with what we observe through
data. Suppose that I believe that autonomous weekly food expenditure is no less than $40, I draw
a sample, compute a statistic that measures food expenditure, and then compare my estimate to
my conjecture using a hypothesis test.

3.5.1 One-sided Tests

In section 3.4 of POFE5 the authors test several hypotheses about (2 in the food expenditure
model. One null hypothesis is that 5 = 0 against the alternative that it is positive (i.e., B2 > 0).
The test statistic is:

t= (bg — 0)/86(b2) ~ t38

provided that B2 = 0 (the null hypothesis is true). Select a = 0.05 which makes the critical value
for the one sided alternative (82 > 0) equal to 1.686. The decision rule is to reject Hp in favor of
the alternative if the computed value of the t-statistic falls within the rejection region of the test;
that is if it is larger than 1.686.

The required information to compute ¢ is contained in the least squares estimation results
produced by gretl:

Model 1: OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t¢-ratio p-value

const 83.4160 43.4102 1.9216 0.0622
income 10.2096 2.09326 4.8774 0.0000

64

Mean dependent var 283.5735 S.D. dependent var 112.6752

Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884 P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

The computations
t = (ba —0)/se(by) = (10.21 — 0)/2.09 = 4.88

Since this value falls within the rejection region, then there is enough evidence at the 5% level of
significance to convince us that the null hypothesis is incorrect; the null hypothesis rejected at this
level of significance.

Gretl is used to get the p-value for this test using the Tools pull-down menu (Figure 3.5).
In this dialog, you enter the desired degrees of freedom for your ¢-distribution (38), the value of

E8 gretl: p-value finder - O bt

normal | t | chi-square | F | gamma | binomial | poisson | weibull

df |38 |

value [4.88] l

| M Cose | | Hox |

Figure 3.5: The dialog box for obtaining p-values using the built in statistical tables in gretl.

by (10.21), its value under the null hypothesis—something gretl refers to as ‘mean’ (0), and the
estimated standard error from the printout (2.09). This yields the information in Figure 3.6: The

Ed grett p-value - O X
=

& B A &

£t (38): area to the right of 4.88 = 5.65032e-006

[two—-tailed value = 1.93006e-005; complement = 0.995581)

Figure 3.6: The result produced by the p-value finder dialog box.

area of a tsg random variable to the right of 4.88, i.e., the p-value of the test, is almost zero. Since
the p-value is well below o = .05, the hypothesis is rejected.

Gretl also includes a programming command that will compute p-values from several distribu-
tions. The pvalue function works similarly to the critical function discussed in the preceding

65

section. The syntax is:

scalar p = pvalue(distribution, parameters, xval)

The pvalue function computes the area to the right of xval in the specified distribution.
It returns a scalar equal to the the size of the computed area. Distribution choices include z for
Gaussian, t for Student’s t, X for chi-square, F for F', G for gamma, B for binomial, L for Laplace,
P for Poisson, W for Weibull, or E for generalized error. There are values for some non-central
distributions as well (x, F, t). The argument parameters refers to the distribution’s known
parameters, as in its degrees of freedom. So, for this example try

open "@workdir\datalfood.gdt"
ols food_exp const income

Example 3.2

scalar t2 = (Scoeff (income)-0)/S$stderr (income)

scalar p2 = pvalue(t, $df,t2)

printf "\nHa: b2>0 \n t = %.2f, critical value = %.2f \n \
alpha = 0.05, p-value = %.3f\n", tratiol, c2, p2

o N O o s W N

The result is

Ha: b2>0
t = 4.88, critical value = 1.69
alpha = 0.05, p-value = 0.000

The p-value (9.72931e-006) is rounded to zero and very close to the value produced by the dialog
box. This values differ because the value in the dialog box was rounded to 4.88 whereas the
computed value here has many more significant digits to use in the computation.

Example 3.3 in POES5

In example 3.3, the authors of POFES test the hypothesis that 5o = 5.5 against the alternative
that B2 > 5.5. The computations

t = (ba — 5.5)/se(by) = (10.21 — 5.5)/2.09 = 2.25
The significance level in this case is chosen to be 0.01 and the corresponding critical value can be
found using a tool found in gretl. The Tools>Statistical tables pull-down menu bring up the
dialog found in Figure 3.1.

This result from the critical values window is shown below:

66

£t (38)
right-tail probability = 0.01
complementary probability = 0.99
two-tailed probability = 0.02

Critical wvalue = 2.42857

The 0.01 one-sided critical value is 2.42857. Since 2.25 is less than this, we cannot reject the null
hypothesis at the 1% level of significance.

Example 3.3 is verified using the following hansl script

Example 3.3

#0ne sided test (Ha: b2>5.5)

scalar tratio2 = (S$Scoeff (income) - 5.5)/ S$stderr (income)
scalar c2 = critical(t,$df, .01)

scalar p2 = pvalue(t, $df,tratio?)

printf "\nHa: b2>5.5 \n t = %.2f, critical value = %.2f \n \
alpha = 0.01, p-value = %.3f\n", tratio2, c2, p2

N o oA W NN

The output printed to the screen is:

Ha: b2>5.5
t = 2.25, critical value = 2.43
alpha = 0.01, p-value = 0.015

Example 3.4 in POES5

In example 3.4 of POFES, the authors conduct a one-sided test where the rejection region lies
in the left tail of the t-distribution. The null hypothesis is 83 = 15 and the alternative is 8 < 15.
The test statistic and distribution under the null hypothesis is

t= (bg — 15)/86(b2) ~ tgg
provided that B2 = 15. The computation is
t = (by — 15)/se(by) = (10.21 — 15)/2.09 = —2.29

Based on the desired level of significance, a = 0.05, we reject the null in favor of the one-sided
alternative since ¢t < —1.686.

The hansl script to test this hypothesis is shown below:

67

1 # Example 3.4

2 #0One sided test (Ha: b2<15)

3 scalar tratio3 = (Scoeff (income) - 15)/ S$stderr (income)

4 scalar ¢3 = —-l*critical (t, $df, .05)

5 scalar p3 = pvalue (t, $df,abs(tratio3))

6 printf "\nHa: b2<15 \n t = %.2f, critical value = %.2f \n \
7 alpha = 0.05, p-value = %.3f\n", tratio3, c3, p3

This yields:

Ha: b2<15
t = -2.29, critical value = -1.69
alpha = 0.05, p-value = 0.014

The p-value of 0.014 is less than 5% and we conclude that the coefficient is less than 15 at this
level of significance.

3.5.2 Two-sided Tests
Example 3.5 in POES5

Two-sided tests are explored in examples 3.5 and 3.6 of POFES5. In the first example the economic
hypothesis that households will spend $7.50 of each additional $100 of income on food. So, Hy:
B2 = 7.50 and the alternative is Hy: B2 # 7.50. The statistic is

t= (b2 — 7.5)/86(52) ~ t38
if Hy is true which is computed
t = (bg — 7.5)/se(be) = (10.21 — 7.5)/2.09 = 1.29.

The two-sided, o = 0.05 critical value is 2.024. This means that you reject Hy if either ¢ < —2.024
or if t > 2.024. The computed statistic is neither, and hence we do not reject the hypothesis that
B2 is $7.50. There simply isn’t enough information in the sample to convince us otherwise.

Example 3.5

#Two sided test (Ha: b2 not equal 7.5)

scalar tratio4 = ($Scoeff(income) - 7.5)/ S$stderr (income)

scalar c4 = critical (t,$df, .025)

scalar p4 = 2+pvalue (t, $df,tratiod)

printf "\nHa: b2 not equal 7.5 \n t = %.2f, critical value = %.2f \n \
alpha = 0.05, p-value = %.3f\n", tratio4, c4, p4

N O O Re W N

68

8
9 #Confidence interval
10 t_interval (Scoeff (income), $stderr (income), $Sdf, .95)

You can draw the same conclusions from using a confidence interval that you can from this two-sided
t-test.
bg — tcse(bg) < ﬁg < bQ + tcse(bg)

The test results and confidence interval produced by the hansl script are:

Ha: b2 not equal 7.5
t = 1.29, critical value = 2.02
alpha = 0.05, p-value = 0.203

The 0.95 confidence interval centered at 10.21 is (5.97, 14.45)

From a hypothesis testing standpoint, 7.5 falls within this interval and you would not be able to
reject the hypothesis that 3o is different from 7.5 at the 5% level of significance.

Example 3.6 in POES5

In example 3.6 a test of the overall significance of £ is conducted. As a matter of routine,
you always want to test to see if your slope parameter is different from zero. If not, then the
variable associated with it may not belong in your model. So, Hy: [= 0 and the alternative
is Hi: B2 # 0. The statistic is t = (by — 0)/se(by) ~ tsg, if Hy is true, and this is computed
t = (bg — 0)/se(b2) = (10.21 — 0)/2.09 = 4.88. Once again, the two-sided, o = 0.05 critical value
is 2.024 and 4.88 falls squarely within the 5% rejection region of this test. These numbers should
look familiar since this is the test that is conducted by default whenever you run a regression in
gretl.

Example 3.6

#Two sided test (Ha: b2 not equal zero)

scalar tratiob = (Scoeff (income) - 0)/ S$stderr (income)

scalar ¢5 = critical(t,$df, .025)

scalar p5 = 2xpvalue (t, $df,tratiob)

printf "\nHa: b2 not equal 0 \n t = %.2f, critical value = %.2f \n \
alpha = 0.05, p-value = %.3f\n", tratiob5, c5, p5

N O g W N =

This produces:

Ha: b2 not equal 0

69

t = 4.88, critical value = 2.02
alpha = 0.05, p-value = 0.000

which tells us that (o is significantly different from zero at 5%.

3.6 Linear Combination of Parameters

Examples, 3.7, 3.8 and 3.9 in POES5

These examples use an estimate of expected food expenditures for a family with $2,000 per
week of income. In Example 3.7 the expected expenditure is obtained, in 3.8 a 95% confidence
interval for weekly food expenditure is obtained and in 3.9 a test is used to determine whether food
expenditure exceeds $250 per week.

Since gretl stores and gives access to the estimated values of the coefficients and the variance-
covariance matrix, testing hypotheses about linear combinations of parameters is very simple. The
average weekly food expenditure for a family earning $2000 per week based on the model is:

E(food_exp|income) = 1 + Paincome (3.2)

It can easily be shown that F(c1 X 4+ oY + ¢3) = c1 E(X) + coE(Y) 4 ¢3 where ¢j, ¢a, and c3 are
constants. If least squares is unbiased for the intercept and slope then E(b;) = 51 and E(b2) = Sa.
Hence, an estimate of the food expenditure for a family earning $2000 per week is

food_exp = by + b220 = 83.416 + 10.2096 x 20 = 287.6089
The hypothesis that the average is statistically greater than $250 can be formally tested as:
Ho:B1+B2<0 Hyp:B1+2082 > 250

The statistic b 1 20by — 250
1 2 —
t= ~ tp_o under H 3.3

se(by + 200y — 250) "2 0 (3:3)
Taking the variance of a linear combination is only slightly more complicated than finding the
mean since in the variance calculation any covariance between X and Y needs to be accounted for.
In general, var(c; X + oY + ¢3) = ctvar(X) + c3var(Y) + 2cicacov(X,Y). Notice that adding a
constant to a linear combination of random variables has no effect on its variance—only its mean.
For a regression model, the elements needed to make this computation are found in the variance-

covariance matrix.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept and the slope, and covari-
ance between the two. The variances of the least squares estimator fall on the diagonal of this

70

square matrix and the covariance is on the off-diagonal.

var(by) cov(by,ba)

cov(by, bz) = cov(by,b2) var(bs)

(3.4)
All of these elements have to be estimated from the data. To print an estimate of the variance-
covariance matrix following a regression use the ——vcv option with the model estimation command
in gretl:

ols food_exp const income —--vcv

In terms of the hypothesis, var(b; + 20by — 250) = 12var(b1) + 202var(be) 4+ 2(1)(20)cov(by, by).
The covariance matrix printed by this option is:

Covariance matrix of regression coefficients:

const income
1884.44 -85.9032 const
4.38175 income

The arithmetic for variance is var(b; + 20b2 — 250) = 1884.44 + (400)(4.38175) + (40)(—85.9032) =
201.017. The square root of this is the standard error, i.e., 14.178.

Of course, once you know the estimated standard error, you could just as well estimate an
interval for the average food expenditure. The script to do just that is found below. Using hansl
to do the arithmetic makes things a lot easier.

ols food_exp const income

scalar avg_food_20 = S$coeff (const)+20*Scoeff (income)
scalar vc = $Svev([1l,1]142072%xSvev[2,2]+2%20*«Svev[2,1]
scalar se = sqrt (vc)

scalar tval = ($coeff (const)+20*xScoeff (income)-250)/se
scalar p = pvalue(t, $df,tval)

scalar crit = critical (t,$df, .025)

© 0 9 s W N

t_interval (avg_food_20, se, $df, .95)

printf "\nHa: Average weekly Foodexp|Income=2000 > 250 \n \
Average Expenditure = %3.2f, Standard Error = %.3f \n \

t = %.2f, critical value = %.2f \n \

alpha = 0.05, p-value = %.3f\n", avg_food_ 20, se, tval, crit, p

e e e
w N = O

In the first line, the model is estimated. In line 2 average food expenditure when income is equal
to $2000 is computed (income is measured in $100). In line 3 the accessor $vcv is used. In

71

it is the variance-covariance from the previously estimated model. (The square brackets contain
the row and column location of the desired element. That is, the estimated variance of by is the
element located in the first row and first column, hence $Svcv[1,1]. The covariance between by
and by can be found either in the first row, second column or the second row, first column. So,
$vev[l,2]=%vcv[2,1]. The script also produces the p-value associated with a 5% one sided
test.

The lower and upper 95% confidence intervals are computed in line 9 using the t_interval
function that we defined earlier. Lines 10-13 generate the output for printing to the screen using
the printf function.

The 0.95 confidence interval centered at 287.61 is (258.91, 316.31)

Ha: Average weekly Foodexp|Income=2000 > 250
Average Expenditure = 287.61, Standard Error = 14.178
t = 2.65, critical value = 2.02
alpha = 0.05, p-value = 0.006

The 95% confidence interval for the average is ($258.91,$316.31). You can see that the manual
calculations and those from the hansl script are the same. The p-value is less than 0.05 and we
would reject Hy in favor of the alternative in this case. The average food expenditure for a family
earning $2000/week exceeds $250.

3.7 Monte Carlo Simulations

3.7.1 Fixed Regressors

Appendix C3.3 of POES5

This simulation uses the experimental design from section 2.8.3. Hence, the same values of the
regressors are used in each of the 10000 samples drawn. Several scalars are computed to measure
the properties of the confidence intervals and tests. The scalars pl and p2 take the value 1 when
the compound statement in parentheses is true. That means, for instance, p1=1 if 100 falls within
the computed interval. The print pl statement at the end of the loop (with a ——progressive
option) averages the values of pl over the 10000 replications. So, it produces the proportion of
times that 100 lies within the computed interval. The scalar p2 does the same for the slope.

The other scalars, p3, p4, p5, and p6 compute statistics associated with tests of hypotheses.
The Ha: for the intercept and slope are $; > 100 and B2 > 10, respectively. If & = 0.05 then these
proportions should be close to 0.05 when Ho is true.

The scalars p5 and p6 measure the rejection of false hypotheses. Thus, p5 measures the

72

number of rejections of the hypothesis when Sy = 9 and p6 measures the number of rejections of
the hypothesis when 8o = 8. This is related to the statistical power of the one-sided test and larger
rejection proportions are better than smaller ones.

© 00 N O s W N =

LT T T e
I R R R S R R S T =)

24
25
26
27

Appendix 3.C

Monte Carlo to measure coverage probabilities of confidence intervals
and test size and power

nulldata 40

Generate X

series x = (index>20) ? 20 : 10

Generate systematic portion of model
series ys = 100 + 10*x

loop 10000 —--progressive —--quiet
series y = ys + randgen(z,0,50)
ols y const x
2.024 is the .025 critical value from the t(38) distribution

scalar clL = $coeff(const) — critical (t, $df, .025)+S$Sstderr (const)
scalar clR = $coeff(const) + critical (t, $df, .025)xS$Sstderr (const)
scalar c2L = $coeff(x) - critical (t, $df, .025)*S$stderr (x)
scalar c2R = Scoeff(x) + critical (t, $df, .025)*S$Sstderr (x)

Compute the coverage probabilities of the Confidence Intervals
scalar pl = (100>clL && 100<clR)
scalar p2 = (10>c2L && 10<c2R)
scalar p3 = ((Scoeff (const)-100)/$stderr (const))>critical (t, $df, .05)
scalar p4 = ((Scoeff (x)-10)/$stderr(x))>critical (t,$df, .05)
scalar p5 = ((Scoeff(x)-9)/$stderr(x))>critical (t, $df, .05)
scalar p6 = ((S$coeff(x)-8)/$stderr(x))>critical (t,$df, .05)
print pl p2 p3 p4 pS pb
endloop

The result from this script is shown below:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
const 99.6975 25.4357 24.7987 2.85096

X 10.0176 1.61134 1.56841 0.180311

Statistics for 10000 repetitions

73

mean std. dev

pl 0.948800 0.220405
p2 0.947300 0.223434
r3 0.0502000 0.218357
p4 0.0552000 0.228370
p5 0.157500 0.364272
po6 0.345700 0.475596

The averages of pl and p2 are expected to be close to 0.95, and they are. For instance for p2,
9473 of 10000 confidence intervals contained B2 = 10. For p4 the true hypothesis Ho: B2 = 10 was
rejected in favor of By > 10 in 5.52% of the samples (552 out of 10000).

When the null is false, as in Ho: fo = 9 vs 82 > 9, then when 5 = 10 as in the experiment,
rejection is warranted. The mean of p5 measures the proportion of times the correct decision
(rejection of Ho:) is made. In this case, for a 5% test, we rejected Ho: 1575/10000 times. The
rejection rate increased to 3457/10000 when Ho: (9 = 8.

3.7.2 Random Regressors
Appendix C3.4 of POES5

This simulation uses the same experimental design as used in section 2.8.4. Hence, new values
of the regressors are generated at each of the 10000 samples. As in the preceding section scalars are
computed to measure the properties of the confidence intervals and tests. The scalars pl and p2
take the value 1 when the compound statement in parentheses is true. That means, for instance,
pl=1 if 100 falls within the computed interval. The print pl statement at the end of the loop
(with a ——progressive option) averages the values of pl over the 10000 replications. So, it
produces the proportion of samples that 100 lies within the computed interval. The scalar p2 does
the same for the slope.

The other scalars, p3, p4, p5, and p6 compute statistics associated with tests of hypotheses.
The H, for the intercept and slope are 51 > 100 and 2 > 10, respectively. If & = 0.05 then these
proportions should be close to 0.05 when H, is true.

The scalars p5 and p6 measure the rejection of false hypotheses. Thus, pb measures the
number of rejections of the hypothesis when Sy = 9 and p6 measures the number of rejections of
the hypothesis when 85 = 8. This is related to the statistical power of the one-sided test and larger
rejection proportions are better than smaller ones.

1 # Appendix 3.C
2 # Monte Carlo to measure coverage probabilities of confidence intervals

74

3 # and test size and power

4 nulldata 40

5 loop 10000 —--progressive —-—-quiet

6 series x = randgen(z,15,1.6)

7 series y = 100+10%x + randgen(z,0,50)

8 ols y const x

9 scalar clL = $coeff(const) - critical(t,$df, .025)xS$stderr (const)
10 scalar clR = S$Scoeff (const) + critical (t,$df, .025)+S$Sstderr (const)
11 scalar c2L = S$coeff(x) - critical (t, $df, .025)«$stderr (x)

12 scalar c2R = S$Scoeff(x) + critical (t, $df, .025)«$stderr (x)

13

14 # Compute the coverage probabilities of the Confidence Intervals
15 scalar pl = (100>clL && 100<clR)

16 scalar p2 = (10>c2L && 10<c2R)

17 scalar p3 = ((Scoeff (const)-100)/$stderr (const))>critical (t,$df, .05)
18 scalar p4 = ((Scoeff(x)-10)/S$stderr(x))>critical (t,$df,.05)

19 scalar p5 = ((Scoeff (x)-9)/S$stderr(x))>critical (t, $df, .05)

20 scalar p6 = ((Scoeff (x)-8)/S$stderr(x))>critical (t,$df, .05)

21 print pl p2 p3 p4 pS5 pb

22 endloop

The result from this script is shown below:

OLS estimates using the 40 observations 1-40
Statistics for 10000 repetitions
Dependent variable: y

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Variable coefficients coefficients std. errors std. errors
const 100.708 78.1931 76.6330 12.6580

X 9.95236 5.17435 5.08156 0.839727

Statistics for 10000 repetitions

mean std. dev
pl 0.947300 0.223434
p2 0.948000 0.222027
p3 0.0533000 0.224631
p4 0.0479000 0.213555
p5 0.0693000 0.253964
p6 0.102200 0.302911

Again, the averages of pl and p2 are close to 0.95. For instance for p2, 9480 of 10000 confidence
intervals contained B = 10. For p4 the true hypothesis Ho: (2 = 10 was rejected in favor of
B2 > 10 in 4.79% of the samples (479 out of 10000).

75

When the null is false, as in Ho: fo = 9 vs 82 > 9, then when 5 = 10 as in the experiment,
rejection is warranted. The mean of p5 measures the proportion of times the correct decision
(rejection of Ho:) is made. In this case, for a 5% test, we rejected Ho: 693/10000 times. The
rejection rate increased to 1022/10000 when Ho: 8o = 8. The size of the test was not affected by
the presence of random regressors, but the power was diminished considerably.

3.8 Script

set echo off

set messages off

Example 3.1

open "@workdir\datalfood.gdt"

ols food_exp const income

scalar 1b Scoeff (income) - 2.024 x S$stderr (income)
scalar ub = Scoeff (income) + 2.024 * Sstderr (income)
print 1lb ub

[un

© 0w NN O s W N

-
o

#Using the critical function to get critical wvalues

scalar 1b Scoeff (income) - critical(t,$df,0.025) * $stderr (income)
scalar ub = S$coeff (income) + critical(t,$df,0.025) % S$stderr (income)
print 1lb ub

==
» -
Il

-
w

14
15 function void t_interval (scalar b, scalar se, scalar df, scalar p)

16 scalar alpha = (1-p)

17 scalar 1b = b - critical (t,df,alpha/2) *«se

18 scalar ub = b + critical (t,df,alpha/2) *se

19 printf "\nThe %.2f confidence interval centered at %.2f is"\
20 "(%.2f£,\%.2f)\n", g, b, 1lb, ub

21 end function

22
23 ols food_exp const income

24 t_interval (Scoeff (income), $Sstderr (income), $df, .95)

25

26 open "@workdir\data\food.gdt"

27 0ols food_exp const income

28 scalar tratiol = ($Scoeff(income) - 0)/ $stderr (income)

29

30 # Example 3.2

31 #One sided test (Ha: b2 > zero)

32 scalar c2 = critical(t, $df, .05)

33 scalar p2 = pvalue(t, $df,tratiol)

3¢ printf "\nHa: b2>0 \n t = %.2f, critical value = %.2f \n \
35 alpha = 0.05, p-value = %.3f\n", tratiol, c2, p2

36

37 # Example 3.3

38 #One sided test (Ha: b2>5.5)

39 scalar tratio2 = ($Scoeff(income) - 5.5)/ S$Sstderr (income)

76

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

scalar c2 = critical(t,$df, .01)

scalar p2

printf "\nHa: b2>5.5

alpha

0.01,

Example 3.4
#0One sided test (Ha:
= (Scoeff (income)

scalar tratio3
scalar c3

p-value

\n

b2

t = %.
%.3f\n",
<15)

pvalue (t, $df, tratio2)
2f, critical value

tratio2, c2,

P2

= $.2f \n \

- 15)/ S$Sstderr (income)

= -lxcritical (t, $df, .05)

scalar p3 = pvalue(t, $df,abs(tratio3))
printf "\nHa: b2<15

alpha

0.05,

Example 3.5
#Two sided test (Ha:

scalar
scalar
scalar
printf
alpha

tratio4

p4
"\nHa:
0.05,

p-value

\n

t =%.2
%.3f\n",

f, critical value

tratio3, c3,

b2 not equal 7.5)
= (Scoeff (income)
cd4 = critical (t, $df, .025)

b2 not equal 7.5

p-value

#Confidence interval

t_interval ($coeff (income), $stderr (income), $df, . 95)

Example 3.6
#Two sided test (Ha:
scalar tratiob

alpha

0.05,

Example 3.7
#Linear Combinations of coefficients
open "@workdir\datalfood.gdt"

p-value

%.3f\n",

- 7.5)/ S$stderr (income)

2+pvalue (t, $df, tratiod)

\n t = %.2f,
tratiod4, c4,

b2 not equal zero)
= ($coeff (income)
scalar ¢5 = critical (t,$df, .025)
scalar p5 = 2+pvalue (t, $df,tratiob)
printf "\nHa: b2 not equal 0 \n

%.3f\n",

r3

= %$.2f \n \

critical value

r4

- 0)/ Sstderr (income)

t = %.2f, critical value =

tratio5, c5,

PS5

ve = Svev[l,11+2072xSvev([2,2]4+42%20%xSvev[2,1]

(Scoeff (const)+20xScoeff (income)—-250) /se

ols food_exp const income —--vcv
scalar

scalar se = sqrt (vc)

scalar tval =

scalar p = pvalue(t, $df,tval)
scalar crit = critical(t,$df, .025)
scalar avg_food 20 =

Scoeff (const)+20xS$coeff (income)

t_interval (avg_food_20, se, $df, .95)
printf "\nHa: Average weekly Foodexp|Income=2000 > 250 \n \
Average Expenditure =

t = %.2f,

alpha

0.05,

p-value

%3

critical value

.2f, Standard Error =

= %.2f
%.3f\n",

\n \
avg_food_20,

$.3f \n \
se, tval,

crit,

= $.2f \n \
%.2f \n \
P

77

And for the repeated sampling exercise, the script is:

1 # Table 3.1

2 # repeated sampling exercise, the script is:
3 open "@workdir\dataltable2_2.gdt"

4 list ylist = yl y2 y3 y4 yv5 y6 y7 y8 y9 y10
5 loop foreach i ylist —-—-progressive —-—-quiet

6 ols ylist.$i const x

7 scalar bl = S$coeff (const)

8 scalar b2 = S$coeff (x)

9 scalar sl = $stderr (const)

10 scalar s2 Sstderr (x)

12 # 2.024 is the .025 critical value from the t(38) distribution
13 scalar bl_1lb = bl - critical(t, $df, .025) sl

14 scalar bl_ub = bl + critical(t, $df, .025) sl
15 scalar b2_1lb = b2 - critical(t, $df, .025)*s2
16 scalar b2_ub = b2 + critical (t,$df, .025) xs2

18 scalar sigma2 = S$sigma”2
19 store coeff.gdt bl b2 sl s2 bl_1lb bl_ub b2_1lb b2_ub sigma2
20 endloop

22 open @workdir\coeff.gdt
23 print Dbl_1lb bl_ub b2_1b b2_ub --byobs

Monte Carlo to measure coverage probabilities of confidence intervals in section 3.4.

set echo off

-

2 open "@gretldir\data\poe\food.gdt"

3 set seed 3213798

4 loop 100 —--progressive —--quiet

5 series u = normal (0, 88)

6 series y = 80 + 10*xincome + u

7 ols y const income

8 # 2.024 is the .025 critical value from the t (38) distribution

9 scalar clL = S$coeff (const) - critical (t, $df, .025)xS$Sstderr (const)
10 scalar clR = $coeff(const) + critical (t, $df, .025)+S$Sstderr (const)
11 scalar c2L = $coeff (income) - critical (t,$df, .025)*S$stderr (income)
12 scalar c2R = $coeff (income) + critical (t,$df, .025)*S$stderr (income)

— e
s ow

Compute the coverage probabilities of the Confidence Intervals
scalar pl = (80>clL && 80<clR)
scalar p2 (10>c2L && 10<c2R)

—= = e
N o w
Il

-
oo

print pl p2
store @workdir\cicoeff.gdt clL clR c2L c2R
endloop

[
o ©

78

79

Chapter 4

Prediction, (Goodness-of-Fit, and
Modeling Issues

Several extensions of the simple linear regression model are considered in this chapter. First,
conditional predictions are generated using computations stored in memory after gretl estimates a
model. Then, a commonly used measure of the quality of the linear fit provided by the regression
is discussed. We then take a brief look at facilities within gretl for producing professional looking
output to be used in reports and research.

Choosing a suitable functional form for a linear regression is important. Several choices are
explored in this chapter. These include polynomial, linear-log, log-linear, and log-log specifications.
We test residuals for normality. Normality of the model’s errors is a useful property in that, when
it exists, it improves the performance of least squares, tests and confidence intervals when sample
sizes are small (finite).

Measures of the influence each observation has on your results are developed as well. The
chapter ends with a couple of sections about conducting simulations and bootstrapping.

4.1 Prediction in the Food Expenditure Model

Example 4.1 in POES5

Generating predicted values of food expenditure for a person with a given income is very simple
in gretl. After estimating the model with least squares, you can use the genr or series to store
predicted values for all the observations or use scalar to save a computed prediction at a specific
point. In the example, a household having income, = $2000 of weekly income is predicted to spend
approximately $287.61 on food. Recalling that income is measured in hundreds of dollars in the

80

data, the gretl commands to compute this from the console are:

1 open "@workdir\data\food.gdt"
2 ols food_exp const income
3 scalar yhatO = S$Scoeff (const) + S$coeff (income) x20

This yields food/,\expo = 287.609. We could have used genr rather than scalar (or nothing at
all before yhat0) and the correct result would be computed. However, specifying the result as a
scalar makes it clear to someone else reading the program that you intend this to compute a
single number, not a series.

Obtaining the 95% prediction interval is slightly harder in that there are no internal commands
in gretl that will do this. The information needed is readily available, however. The formula is:

52
var(f) = 62 + % + (income, — income)*var(bs) (4.1)

In section 2.4 we estimated 62 = 8013.29 and var(hy) = 4.3818. The mean value of income is found

by highlighting the variable income in the main gretl window and the selecting View>Summary
Statistics from the pull-down menu. This yields income = 19.6047.1 The t3g 5% critical value is
2.0244 and the computation?

8013.2941

o (20 - 19.6047) + 4.3818 = 8214.31 (4.2)

var(f) = 8013.2941 +

Then, the confidence interval for the prediction is:
food_expy + tese(f) = 287.6069 & 2.02441/8214.31 = [104.132, 471.086] (4.3)

The complete script to produce the computed results in gretl is:

1 ols food_exp const income

2 scalar yhatO = S$Scoeff (const) + S$coeff (income) x20

3 scalar f=8013.2941+(8013.2941/40)+4.3818*(20-19.6047) "2
4 t_interval (yhatO, sqrt (f),$df,0.95))

This produces:

The 0.95 confidence interval centered at 287.609 is (104.132, 471.085)

Your result may vary a little depending on how many digits are carried out to the right of the decimal.
You can compute this easily using the gretl console by typing in: scalar f = 8013.2941 +
(8013.2941/40) + 4.3818%(20-19.6047) %x%2

81

Example 4.1 revisited, using accessors

You may be wondering if accessors can be used to populate the inputs required for the com-
putation of the forecast variance. For instance, the sum of squared errors from the least squares
regression can be accessed using $ess. The degrees of freedom and number of observations are
saved as $df and $nobs, respectively. Also, you can use an internal gretl function to compute
income, mean (income), and the critical function discussed in the preceding chapter to get
the desired critical value. Hence, the prediction interval can be automated and made more precise
by using the following script.

1 ols food_exp const income

2 scalar yhatO=S$coeff (const)+20+Scoeff (income)

3 scalar sig2 = S$Sess/S$df

4 scalar f = sig2 + sig2/$nobs + ((20-mean (income)) "“2)* (Sstderr (income) "2)
5 t_interval (yhatO, sqrt (f),$df,0.95))

This produces the same result as when some of the inputs used in the computation were hard
coded:

The 0.95 confidence interval centered at 287.609 is (104.132, 471.085)

4.2 Coefficient of Determination

Example 4.2 in POES5

Some use regression analysis to “explain” variation in a dependent variable as a function of the
independent variable(s). A summary statistic used for this purpose is the coefficient of determina-
tion, also known as R2.

There are a number of ways to obtain R? in gretl. The simplest is to read it directly from
gretl’s regression output. This is shown in Figure 4.3. After a regression, Gretl stores its R?
computation in memory, which can be recalled using the accessor $rsq.

The most difficult way, is to compute it manually using the analysis of variance (ANOVA)
table. The ANOVA table can be produced after a regression by choosing Analysis>ANOVA
from the model window’s pull-down menu as shown in Figure 4.1. Or, one can simply use the
——anova option to ols to produce the table from the console of as part of a script.

ols income const income —--anova

82

The result appears in Figure 4.2.

B aretl: models - m} X
File Edit Tests Save Graphs LaTeX '1_'|
model 1 Display actual, fitted, residual

Forecasts...
Model 1: OLS, using obss

Dependent variable: food Confidence intervals for coefficients

Confidence ellipse...

coefficienty Coefficient covariance matrix ue

const £3.41€0 2 .

income 10.208¢ | p—lofluential ghservations —05 wE#
Mean dependent var QEJLE_FF 2.6752
- _ TOOLEap .
Sum sguared resid 304 o 51700
B-sguared 0.385002 Adijusted R-sguared 0.368818
F(l, 3%3) P-value (F) 0.000018
Log-likelihood Lkaike criterion 475.0176
Schwarz criterion Hannan-Quinn 476.2389

Figure 4.1: After estimating the regression, select Analysis>ANOVA from the model window’s
pull-down menu.

Analysis of Variance:

Sum of squares df Mean square
Regression 190627 1 190627
Residual 304505 38 8013.29
Total 495132 39 12695.7

R"2 = 190627 / 495132 = 0.385002
F(l, 38) = 190627 / 8013.29 = 23.7888 [p-value 1.95e-005]

Figure 4.2: The ANOVA table

In the ANOVA table featured in Figure 4.2 the SSR, SSE, and SST can be found. Gretl also
does the R? computation for you as shown at the bottom of the output. If you want to verify
gretl’s computation, then

SST = SSR + SSE = 190627 + 304505 = 495132 (4.4)
and

SSR _ | SSE _ 190627 _

SST —~ SST 495132
Different authors refer to regression sum of squares, residual sum of squares and total sum of squares
by different acronyms. So, it pays to be careful when computing R? manually. POES5 refers to the
regression sum of squares as SSR and the residual sum of squares as SSE (sum of squared errors).

(4.5)

Finally, you can think of R? is as the squared correlation between your observations on your
dependent variable, food_exp, and the predicted values based on your estimated model, food_exp. A
gretl script to compute this version of the statistic is is found below in section 4.7.3.

83

EA gret: models - m} x

File Edit Tests Save Graphs Analysis '1_'|
model 1

Model 1: OLS, using observations 1-40
Dependent variable: food exp

coefficient std. error p-value

const 83.4160 43.4102 0.0622

income 10.20%96 2.09326 1.95e-05 **
Mean dependent wvar 283.5735 5.D. dependent wvar 112.6752
Sum sqqgred resid 304505.2 S5.E. of regression 89.51700
|R—5anred Adjusted R-sguared 0.368818
F(l, 38) P-value (F) 0.000019
Log-likelihood Lkaike criterion 475.0176
Schwarz criterion Hannan-Quinn 476.2389

Figure 4.3: In addition to some other summary statistics, Gretl computes the unadjusted R? from
the linear regression.

To use the GUI you can follow the steps listed here. Estimate the model (equation 2.1) using

least squares and add the predicted values from the estimated model, food_ezp, to your _data set.
Then use the gretl correlation matrix to obtain the correlation between food_exp and food_exp.

Adding the fitted values to the data set from the pull-down menu in the model window is
illustrated in Figure 4.4 below. Highlight the variables food_exp, income, and yhat1 by holding

ﬁ gretl: models -

File Edit Tests Graphs Analysis LaTeX

maodel 1

Model 1: CLS|
Dependent wvajl

Residuals
Squared residuals
Errer sum of squares

Standard error of the regression io p-value

B-squared
Figure 4.4: Using the pull-down menu in the Model window to add fitted values to your data set.

the control key down and mouse-clicking on each variable in the main gretl window as seen in Figure
4.5 below. Then, View>Correlation Matrix will produce all the pairwise correlations between
each variable chosen. These are arranged in a matrix as shown in Figure 4.6. Notice that the
correlation between food_exp and income is the same as that between food_exp and food_exp (i.e.,
0.6205). As shown in your text, this is no coincidence in the simple linear regression model. Also,
squaring this number equals R? from your regression, 0.62052 = .385.

You can generate pairwise correlations from the console using

cl = corr (food_exp, $yhat)

84

Again, it is not strictly necessary to use scalar or genr before c1. Gretl correectly identifies
the variable type as a scalar and one can safely omit the scalar declaration command. In longer
scripts, however, it’s good practice to declare variable types in gretl so that error messages are
thrown when the result doesn’t match what you expect. This won’t be discussed any further in
the remainder of this manual where we will always identify new computations by their expected
variable types.

4.3 Reporting Results

Example 4.3 in POES5

Gretl includes facilities to aid in the production of good looking output. For instance, results
from the models window can be copied and saved in several formats, including RTF(MS Word) and

IATEX.

IXTEX, pronounced “Lay-tek”, is a typesetting program used by mathematicians and scientists to
produce professional looking technical documents. It is widely used by econometricians to prepare
manuscripts, reports, presentation slides and research papers. In fact, this book is produced using

TEX.

Although KTEX is free and produces very professional looking documents, it is not widely used
by undergraduate and masters students because 1) most degree programs don’t require you to
write a lot of technical papers and 2) it’s a computer language which takes some time to learn its
intricacies and to appreciate its nuances. I've been using it for years and still scratch my head when
I try to put tables and Figures in the places I'd like them to be.

In any event, many of the output windows gretl provide the ability to copy, save, or print
properly formatted IATEX tables and equations. For users of IXTEX, this makes generating regression

Ed qrett — O X
File Tools Data Yiew Add Sample Model Help =
food.gdt ™ C\Users\leead\Documents\gretlpoes
D # Variable name Descriptive label
] const

Undated: Full range 1- 40

@2 E~EL 8B

Figure 4.5: Hold the control key and click on food_exp, income, and fO(;l,\exp = yhatl from the food
expenditure regression to select them.

85

B3 orett correlation matrix - O X

. i
& 5 & ®= |
Correlation Coefficients, using the observations 1 - 40
2% critical wvalue (two-tailed) = 0.3120 for n = 40
food exp income vhatl
1.0000 0.6205 0.6205 food exp
1.0000 1.0000 income

1.0000 yhatl

Figure 4.6: The correlation matrix for food_exp, income, and fooTi\,exp = yhat2 is produced by
selecting View>Correlation matrix from the pull-down menu.

output in proper format a breeze. If you don’t already use WTEX, then this will not concern you.
On the other hand, if you already use it, or are looking for a reason to learn it, gretl can be very
handy in this respect.

In Figure 4.3 you will notice that on the far right-hand side of the menu bar is a pull-down
menu for TEX. From here, you click LaTeX on the menu bar and a number of options are
revealed as shown in Figure 4.7. You can view, copy, or save the regression output in either tabular

Ed gretl: models - O X

File Edit Tests Save Graphs Analysis '1_'|
model 1 View >
>

Copy

Model 1: COLS, using Dbservatio_|

Dependent wvariable: food exp Tabular
Equaticn options > Equation
coefficient std. Tabular cptions... Pal':,te
const 83.4160 43.4102 1.922 0.0622
income 10.20%96 2.09326 4.877 1.95e-05 #=%=

Figure 4.7: Several options for defining the output of IXTEX are available. Highlighted here, you
can either save an estimated model in equation or tabular form.

form or in equation form. You can choose to display standard errors or t-ratios in parentheses
below parameter estimates, and you can define the number of decimal places to be used of output.
Nice indeed. Examples of tabular and equation forms of output are found in Tables 4.1 and 4.2,
respectively.

Another useful trick allows one to change the number of digits shown in gretl model windows.
In a models window, right-click and a menu of options is revealed (Figure 4.8). At the end of the
list is Digits. Click on this and select the number of digits to display in the output. You can also
save, copy, or print in various formats.

Gnuplot (pronounced “new plot”) is widely used to produce professional publication quality
graphics. Gretl comes packaged with gnuplot and provides an interface that makes getting decent

86

OLS, using observations 1-40
Dependent variable: food_exp

Coefficient Std. Error t-ratio p-value

const 83.4160 43.4102 1.9216 0.0622

income 10.2096 2.09326 4.8774 0.0000
Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 23.78884 P-value(F) 0.000019
Log-likelihood —235.5088 Akaike criterion 475.0176
Schwarz criterion 478.3954 Hannan—Quinn 476.2389

Table 4.1: This is an example of ITEX output in tabular form.

fooﬁ,\exp = 83.4160 + 10.2096 income
(43.410) (2.0933)

T=40 R?=0.3688 F(1,38)=23.789 & =89.517

(standard errors in parentheses)
Table 4.2: Example of IXTEX output in equation form

looking graphs easy, certainly easier that doing them strictly in gnuplot. Some of this functionality
will be explored below.

4.4 Choosing a Functional Form

Example 4.4 in POES5

There is no reason to think that the relationship between food_exp and income is linear. In fact,
it is likely to be nonlinear. A low wage earner might spend nearly all of an additional dollar on food
whereas a high income earner might spend very little. A linear model implies that rich and poor
spend the same amount of an additional dollar of income. As seen in Chapter 3, nonlinearities can
be modeled by transforming either the dependent or independent variable or both. This complicates
interpretation a bit, but some simple differential calculus can quickly sort things out.

Linear regression is considerably more flexible than its name implies. There are many relation-
ships in economics that are known to be nonlinear. The relationship between production inputs
and output is governed in the short-run by the law of diminishing returns, suggesting that a convex
curve is more appropriate. Fortunately, a simple transformation of the variables (z, y, or both)

87

Save as...

Print...

Copy
Find...

Digits...

Figure 4.8: Right-click in the models window reveals this set of options.

yields a model that is linear in the parameters (but not necessarily in the variables).

The functional form you choose should be consistent with how the data are actually being
generated. If you choose a functional form that when properly parameterized cannot generate your
data, then your model is misspecified. The estimated model may, at best, not be useful and at
worst be downright misleading.

In gretl you are given some very useful commands for transforming variables. From the main
gretl window the Add pull-down menu gives you access to a number of transformations; selecting
one of these here will automatically add the transformed variable to your data set as well as its
description.

Figure 4.9 shows the available selections from this pull-down menu. In the upper part of the
panel two options appear in black, the others are greyed out because they are only available if

B ot S =
File Toolz Data Eiz@mple Wariable Moedel Help |1:'|
food.gdt * Logs of selected variables ments\gretl\poes
D Variable name Squares of selected variables

0 const

1 food_exp

2 income

Index variable

Random variable...

Observation range dummy

Dummies for discrete variable...

Define new variable...

Define matrix...

Figure 4.9: The Add pull-down menu is used to add new variables to gretl .

88

the dataset structure has been defined as time series or panel observations. The available options
include being able to add the natural logarithm or the squared values of any highlighted variable
to the dataset.

The next to last option Define new variable can be selected to perform more complicated
transformations. This dialog uses the series command and which can use the large number
of built-in functions to transform variables. A few of the possibilities include taking a square
root (sqrt), sine (sin), cosine (cos), absolute value (abs), exponential (exp), minimum (min),
maximum (max), and so on. Later in the book, I'll discuss changing the dataset’s structure to
enable time-series or panel transformations.

One can also create a matrix or scalar using the last option, Define matrix. This choice brings
up a useful dialog that allows you to build a matrix from a series, a formula, or numerically.

4.4.1 Linear-Log Specification

The linear-log specification of the food expenditure model uses the natural logarithm of income
as the independent variable:

food_exp = 1 + B2 In (income) + e (4.6)

Taking the logarithm of income and estimating the model

1 series 1_income = ln(income)
2 ols food_exp const 1_income

The logs command can be used to add the natural logs of several variables of selected variables
to the dataset. The 1ogs function to create In(income) is:

1 logs income

This command produces a new variable called 1_income and adds it to the variables list.

Estimation of the model yields

food_exp = —97.1864 + 132.166 Lincome
(84.237) (28.805)

n=40 R*=0.3396 F(1,38)=21.053 & =91.567

(standard errors in parentheses)

89

In Figure 4.6 of POE5 the authors plot food_exp and food/,\ezzp against income. A positive
(nonlinear) relationship between the two is expected since the the model was estimated using the
natural logarithm of income. To produce this plot, estimate the regression to open the models
window. Add the predicted values of from the regression to the dataset using Save>Fitted
values from the models window’s pull-down menu. Name the fitted value, yhat?2 and click OK.

Return to the main window, use the mouse to highlight the three variables (food_exp, yhat2,
and income),® then select View>Graph specified vars>X-Y scatter from the pull-down
menu.* This opens the define graph dialog box. Choose yhat2 and food_exp as the Y-axis
variables and income as the X-axis variable and click OK. A graph appears that looks similar to

Figure 4.10

600 T
food_exp + +
yhat2

500 - 7

400

300

200

100

income

Figure 4.10: Graphing the linear-log model

A simpler approach is to open a console or a new script window and use the following commands:

1 ols food_exp const 1_income
2 series yhat2 = S$yhat
3 gnuplot yhat2 food_exp income

which adds a gnuplot command to plot the the two series against income. The first line estimates

3Click on each variable while holding down the CTRL key
4You can also right-click the mouse once the variables are selected to gain access to the scatter plot. If you choose
this method, gretl will prompt you to specify which of the selected variables is to be used for the X-axis.

90

the regression. The predicted values are held in the accessor, Syhat, and are assigned to a new
variable called yhat2 using the series command. Then, call gnuplot with the predicted values,
yvhat2, as the first variable and the actual values of food expenditure, food_exp, as the second.

When executed from the console, the graph summoned in line 3 is opened in a window on your
screen. However, when executing these commands using a script, the graph is written to a file
on your computer. To control where output is sent, use the ——output= option in the gnuplot
command. The graph can be sent to the screen or saved in a file of a given name in the desired
format. You can also send the graph to a session by prefixing the command with a name and the
assignment operator <—. Examples of these choices are:

1 gnuplot vhat2 food_exp income —--output=display # output to screen
2 gnuplot yhat2 food_exp income —--output=graph.pdf # output to a pdf
3 gl <- gnuplot yhat2 food_exp income # send graph to session

4.4.2 Residual Plots

Misspecifying the model’s functional form can lead to serious problems when making decisions
based on the results. There are a number of statistical tests one can use to diagnose specifica-
tion problems, but researchers often start by examining residual plots for evidence of any obvious
misspecification.

If the assumptions of the classical normal linear regression model hold (ensuring that least
squares is minimum variance unbiased) then residuals should look like those shown in Figure 4.11
below. If there is no apparent pattern, then chances are the assumptions required for the Gauss-
Markov theorem to hold may be satisfied and the least squares estimator will be efficient among
linear estimators and have the usual desirable properties.

Linear-Log Model

The plot in Figure 4.12 is of the least squares residuals from the linear-log food expenditure
model. These do not appear to be strictly random. Rather, they appear to be heteroskedastic,
which means that for some levels of income, food expenditure varies more than for others (more
variance for high incomes). The script to produce this is:

open "@workdir\datalfood.gdt"

logs food_exp

ols food_exp const 1_income

series uhat = S$Suhat

gnuplot uhat 1_income —--output=display

91

3 T T T T T
+
+
2 +
+ + + +
+ T
+ + st N +
+ “_"_ + + _h_+ +
+ + + 4 +
1k + + o Ty f+ .
oy the 4 £+ 4 4 1
R L T L + " te + ’ +
+14 F I + ¥ ¥ + o+ TR, R 4 H
+ +h + T ++
o +t+ . +, N + g -,
+
o 0 R : oL +_#_+ e L +oge . +‘l_"_ +_+.. g +. . -
oo+ o+ o+ + ++i W e +
+ * + ot + + o +'tF ++ 4
+ oy + o T + +
T + 4 + 4+ + o+ oy + + 4o+
+ 4 F T+ o + o4t ++ +
+ +
¥
1 5 * 4
* iy i + + + ot
+ + ++
+ + * + + + + + + +
+ + + + ++ + + +
+ + + +
+ + oy
2 + + .
PR
¥
+
3 | | 1 1 + |
0 2 4 6 8 10

Figure 4.11: Randomly distributed residuals

Least squares may be unbiased in this case, but it is not efficient. The validity of hypothesis tests
and intervals is affected and some care must be taken to ensure proper statistical inferences are
made. This is discussed at more length in Chapter 8.

Log-Linear Model

The next plot is of the least squares residuals from the log-linear food expenditure model
(Figure 4.13). These may be mildly heteroskedastic, less so than in the linear-log model. The
script to produce this is:

[

open "@workdir\datalfood.gdt"

logs food_exp

ols 1_food_exp const income

series uhat = S$Suhat

gnuplot uhat income —--output=display

S A

Notice that in line 4 the accessor Suhat has been used to store the residuals into a new variable.
Here they are assigned to the series ehat. Then, they can be plotted using gnuplot.

Now consider residuals of a misspecified model shown in Figure 4.14. The errors are supposed

92

Regression residuals (= observed - fitted food_exp)
250 T T T T

. T
200 -
150 . -
H
100 - L] .' ® b
®
50 . b
= ® * ¢ *
e
2 gl e o . o ..o L
= . b ®
e
50 b ° d e® .
®
-100 * o e E
.
L] L]
150 -
-200 -
®
-250 1 1 1 1 1
1.5) 2.5 3 3.5

|_income

Figure 4.12: Heteroskedastic residuals from the linear-log model of food expenditures.

to look like a random scatter around zero. There are clearly parabolic and the functional form of
the model is NOT correctly specified.

4.4.3 Testing for Normality

POES5 5 discusses the Jarque-Bera test for normality which is computed using the skewness and
kurtosis of the least squares residuals. To compute the Jarque-Bera statistic, you’ll first need to
estimate the model using least squares and save the residuals to the dataset.

From the gretl console

1 ols food_exp const income
2 series uhatl = Suhat
3 summary uhatl

The first line is the regression. The next accesses the least squares redsiduals, $uhat, and places
them into a new series called uhat1.> You could use the point-and-click method to add the residuals
to the data set. This is accomplished from the models window. Simply choose Save>Residuals

5You can’t use uhat instead of uhatl because that name is reserved by gretl.

93

residual versus income (with least squares fit)

0.6 T T T T T T
[.
0.4 | L4 :
.
L] . . ‘
° °
0.2 - [] [] =
[] L4 .
.
.
0] L o
. .
.
" @
L [
E 0.2 .
.
Z .
o L]
0.4 . o []
.
-0.6 A
-0.8 B
_l — -
.
-1.2 1 1 1 1 1 1
5 10 15 20 25 30

income

Figure 4.13: After some editing, residuals from the log-linear food expenditure model.

from the model pull-down menu to add the estimated residuals to the dataset. The last line of the
script produces the summary statistics for the residuals and yields the output in Figure 4.15. One
thing to note, gretl reports excess kurtosis rather than kurtosis. The excess kurtosis is measured
relative to that of the normal distribution, which has kurtosis of three. Hence, the computation is

(Excess Kurtosis)?)
4

—0.0112>

T
JB = 5 (Skewness2 + (4.7)

40

JB - <—o.0972 + = .063

Normally distributed random variables have no skewness nor excess kurtosis. The JB statistic is
zero in this case. It gets larger the higher the skewness and the greater the degree of excess kurtosis
displayed by the data. In section C.3 hansl is used to compute skewness and excess kurtosis and
could be used to compute your own JB test. Fortunately, there is no need to compute your own
because gretl will compute the Jarque-Bera test for you. After saving the residuals into Suhatl
issue the command

1 ols food_exp const income

2 series uhatl = Suhat # save the residuals

3 normtest uhatl --jbera # compute Jarque-Bera Test
4 normtest uhatl --all # show all normality tests

This yields a value of Jarque-Bera test = 0.0633401, with p-value 0.968826, which is exactly what

94

15 T T T T T
[]
10 ® ® b
[] L]
® . be ,
® [
[] ® []
5 ® [P] J
[] e L]
[1] []
[] ® []
ok .. - ‘e _
z °
£ g ®
= []
5 . .
LY °
® [
®
_10 — ' -
L]
[]
e_®
[]
-15 J
o®
20 I I I 1 I
-2 -1 0 1 2

Figure 4.14: Correlated residuals from estimating a quadratic relationship using a line.

the manual calculation yields. Gretl performs other tests for the normality of residuals including
one by Doornik and Hansen (2008). Computationally, it is more complex than the Jarque-Bera
test. The Doornik-Hansen test has a x? distribution if the null hypothesis of normality is true. It
can be produced from normtest along with several others using the ——all option. Output from
normtest —-all is shown in Figure 4.16. Obviously, one of the advantages of using normtest
is that you can test for the normality of any series, not just residuals.

Another possibility is to use the modtest function after estimating a model using least squares.

1 ols food_exp const income
2 modtest —--normality

The modtest command is a generic function that allows you to test a number of different hypothe-
ses regarding the specification of your model. This function operates on the residuals of the last
model estimated. Using it after a regression with the ——normality option produces the following
output

Frequency distribution for uhat2, obs 1-40
number of bins = 7, mean = -2.45137e-014, sd = 89.517

interval midpt frequency rel. cum.

95

Summary Statistics, using the observations 1 - 40
for the variable ’"uhatl’ (40 valid observations)

Mean 0.00000
Median -6.3245
Minimum -223.03
Maximum 212.04
Standard deviation 88.362

C.V. 2.4147E+015
Skewness -0.097319
Ex. kurtosis -0.010966

Figure 4.15: The summary statistics for the least squares residuals.

Ed gretl: normality test - O ®
=SSN &
Test for normality of uhat2:
Shapiro-Wilk W = 0.988383, with p-value 0.94%277
Lilliefors test = 0.0670258, with p-value ~= 0.93

Jargue-Bera test = 0.0633401, with p-wvalus 0.5968826

Figure 4.16: Using normtest residual ——all tests the variable residual for normality after running
a linear regression.

< -186.77 -223.03 1 2.50% 2.50%
-186.77 - -114.26 -150.51 3 7.50% 10.00% xx
-114.26 - -41.747 -78.002 8 20.00% 30.00% *xkkxxx*
-41.747 - 30.765 -5.4907 14 35.00% 65.00% *k*xkhrkhrxk
30.765 - 103.28 67.021 8 20.00% 85.00% #*xk*xx%
103.28 - 175.79 139.53 5 12.50% 97.50% **xxx
>= 175.79 212.04 1 2.50% 100.00%

Test for null hypothesis of normal distribution:
Chi-square(2) = 0.694 with p-value 0.70684

The distribution of the residuals is collected and plotted in a basic graph and the results for the
DH test are given. If modtest is executed from GUI using Tests>Normality of residuals in
the model results window, a gnuplot histogram of the errors is generated with a normal density
overlaid. The results of the DH test are again printed on the graph as shown in Figure 4.17.
You can also reach this graph by highlighting the variable you wish to test in the main window,
right-clicking, and selecting frequency distribution from the pull-down menu. That opens the
frequency distribution dialog box that plots the series and has an option that performs the normality
test.

96

B4 gret: graph - >

Test statistic for normality:

(Chi-square(2) = 0.6%4 [0.7068]
0.0045

T T T
uhatz =3

N(-2.8422e-015,89.517) ——

0.004

0.0035

0.003

0.0025

Density

0.002

0.0015

0.001

0.0005

-300 -200 -100 0 100 200
uhat2

E E OB

Figure 4.17: From the models window, use Tests>Normality of residual from the pull-
down menu. This produces this histogram and reports the Doornik-Hansen test from modtest
—--normality.

4.5 Influential Observations

Example 4.7 in POES5

There are a number of statistics used to help identify influential observations in the data. An
influential observation is one whose omission from the data has a large impact on the results. The
statistics considered include leverage, studentized residuals, sensitivity of a coeflicient estimate to
omission of the #!" observation (DFBETAs), and the sensitivity of predictions to the omission of
the ' observation (DFFITS).

Gretl includes a set of diagnostics that are available from either the GUI or as a hansl com-
mand. The gretl 1everage command produces some, but not all of the measures considered here.
Consequently, we will be writing programs to compute the missing statistics.

To see what gretl can do easily, estimate a linear regression model and open its models window
(Figure 2.9). From the menu bar choose Analysis>Influential observations from the menu bar.
This produces two windows of output. The first window, leverage and influence, is shown in
Figure 4.18. It lists the estimated residual, leverage, influence, and DFFITS for each observation in

97

the sample. Clicking on the plus sign on the menu bar enables you to save any of the last three to
the current dataset. A high leverage point is distant from Z. It has the potential to be influential

K
& oa@)m =
residual leverage influence DEFITS ::
u Q<=h<=1 u*h/ (1-h)
1 -5.869¢6 0.163*% -1.1472 -0.031
2 T.7437 0.152% 1.3835 0.03%9
3 -12.572 0.146* -2.1434 -0.0&2 3
4 -30.02 0.126* -4.,3185 -0.134
5 -23.68 0.053 -1.320%9 -0.063
& 27.983 0.048 1.4417 0.072
7 39.037 0.041 1.6678 0.091
g 4.5997 0.038 0.18087 0.010 |
9 56.112 0.035 2.0375 0.121
10 67.028 0.031 2.1154 0.134
11 -44,553 0.028 -1.2731 -0.084
2 -24.48581 0.027 -0.8755 -0.045
13 120.1 0.027 3.2734 0.227
14 -10.05 0.026 -0.26567 -0.018
15 -23.465 0.026 -0.8le69 -0.043
16 34.513 0.025 0.8978 0.0&2
17 T0.431 0.025 1.8315 0.128
g8 -11z2.27 0.025 -2.8993 -0.2086
19 -82.665 0.025 -2.1267 -0.150 [~]

Figure 4.18: From the models window, choose Analysis>Influential observations from the
menu bar to produce these statistics that can be added to your data.

if it is also distant from the regression line compared to similar points. An influential point exerts
a relatively large influence on the intercept and slope of the regression.

To be influential, an observation will generally have a large estimated residual and will also have
a high leverage. Thus, the first two columns contain these two components. The average value of
leverage is k/n. If a leverage statistic is significantly larger than this number, gretl places a star
* by it in the list.

Influence (see Exercise 2.26 in Davidson and MacKinnon (2004)) measures the change in the ¢!
residual when observation t is omitted from the model. If the residual changes by a large amount
when the observation is omitted then that is evidence that it is exerting a large influence on the
estimated slopes. The last column contains DFFits, which measures how much the predicted value
of the dependent variable changes when an observation is omitted. Below, we will discuss how each
of these is actually computed.

Missing from the possible statistics listed by gretl are the studentized residuals, DFBETAs,
and the delete one variance estimate that is used in the computation of these. In the next section,
some of the details on how these statistics can be computed are presented. Also, a short script is
given to produce each of these statistics.

98

4.5.1 Leverage, Influence, and DFFits

In this section, we derive a handful of useful diagnostics for detecting the presence of influential
observations. The statistics we consider are based on a comparison of two regressions. One regres-
sion uses all of the observations and the other omits one observation. If the residual, prediction, or
slope changes substantially when an observation is excluded then we conclude that the observation
in question is influential.

Consider the following linear model.

Yi = B+ xib2 + wi (4.8)

When equation (4.8) is estimated using all observations, the least squares estimators are b; and bs.
The estimated variance is 62. When estimated using least squares with the ¢t** observation omitted
from the sample the estimates are b(lt) and bg) and the estimated variance is 62(t). We'll refer to
62(t) as the delete-one variance. These must be obtained in order to compute some of the other
influence statistics of interest.

A trick that can be used to drop the t*" observation is to create a variable that has a zero in
every observation except for the t**. We call this variable e;.

Now the model can be written:
yi = b1+ zife+ ety (4.9)

where ¢ = 1,2,--- ,n. Including this variable in the model and estimating the parameter by least

squares yields this produces bgt) and bg).

Useful measures of the influence the #"

rameters is b; — bgt) and by — bg) . Properly scaled by its standard deviation, this becomes the basis

of the DFBETA statistics.

observation has on the estimation of the model’s pa-

There are a few other statistics that require the computation of these. The easiest way to do
this use matrix algebra. If that doesn’t thrill you, then feel free to skip this section.

4.5.2 The Hat and Residual Maker matrices

Linear regression using least squares is an exercise in geometry. Least squares finds the shortest
distance between the dependent variable and the space defined by the regressors. In Euclidean
geometry the shortest route is orthogonally from the point y to the space defined by x1,x2,- - , xk.
Expressing the linear model in matrix form

y=XB+e (4.10)

where y is an n x 1 vector containing all n observations on the dependent variable, X is n x k and
each row contains a observation on each of the explanatory variables, the k x 1 vector 5 contains the
intercept and slopes to be estimated, and e is n x 1 containing the residuals. The rank(X) =k < n.

99

The least squares estimator is
b= (XTX)"1xTy.
Note,
Xb=9=X((XTX)"'XTy=Hy

The matrix H is called the Hat matrix because it creates least squares predictions for any variable
that it multiples, in this case, y. H is the orthogonal projection onto the space defined by X.
Usually it is denoted P, and I'll follow that convention going forward.

The residual maker creates the least squares residuals.

=y—g=y—Xb=y—Poy=(ln—P)y =My

The diagonal elements of the Hat matrix, P, are h;, ¢ = 1,2,--- ,n. The h; is referred to
as leverage of observation i. It is 0 < h; < 1. The variance of the i** least squares residual,
é; = 0%(1 — h;). This implies that the least squares residual is smaller than the actual variance of
e;. It also implies that the least squares residuals depend on ¢ and are heteroskedastic.

The most straightforward way to compute the leverage measure in gretl is using these matrices.
Below is a simple function that produces these:

1 function series h_t (list xvars)
2 matrix X = { xvars }

3 matrix Px = Xxinv (X’'X) *X'

4 matrix h_t = diag(Px)

5 series hats = h_t

6 return hats

7 end function

This function is quite simple. It takes a 1ist of variables as arguments. In line 2 these are
converted to a matrix, line 3 computes the hat matrix, line 4 takes the diagonal elements of P,
line 5 puts those into a series and return sends the series out of the function when called.

To use the function, create a 1ist for the independent variables and use:

list xlist = const income
series lev_t = h_t(xvars)

This puts a variable called 1ev_t into your dataset that contains the leverage statistics.

100

Delete one variance computation

Another building block that must be computed is the delete-one variance, 52(t). There are a
number of approaches one could take to compute these. I have chosen one that uses a few matrices
and that relies on internal gretl functions for the most part. Inevitably, some matrices are created
to facilitate variable collection and creation.

The function created to compute and collect the delete-one variances is:

1 function series delete_1_variance(series y, list xvars)
2 matrix sig = zeros($nobs, 1)

3 loop i=1..$nobs

4 matrix e_t = zeros($nobs,1)
5 matrix e_t([i,1]=1

6 series et = e_t

7 ols y xvars et

8 matrix sig[i,l]=$sigma”2

9 endloop

10 series sig_t = sig

11 return sig_t

12 end function

The function is called delete_1_variance and returns a series. It takes two arguments:
a series for the dependent variable and a 1ist for the regression’s independent variables. In
line 2 a matrix of zeros is created that will hold the variances as they are computed within the
loop. It loops over the number of observations started in line 3. In line 4 another matrix of zeros
is created at each new iteration that becomes the variable that will be added to the model, i.e., e;.
In the next line a 1 is placed in the i*" row of the zero vector and then converted to a series in line
6. In line 7 a regression is estimated that augments the model with the created regressor that will
omit the i*" observation. The accessor $sigma is used to compute the variance. The loop ends
and the matrix sig is converted to a series and returned.

To use the function, create a 1ist for the independent variables and use:

list xlist = const income
series sig_t = delete_1_variance (food_exp, xlist)

This puts a variable called sig_t into your dataset that contains the delete-one variances.
These functions are used to compute studentized residuals and the DFFITS (See Table 4.3):

The h; are the diagonal elements of the hat matrix, &(¢) is the square root of the t** delete-one
variance, and é; is the ¢ least squares residual using the entire sample.

101

Statistic Formula
Leverage hy=diag(P;)
Studentized Residual | &5 = é,/(6(t)v/1 — hy)

DFFITS &stey /i /(1 — hy)

Table 4.3: Influence Diagnostics

Once é&;, hy, 6(t) are in the data, , €% and DFFITS can be computed as series in turn. The

complete set of influence statistics are generated using:

list xvars = const income
ols food_exp xvars

series ehat = S$Suhat

series lev_t = h_t (xvars)

series sig_t = delete_1_variance (food_exp, =xvars)
series stu_res = ehat/sqrt(sig_t*(l-lev_t))
series DFFits=stu_res=*sqgrt (lev_t/ (l-lev_t))

0 N O s W N

and added to your dataset. The advantage of having these in the data is that they can be further
manipulated to identify minima, maxima, as plots, etc. Notice that these match the ones computed
using the leverage command shown in Figure 4.18 above.

4.5.3 DFBETA

The leverage, delete-one variance, and DFFITS computations are straightforward. The com-
putation of DFBETA is less so. This comes from the fact that there are several different ways to
express this measure of influence on the estimation of the parameters. In principle this is what you
want to estimate for each coefficient at each observation:

b; — b¥
DFBETA,; = —21—
var(bg-t))
One representation of this from POFES is
b; — b

DFBETA;, =

G(t)/6 x se(bj)

Stata use another calculation that uses the studentized residual and the outcomes of auxiliary

regressions:

sstuy 1-h
DFBETA,, = - /(1 —he)

102

The statistic 4; is a least squares residual of z; regressed onto all of the other independent variables
in the model. So for instance, j = 2 and k = 4, the regression is

To = 1 + a3x3 + qqxyg + TES.

Then 9y = &1 + Gsxse + dyxye. The algebraic form is harder than the computation.

list x1 = const income
scalar k = nelem(x1)
matrix results = zeros(k, 1)
loop i=1..k —-—quiet
list yl = x1[1]
list y2 = x1[2:k]
ols yl y2
series dfbS$i=stu_resx*$uhat/sqrt (Sess* (1l-lev_t))
list x1 = y2 vyl
endloop

© 0 9 s W N

-
o

This script requires that you have the studentized residuals in the data as well as the leverages by
observation.’ The logic of the program deserves a defense (yes, it is ugly). The 1ist of regressors
in the model is populated and the number of elements it contains counted using nelem (). A kx 1
matrix of zeros is initialized before the 1oop starts in line 4. The loop iterates over each of the k
variables in the list. The variables in the list are divided into two sets. The first set, y1, contains
only the first variable from the list and the other set, y2, contains the remaining ones. The y1
variable is regressed onto the remaining ones contained in y2.

After the regression, use the accessors ($uhat) for the residuals, 4, and $ess for the sum of
their squares (3 ;- ﬂ?t) These are used to compute the series for dfb.

Finally, we rearrange the list by moving the first variable, y1, to the end of the list.

Iteration | Dependent | Independent
vl y2

i=1 T X9 T3 Ty

i=2 xI9 I3 T4 T

i=3 T3 T4 T1 X2

i=4 Ty I i) T3

The loop increments, the first variable is now the second regressor and the first regressor has moved
to the end of the list. n the revised list will be the second variable in the original list and becomes
y1; y2 contains all of the others. Let’s just say it works. When the routine has finished you’ll
have two new variables in the data: dfbl and dfb2. Some results for the DFBETA for income
are shown in Figure 4.19. Notice that for observations 38 and 39, the result matches those shown
in POE5 Example 4.7. This also matches the result from Stata 15.1.

SPutting all of this together in a gretl bundle would be a fine idea.

103

E a2 - O *

BHELDXNw.asR%"PE D

dfb2

1 0.0287%9
2 -0.03580
3 0.05636
4
8
-

0.1203576

(I

Figure 4.19: Output from the DFBETA (income) in the food expenditure model.

4.6 Polynomial Models

Using polynomials to capture nonlinearity in regression is quite easy and often effective. Stu-
dents of economics are quite used to seeing U-shaped cost curves and S-Shaped production functions
and these shapes are simply expressed using quadratic and cubic polynomials, respectively. Since
the focus so far has been on simple regression, i.e., regression models with only one independent
variable, the discussion in POFES5 is simplified to include only a single squared or cubed value of
the independent variable.

The general form of a quadratic equation y = ag+ a1z + asz? includes a constant, the level of
and its square. The latter two terms are multiplied times coeflicients, a1 and as that determine the
actual shape of the parabola. A cubic equation adds a cubed term, y = ag+ a1z + asx® +azx>. The
simple regressions considered in this section include only the constant, ag and either the squared
term in a quadratic model or the cubed term in the cubic model.

The simple quadratic regression has already been considered. The regression and its slope are

y = B1 + Po?
dy/dx = 2Pz

From this you can see that the function’s slope depends on the parameter § as well as the value of
the variable x.

The cubic model and its slope are

y =B+ por®
dy/dx = 3Byz>

Since z is squared in the slope, the algebraic sign of 52 determines whether the slope is positive or
negative. Both of these models are considered using examples below.

104

4.6.1 Wheat Yield

Example 4.8 in POES5

Figure 4.23 contains a plot of the average wheat yield in Greenough Shire over time (in tonnes
per hectare—we’re in OZ!) using the data in wa_wheat.gdt. The results from the example in section
4.4 of POFES are easily produced in gretl. Start by loading the data and estimating the effect
of time, time on yield greenough using least squares. The following script loads the data file,
estimates the model using least squares, and generates a graph of the actual and fitted values of
yield (greenough) from the model.

1 open "@workdir\data\wa-wheat.gdt"
2 ols greenough const time
3 gnuplot greenough time —--output=display

The resulting plot appears below in Figure 4.20. Right-clicking on the graph brings up a menu of

Ed gret: graph = X

2.4 T T T T T T T T T

2.2 B

2r + 7

1.8 - + b

1.6 - b

1.4 g

Yield in tonnes

1.2 + + 4 g
1F + +
0.8 + N + + B

0.6 - b

0.4 1 1 1 1 1 1 1 1 1

Figure 4.20: Plots wheat yield in Greenough Shire over time.

choices shown in Figure 4.21. Choose Edit and the plot controls dialog box appears as shown
in Figure 4.22. From the lines tab a few of the defaults; the legend for the series is changed to
Actual Yield and the line style was changed to line/points. The X-axis tab was used to change
the axis label to ‘Time.” After a little editing, the new graph (Figure 4.23) looks even better.

The simple gnuplot command works well enough. Adding information from the console or a

105

Save as PNG...

Save as postscript (EPS)...

Save as PDF...

Copy to clipboard >
Save to session as icon

Zoom...

Print >
Display PDF

Edit

Close

Figure 4.21: This fly-out menu is initiated by right-clicking on a gretl graph. To save it for further
manipulation, choose save to session as icon.

script is easy to do as well. I added a description and a label to be used in the graph using the
-d and —n switches for setinfo.” The commands are

1 setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"
2 setinfo time -d "Time" -n "Time"
3 gl <- gnuplot greenough time --fit=linear --output=display

The command in line 3 is the first use of the assignment feature that is can be used with some
gretl commands. The expression gl <- gnuplot greenough time takes the graph produced
by gnuplot and places it into a session, which is discussed in section (1.3.3), as an icon labeled
gl. Once this is in your session, it can be displayed and edited in the usual way using gretl, or it
can be edited using gnuplot commands. It also enables the graphpg commands to be used in a
script or from the console.

Two options to gnuplot are used. The first option (-—fit=1linear) tells gnuplot to plot a
least squares regression line that is fitted using the data. This option also adds the the ability to
apply different types of fit from the graph controls (see Figure 4.22). The second option plots the
the output to the screen. Once the graph window is displayed, it can be added to a session as an
icon. A right-click on the icon in the session window allows you to edit the gnuplot commands
and to make professional looking publication quality graphics using gnuplot. The icons can be
dragged to the Graph page icon to combine several graphs onto a single page. This will be explored
further below.

To make the graph look like Figure 4.24 some further manipulation was done using the plot
controls.

"_d is an abbreviation of ——description= and -n of ——graph-name=

106

E& oretl plot contrals >

Main | X-axis | Y-axis | Lines | Labels | Arrows | Palette

Title of plot [eld in tennes versuk Tirne (with least squares fit]]

< |

key position | left top o

fitted line | linear y = a + b*x < |

Show full border

] Show grid

| font: verdana 8

[C] Set as default

;_.;ﬂelp || c‘;{;:’: Apply || ﬁ:ﬂgl(|| wgose |

Figure 4.22: The graph dialog box can be used to change characteristics of your graphs. Use the
Main tab to give the graph a new name and colors; use the X- and Y-axes tabs to refine the behavior
of the axes and to provide better descriptions of the variables graphed. Note: the fitted line box
shown here only appears if you have used the ——fit= option.

1 series t3=time”~3/1000000
2 ols greenough const t3
3 gnuplot greenough —--with-lines —--time-series

4.6.2 Combining graphs

As mentioned above, graphs (or plots) can be done from the session window or using a script.
To combine graphs from a session, save your graphs to a session as icons and then drag them to
the graph page icon. Opening this icon reveals the combined graph. The beauty of this method is
that each graph can be edited and saved before adding it to the graph page. This is a case where
the GUI is the preferred method of working in gretl. This is because manipulating graphs provides
immediate feedback and each one can be fine-tuned to suit your needs.

However, the graphpg commands can also be used. This is illustrated with the following
example. First, the setup. The wa_wheat.gdt data are loaded and a new series, t 3, is generated in
order to estimate a cubic polynomial model of wheat yield for Greenough. The rescaling of time
cubed merely changes the scale of the coefficient by a corresponding amount and has no effect on

107

Yield in tonnes over time
2.4

T T T T T T T T T
Actual Yield e
22| ®
2 . ~
1.8 + . i
| °®
w
|2 Ler- .® [] 7
z L] []
=] .0
T L4 g
| = L
B 10| L4 oe o . i
= . . se,
| ° e 4, * L . °
i . . . 1 !
. . L °
0.8 | R LI . . . B
® .
0.6 -
0.4 1 1 LI 1 1 1 1 1 1
1] 5 10 15 20 25 30 35 40 45
Time |
= @ o R

Figure 4.23: Plots wheat yield in Greenough Shire over time.

the shape or fit of the model. It is particularly useful for long timeseries since cubing large integers
may exceed your computer’s capacity to yield accurate results (i.e., numerical overflow). Then,
each of the series are relabeled using the setinfo command.

[

[

open "@workdir\data\wa_wheat.gdt"
series t3=time”3/1000000

setinfo greenough -d "Wheat yield in tonnes" "Yield in tonnes"
setinfo time -d "Time" -n "Time"
setinfo t3 -d "(Time"3)/1,000,000"

-n

-n " (Time"3)/1,000,000"

The first graph generated is simply the yield in Greenough against time. It is added to the
current session as gl and the graphpg add command puts the graph into a graph page. The
residuals from the regression are save as a series called ehat and setinfo is again used to provide
a meaningful label.

Jun

[N

ols greenough const time
gl <- gnuplot greenough time —--fit=linear --output=display
graphpg add

series ehat = S$Suhat

setinfo ehat -d "Residual, linear model" —-n "Linear Residual"

108

B4 gret: o - >

Yield in tonnes versus Time (with least squares fit)
2.4

T T T T T T T T T
¥ = 0.659 + 0.0210t

2.2 - q

¥ield in tonnes

®, L L L I I L
0 5 10 15 20 25 30 35 40 45
Time

0.4 1 L

=5 a5

Figure 4.24: Plots wheat yield in Greenough Shire over time. The ——fit=1inear option is used
and the graph controls were employed to change colors and observation markers.

The next graph plots the residuals from this linear regression against time and adds that to the
session as g2. In the second line a title is added to the graph using a gnuplot command. The
syntax is fussy. gnuplot commands can be issued within a gretl script if they are syntactically
correct and if they are enclosed in braces { }. A gnuplot plot command ends with a semi-
colon. This graph contains two gnuplot commands; one adds a title and the other labels the
x-axis. Lines 7 and 8 both contain a continuation command, which means that lines 7-9 of the
script makeup a single gretl command. Lines 8 and 9 consist of two gnuplot commands, the
totality of which is enclosed in the braces.

The resulting graph is added to the graph page with the graphpg add command.

7 g2 <—- gnuplot ehat time --output=display \

8 { set title "Plot of least squares residuals from linear model"; \
set xlabel ’'Time’; }

10 graphpg add

©

Then, the Greenough yield against time is plotted again, but this time yield is fit using a cubic
function of time. This is put into the session as g3.

109

11 g3 <- gnuplot greenough time --fit=cubic --output=display
12 graphpg add

Finally, a simple linear regression is estimated:
yield, = 81 + B2t /1000000 + e;

The residuals are saved, plotted against time, and added to the session as g4 and to the graph
page.

13 g4 <- gnuplot ehat_3 time —--output=display \

14 { set title "Plot of least squares residuals from cubic model"; \
15 set xlabel ’'Time’; }

16 graphpg add

17 graphpg show

The graphpg show command produces a pdf graph shown in Figure 4.25.

4.7 Log-Linear Models

4.7.1 Growth Model
Example 4.9 in POE5

Below you will find a script that reproduces the results from the growth model example in
section 4.5.1 of POFES. If yield grows at a constant rate of g, then yield at time ¢ = 1 will be
yield; = yieldy(1 + g). For constant growth rates, repeated substitution produces

yield, = yieldy(1 + g)° (4.11)
Taking the natural log
In(yield,) = In(yieldy) + tIn(1 + g) = p1 + Pat (4.12)

add an error and you have a regression model. The parameter, f2 = In(1 + g). This is an example
of a log-linear model where the independent variable is time. The slope coefficient in such a model
measures the approximate annual growth rate in the dependent variable.

1 open "@workdir\data\wa-wheat.gdt"
2 logs greenough
3 ols 1_greenough const time

110

This produces

1_greenough = —0.343366 + 0.0178439 time
(0.058404) (0.0020751)

T =48 R?=0.6082 F(1,46) = 73.945 ¢ = 0.19916
(standard errors in parentheses)

The estimated coefficient by = In(1 + g) = 0.0178. This implies that the growth rate in wheat yield
is approximately 1.78% annually over the course of the sample.®

4.7.2 Wage Equation
Example 4.10 in POES5

Below you will find a script that reproduces the results from the wage equation example in
section 4.5.2 of POES5. In this example the log-linear model is used to measure the approximate
return to another year of education. The example uses a thousand observations from the CPS
monthly survey from 2008.

1 open "@workdir\datalcps5_small.gdt"
2 logs wage

3 ols 1l_wage const educ

4 t_interval (Scoeff (educ), S$stderr (educ), $df, .95)

The regression results are:

1.wage = 1.59684 + 0.0987534 educ
(0.070180) (0.0048422)

T =1200 R*>=0.2571 F(1,1198) =415.93 & = 0.48470

(standard errors in parentheses)

This suggests that another year of schooling is expected to increase average wage by 9.88%.

The output from our t_interval command is:
The 0.95 confidence interval centered at 0.099 is (0.0893, 0.1083)

which suggests that an additional year of education is worth between 8.9% and 10.8% wage increases
annually. Sign me up!

8For small g, In(1 4 g) = g.

111

4.7.3 Generalized R-square

A generalized version of the goodness-of-fit statistic R? can be obtained by taking the squared
correlation between the actual values of the dependent variable and those predicted by the regres-
sion. The following script reproduces the results from section 4.5.2 of POES.

open "@workdir\datalcps5_small.gdt"
logs wage

ols 1_wage const educ

series y = exp ($yhat)

scalar corrl = corr(y, wage)

scalar Rsquare = corrl”2

[

printf "\nThe correlation is %.3f and the Generalized R-square = %.3f\n",

N o oA W N

This yields an estimated correlation of 0.465 and a squared correlation of 0.216.

4.7.4 Predictions in the Log-Linear Model
Example 4.11 in POES5

In this example, you use the regression to make predictions about the log wage and the level
of the wage for a person having 12 years of schooling. The naive prediction of wage merely takes
the antilog of the predicted In(wage). This can be improved upon by using properties of log-
normal random variables. It can be shown that if In(w) ~ N(u,02) then E(w) = e*t°°/2 and
var(w) = 24+ (e7” — 1).

That means that the corrected prediction is §¢ = exp (by + box + 62/2) = e(b1+022)¢6%/2 The
script to generate these is given below.

open "@workdir\datalcps5_small.gdt"

logs wage

ols 1_wage const educ

scalar 1_wage_12 = S$coeff (const)+$Scoeff (educ)*12
scalar nat_pred = exp(l_wage_12)

scalar corrected_pred = nat_predxexp ($Ssigma”2/2)
print 1_wage_12 nat_pred corrected_pred

N O O W N =

The results from the script are

1_wage_12 = 2.7818762

112

corrl,

Rsqt

nat_pred = 16.149292
corrected_pred 18.162196

That means that for a worker with 12 years of schooling the predicted wage is $16.15/hour using the
natural predictor and $18.16 /hour using the corrected one. In large samples we would expect the
corrected predictor to be a bit better. Among the 1200 individuals in the sample, 307 of them have
12 years of schooling. Among those, the average wage is $17.31. Hence the corrected prediction
overshoots by about 85 cents/hour. Still, it is closer than the uncorrected figure.

To get the average wage for those with 12 years of schooling, we can restrict the sample using
the script below:

smpl educ==12 —--restrict
summary wage —-simple
smpl full

The syntax is relatively straightforward. The smpl command instructs gretl that something is
being done to the sample. The second statement educ=12 is a condition that gretl looks for
within the sample. The ——restrict option tells gretl what to do for those observations that
satisfy the condition. The summary wage statement produces

Summary statistics, using the observations 72 - 378
for the variable 'wage’ (307 valid observations)

Mean 17.305
Minimum 4.1700
Maximum 45.650
Standard deviation 7.9198
Missing obs. 0

which shows that the mean for the 307 observations is almost $17.30. The last line smpl full
restores the full sample.

4.8 Prediction Intervals

In this section, a function that computes in-sample prediction standard errors is proposed. It is
based on the formulation from section 4.1 above. This formulation is generalized based on results
found in Davidson and MacKinnon (2004, pp 103-104). They find the error variance for a given
observation, x; to be

Var(y; — x1 b) = op + ofx(XTX)a]

113

The entire set for a given sample is

diag(of + o2 X (XTX)71xT)

tth

where the row of the n X k matrix X is x;.

The function to compute this is:

1 function series in_sample_fcast_error(series y, list xvars)

ols y xvars
scalar sig = $sigma”2
matrix X = { xvars }

series se = sqgrt (diag(f_e))
return se

2
3
4
5 matrix f_e
6
7
8 end function

sig+*I ($nobs) +sig*X*inv (X’ X) xX’

The function, called in_sample_fcast_error, returns a series to the dataset and takes
two arguments. The first is a series that will serve as the dependent variable in a regression.

The second is a 1ist of regressors.

The first step is to estimate the model and save the estimated variance (sig). Then, the
variable 1ist is converted to a matrix and in line 5 the forecast error variance is computed. The
next line takes the square root of the diagonal elements as a series and the return sends these

out of the program.

To use the program, simply execute:

1 list xvars = const educ

2 series se_p = in_sample_fcast_error (l_wage,

xvars)

4.8.1 The fcast Command

Gretl contains a forecast command, fcast, that returns the predictions and standard errors to

a series. After the regression simply issue the following commands:

[

ols 1_wage xvars
fcast £ —-—-static
series pred = S$fcast
series se = S$fcse

W N

Since the last model estimated is a single equation, an optional variable name can be added as an
argument to 1) suppress printing forecasts to the screen and to 2) place them in the dataset under
the given name. In this case, a variable f is created to hold the forecasts in the dataset.

Example 4.11 using fcast

Another way to add the forecasts to the data is through the the $fcast accessor. It holds
the forecasts, which in this case is simply $Syhat in a static linear regression model. The other
accessor, $fcse, returns the forecast standard error and reproduces the results from our program
exactly. To print predictions, standard errors, and 95% prediction intervals to the screen, omit the
optional variable name, f.

1 open "@workdir\datal\cps5_small.gdt"
2 logs wage

3 list xvars = const educ

4 ols 1_wage xvars

5 fcast f —--static

6 series pred = S$fcast

7 series se = $fcse

8

9

series corrected = exp (f)*exp($sigma”2/2)

series nat = exp (f)

dataset sortby educ

g6 <- gnuplot wage nat lb_p ub_p educ --output=display

= = e
No= O

After a little editing the To find the predicted values, standard errors, and 95% bounds for only
those with 12 years of schooling use the smpl command to restrict the sample and use the simple
summary statistics.

1 smpl educ==12 --restrict
2 summary educ wage lb_p nat ub_p se_p se —--simple
3 smpl full

This produces:

Mean Median S.D. Min Max
educ 12.00 12.00 0.0000 12.00 12.00
wage 17.31 15.00 7.920 4.170 45.65
1b_p 6.236 6.236 0.0000 6.236 6.236
nat 16.15 16.15 0.0000 16.15 16.15
ub_p 41.82 41.82 0.0000 41.82 41.82

115

se_p 0.4850 0.4850 0.0000 0.4850 0.4850
se 0.4850 0.4850 0.0000 0.4850 0.4850

For individuals with 12 years of schooling, the average wage is $17.31 /hour and the median is only
$15. The natural prediction lies within the interval ($6.24, $16.15) with 95% frequency. That is
not very informative, is it?

Another reasonable way to generate a complete confidence interval for every year of schooling
between 1 and 21 years, you can use the following script. The result looks very similar to Figure
4.15 in POES.

1 open "@workdir\datalcps5_small.gdt"

2 logs wage

3 ols 1_wage const educ

4 scalar sig2 = $ess/$df

5 matrix sem = zeros(21,5)

6 loop for i = 1..21 —-—-quiet

7 scalar yh = ($coeff (const) + S$coeff (educ) *1i)

8 scalar £ = sig2 + sig2/$nobs + ((i-mean (educ)) "2)x (Sstderr (educ) "2)
9 sem[i,1]=1

10 sem[i,2]= vh

11 sem([i,3]=sqgrt (f)

12 sem[i,4]=exp (yh-critical (t,$df,0.025) xsqrt (f))
13 sem[i,5]=exp (yh+critical (t, $df, .025) xsqrt (f))
14 endloop

=
ot

print sem

_ e
N o

nulldata 21 —--preserve
series ed sem[, 1]

series wage = exp(sem[,2])
series 1lb = sem([, 4]

series ub = sem([, 5]

NOONON N =
W N = O © w

g7 <- gnuplot wage lb ub ed —--output=display —--with-lines

Although there are probably more elegant ways to do this, the script works. It will take a bit
of explanation, however. In lines 1-4 the dataset is opened, log wage is created, the regression is
estimated, and the overall variance of the model is saved to a scalar, sig2.

In line 5 a matrix of zeros is created that will be used to store results created in a loop. The
loop starts at i=1 and iterates, by one, to 21. These are the possible years of schooling that
individuals have in our dataset. For each number of years the forecast and its forecast variance are
estimated (lines 7 and 8). Notice that these will have different values at each iteration of the loop
thanks to their dependence on the index, i. In line 9 the matrix sem gets the contents of 1 placed
on the i row of the first column. The next line puts the prediction in the second column. The
forecast standard error is put into column three and in the next two columns the lower and upper

116

boundaries for the interval. The loop ends at i=21, at which point the matrix sem is full; then it
is printed.

Although you can plot the columns of matrices, it is easier to put the columns into a dataset
and use regular gretl commands to make plots. First, create an empty dataset using nulldata
21. The 21 puts 21 observations into the dataset. The ——preserve option is required because
without it the contents of the matrix sem would be emptied—definitely not what we want. In the
next lines the series command is used to put each column of the matrix into a data series. Once
this is done, the variables will show up in the data window and you can graph them as usual. Using
the ——with-1lines option prints out lines rather than dots to mark the observation. The graph
(with a little editing) is found in Figure 4.27.

4.9 Log-Log Model

Example 4.13 in POES5

Finally, a log-log model is estimated. This functional form is often used to estimate demand
equations as it implies a constant price elasticity for the commodity in question. This example uses
the newbroiler.gdt dataset which is adapted from Epple and McCallum (2006). The variable @ is
per capita consumption of chicken, in pounds and P is the real price in dollars. The sample is from
1950-2001. The estimated log-log model is

Lq= 3.71694 — 1.12136 1p
(0.022359) (0.048756)

T=52 R*>=09119 F(1,50) =528.96 & = 0.11799

(standard errors in parentheses)

The coefficient on 1.p is 1.121 which means that a 1% increase in the real price of chicken will
decrease quantity demanded by 1.121%.

Once again, the predictor of quantity needs to be corrected since the model is estimated in

logarithms. Q¢ = exp (by + by In(x) + 62/2) = em(@¥%/2 The R? statistic can be computed as the
squared correlation between @) and). The script for this exercise is:

open "@workdir\data\newbroiler.gdt"

logs g p

ols 1_g const 1_p

series yht=$yhat

series pred = exp (yht)

series corrected_pred=predxexp ($sigma”2/2)
scalar r2= corr (corrected_pred,q) "2

N O Ut Re W N

117

8 gnuplot corrected_pred g p

10 setobs 1 1 —--cross-—-section
11 dataset sortby p
12 gnuplot corrected_pred g p —--output=display

The results are

? scalar r2= corr(corrected_pred,q) "2
Generated scalar r2 = 0.881776

and the corresponding graph is found in Figure 4.28.

Notice that the series structure was changed from time series to a cross-section. Ordinarily, this
is a terrible idea, but necessary in order to sort the data using the dataset sortby command.
Once data are declared to be time series gretl will wisely not sort them. Sorting by the variable
on the X-axis, however tends to make line graphs much more useful. Note, the default graph type

in gretl uses dots, making the sort unnecessary.

The plot was edited to add titles, legends, and to change the markers and colors. The figure
looks good. The nonlinear relationship between weight and price is quite evident and the fit is

reasonable good.

4.10 Script

1 set echo off
set messages off
function computes prediction standard errors

function series in_sample_fcast_error(series y, list xvars)

2
3
4
5 ols y xvars

6 scalar sig = $sigma’2
7 matrix X = xvars }

8 matrix f_e sig*I ($nobs)+sig*X*inv (X’ X) xX'
9 series se = sqrt (diag(f_e))

10 return se

11 end function

|~

13 # function estimates confidence intervals based on the t-distribution

14 function void t_interval (scalar b, scalar se, scalar df,

15 scalar alpha = (1-p)

16 scalar 1b = b - critical (t,df,alpha/2) *se

17 scalar ub = b + critical (t,df,alpha/2) *se

18 printf "\nThe %.2f confidence interval centered at

118

scalar p)

3f is\

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

($.4f, %.4f)\n", p, b, 1lb, ub
end function

function to compute diagonals of hat matrix
function series h_t (list xvars)

matrix X = { xvars }
matrix Px = X*inv (X’X) *X’
matrix h_t = diag(Px)
series hats = h_t

return hats
end function

delete-one variance function
function series delete_1_variance(series y, list xvars)

matrix sig = zeros($nobs, 1)
loop for i=1..$nobs --quiet
matrix e_t = zeros($nobs,1)
matrix e_t[i,1l]=1
series et = e_t
ols y xvars et —-—-quiet
matrix sig[i,1l]=$sigma”2
endloop
series sig_t = sig

return sig_t
end function

estimate model by LS and predict food_exp

open "@workdir\datal\food.gdt"

ols food_exp const income

scalar yhatQ = S$coeff (const) + $coeff (income) x20

prediction interval

ols food_exp const income

scalar yhatQ = S$coeff (const) + S$coeff (income) x20

scalar £=8013.2941+(8013.2941/40)+4.3818%(20-19.6047) "2
t_interval (yhatO, sqrt (f), $df, 0.95)

prediction interval using accessors

ols food_exp const income

scalar yhatO=$coeff (const)+20xS$Scoeff (income)

scalar sig2 = Sess/Sdf

scalar f = sig2 + sig2/$nobs + ((20-mean (income)) “2)* ($stderr (income) "2)
t_interval (yvhatO, sgrt (f), $df, 0.95)

correlations
ols food_exp const income --anova
cl = corr (food_exp, $Syhat)

log-linear model

logs food_exp income
ols 1_food_exp const income

119

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120

series yhat2 = $yhat
gnuplot yvhat2 food_exp income --output=display

linear-log model

logs food_exp income

ols food_exp const 1_income

series yhat2 = $yhat

gnuplot yhat2 food_exp income --output=display

normality tests

open "@workdir\data\food.gdt"
ols food_exp const income
series uhat2 = S$Suhat

summary uhat?2

normtest uhat2 --jbera
normtest uhat2 --all

modtest —--normality

Example 4.7 Influential Observations
open "@workdir\datalfood.gdt"

genr index

set echo off

list xvars = const income

ols food_exp xvars

leverage —--save

series uhat = S$uhat

series lev_t = h_t (xvars)

series sig_t = delete_1_variance (food_exp, xvars)
series stu_res = uhat/sqgrt (sig_tx(l-lev_t))
series DFFits=stu_res*sqrt (lev_t/ (l-lev_t))

list x1 = const income
scalar k = nelem(x1)
matrix results = zeros(k, 1)

loop i=1..k —-—quiet
list yl1 = x1[1]
list y2 = x1[2:k]
ols yl y2
series dfb$i=stu_res*Suhat/sqrt ($Sess* (l-lev_t))
list x1 = y2 yl
endloop

print sig_t lev_t stu_res DFFits dfb2 --byobs
Example 4.8

polynomial

open "@workdir\datal\wa_wheat.gdt"

series t3=time~3/1000000

setinfo greenough -d "Wheat yield in tonnes" -n "Yield in tonnes"

120

121

123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154

156
157
158
159

161
162
163
164

166
167
168
169
170
171

setinfo time -d "Time" -n "Time"
setinfo t3 -d " (Time"3)/1,000,000" -n " (Time"3)/1,000,000"

ols greenough const time
gnuplot greenough time --output=display

ols greenough const time

gl <- gnuplot greenough time --fit=linear --output=display
graphpg add

series ehat = $uhat

setinfo ehat -d "Residual, linear model" -n "Linear Residual"

g2 <- gnuplot ehat time —--output=display \
{ set title "Plot of least squares residuals from linear model";
set xlabel ’'Time’; }

graphpg add

g3 <- gnuplot greenough time --fit=cubic —--output=display
graphpg add

ols greenough const t3
series ehat_3 = Suhat
setinfo ehat_3 -d "Residual, cubic model" -n "Cubic Residual"

g4 <- gnuplot ehat_3 time --output=display \
{ set title "Plot of least squares residuals from cubic model";
set xlabel ’'Time’; }

graphpg add

graphpg show

Example 4.9

open "@workdir\datal\wa_wheat.gdt"
logs greenough

ols 1_greenough const time

Example 4.10

log-linear model

open "@workdir\datalcps5_small.gdt"

logs wage

ols 1_wage const educ

t_interval ($Scoeff (educ), $stderr(educ), $df, .95)

open "@workdir\datalcps5_small.gdt"

logs wage

ols 1_wage const educ

series 1_yhat = $yhat

series y = exp(l_yhat)

scalar corrl = corr(y, wage)

scalar Rsquare = corrl”2

printf "\nThe correlation is %.3f and the Generalized\
R-square = %.3f\n", corrl, Rsquare

121

\

\

172

174
175
176
177
178
179
180
181
182
183
184
185

187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

Example 4.11

simple prediction in log-linear model
open "@workdir\datalcps5_small.gdt"
logs wage

list xvars = const educ

ols 1_wage xvars

scalar 1_wage_12 = S$coeff (const)+$Scoeff (educ) x12
scalar nat_pred = exp(l_wage_12)

scalar corrected_pred = nat_predxexp ($sigma”2/2)
print 1_wage_12 nat_pred corrected_pred

Predictions using fcast

open "@workdir\datalcps5_small.gdt"
logs wage

list xvars = const educ

ols 1_wage xvars

fcast f —--static

series pred = S$fcast

series se = S$fcse

series corrected = exp (f)+*exp($Ssigma”2/2)
series nat = exp (f)

series se_p = in_sample_fcast_error (l_wage, xvars)
series lb_p = exp(f - critical(t,$df,0.025) xse)
series ub_p exp (f + critical (t,$df,0.025) «se)

dataset sortby educ

g6 <- gnuplot wage nat lb_p ub_p educ --output=display

smpl educ==12 --restrict

summary wage —-simple

summary educ wage 1lb_p nat ub_p se_p se —-simple
smpl full

prediction intervals using a loop
open "@workdir\datalcps5_small.gdt"
logs wage

ols 1_wage const educ

scalar sig2 = S$Sess/S$df

matrix sem = zeros (21,5)
loop for i = 1..21 —--quiet
scalar yh = (Scoeff (const) + S$coeff (educ) 1)
scalar f = sig2 + sig2/$nobs + ((i-mean (educ)) "2)* (Sstderr (educ) "2)
sem[i,1l]=1
sem[i,2]= vh
sem[i,3]=sqgrt (f)
sem[i,4]=exp (yh-critical (t,$df,0.025) xsqrt (f))
sem[i,5]=exp (yh+critical (t, $df, .025) xsqrt (f))

122

223 endloop

224 print sem

225

226 nulldata 21 —--preserve

227 series ed=sem([, 1]

228 series wage=exp (seml[,2])

220 series lb=sem([, 4]

230 series ub=sem[,5]

231

232 g7 <- gnuplot wage 1lb ub ed --output=display —--with-lines
233

234 # Example 4.13

235 # corrected predictions in log-linear model
236 open "Q@workdir\data\newbroiler.gdt"

237 logs g p

238 ols 1_g const 1_p

239 series yht=$yhat

240 series pred = exp(yht)

241 series corrected_pred=pred*exp ($sigma”2/2)
242 scalar r2= corr (corrected_pred,q) "2

243

244 setobs 1 1 —--cross—-section

245 dataset sortby p

246 gnuplot corrected_pred g p —--output=display

123

bty Food Expendituss v Tnasme

Food Expendbres per YWeek

EEEREEEEERER

=0
200 . E
150 - 4
y <
100 - . 4
L] .
g 5: ": h L
& ﬂ. . ’_- N
50 -e L 2
100 - S . .
..' -
150 k- . 4
200 | . 4
m L L L L L L
5 i 13 m 13 k1
Weakdy Inoceme:

Absolate wale of DUS reskdals v Inoome
E’u T T T T T T

kel

Figure 4.25: Plots of linear and cubic models of wheat yield in Greenough Shire over time.

124

B4 oretl: g6 — X

The 95% prediction interval for wage
250

T T T T
Wage

MNatural Predictor

95% lower bound ——

95% upper bound ——
200 ~
150 ~

Wage

E a6

6.919141.3

Figure 4.26: This is a plot generated using statistics from fcast.

A 95% prediction interval for wage

110

T
Hourly Wage
Lower Confidence Bound)
100 - Upper Confidence Bound —— S

a0 | y, |
8o | / |
70 | g
80 | e i

50 i

Hourly Wwage

20

Education

Figure 4.27: This is a plot generated using a loop to estimate forecast standard errors.

125

Poultry Demand
35

T
| '.Corrected Prediction
| Broilers @

Broilers

15 b —a___® ®e _-

10 1 1 1 1

Price of chicken

Figure 4.28: This is a plot generated from a log-log model of chicken demand.

126

Chapter 5

Multiple Regression Model

The multiple regression model is an extension of the simple model discussed in Chapter 2. The
main difference is that the multiple linear regression model contains more than one explanatory
variable. This changes the interpretation of the coefficients slightly and imposes an additional
requirement upon the data. The general form of the model is shown in equation (5.1) below.

Yi = B+ Bexio + -+ B+ 1=1,2,...,n (5.1)

where y; is your dependent variable, x;; is the it" observation on the j* independent variable,
j=2,3,...,k, ¢; is random error, and (1, B2, . .., O are the parameters you want to estimate. Just
as in the simple linear regression model, each error, e;|z;;, has an average value of zero for each
value of the j independent variables; each has the same variance, o2, and are uncorrelated with
any of the other errors.

To estimate each of the §s, none of the independent variables can be an exact linear combination
of the others. This serves the same purpose as the requirement that the independent variable of the
simple linear regression take on at least two different values in the sample. The error assumptions
can be summarized as e;|z;2, i3, ... Ty iid (0,02). Recall from Chapter 2 that expression i#id
means that the errors are statistically independent from one another (and therefore uncorrelated)
and each has the same probability distribution. Taking a random sample from a single population
accomplishes this.

The parameters s, 03, ..., B are referred to as slopes and each slope measures the effect of a
1 unit change in x;; on the average value of y;, holding all other variables in the equation constant.
The conditional interpretation of the coefficient is important to remember when using multiple
linear regression.

The first example used in this chapter is a sales model for Big Andy’s Burger Barn. The model
includes two explanatory variables and a constant.

sales; = 1 + Baprice; + Bzadvert; +e; 1=1,2,...,n (5.2)

127

where sales; is monthly sales in a given city and is measured in $1,000 increments, price; is price
of a hamburger measured in dollars, and advert; is the advertising expenditure also measured in
thousands of dollars.

5.1 Preliminary Chores

Example 5.1 in POES5

Before estimating the model, relabel the data and find the summary statistics. Data labels are
used in much of the output produced by gretl. If the data you are working with are not labeled
satisfactorily, then this output will have to be further manipulated when assembling it for inclusion
for reports or papers.

setinfo sales --description="Monthly sales revenue ($1000)" \
—-—graph—-name="Monthly Sales ($1000)"
setinfo price --description="Price in dollars" --graph-name="Price"

setinfo advert —--description="Monthly Advertising Expenditure ($1000)" \
—-—-graph-name="Monthly Advertising ($1000)"

print the new labels to the screen

labels

N o A W

The output from the 1abels command is:

Listing labels for variables:

sales: Monthly sales revenue ($1000)

price: Price in dollars

advert: Monthly Advertising Expenditure ($1000)

Editing variable attributes is also available via Variables>Edit attributes from the main menu or
as a right-click pop-up from the main gretl window. Simply highlight the desired series, right-click,
and choose Edit attributes from the fly-out menu.

Next, find the summary statistics using:

summary sales price advert

which produces:

128

Mean Median S.D. Min Max

sales 77.37 76.50 6.489 62.40 91.20
price 5.687 5.690 0.5184 4.830 6.490
advert 1.844 1.800 0.8317 0.5000 3.100

Average sales, because they are measured in $1000, is $77,370. Average price is $5.69 and average
advertising expenditure is $1844. It is always wise to keep track of the actual units that you are
working with. This is critical to understanding the economic meaning of the coefficient magnitudes
from the regression.

5.2 Linear Regression

The parameters of the model are estimated by least squares using the pull-down menus and
dialog boxes (GUI) or gretl’s handy scripting language (hansl). Although this was discussed in
some depth in Chapter 2, both of these will be demonstrated again below.

There are two ways to open the dialog box. As in Chapter 2, one can use the pull-down menu.
Select Model>Ordinary Least Squares from the main gretl window as shown in Figure 2.6.

This brings up the dialog box shown in Figure 2.7. As in Chapter 2 you must put the dependent
variable, in this case sales, and the independent variables (const, price, and advert) in the
appropriate boxes. Click OK and the model is estimated. The results appear in Table 5.1 below.

There is also a shortcut on the toolbar that opens the specify model (Figure 2.7 dialog box.
Recall that the toolbar is located at the bottom of the main gretl window, There you will find a
button labeled S. Clicking on this button opens the OLS specify model dialog.

ﬁgretl = O X
File Tools Data View Add Sample Variable Model Help =
andy.gdt Ch\Users\leead\Documents\gretl\poe3
= Variable name Descriptive label

0 const

2 price S Price

3 advert Maonthy Advertising Expenditure ($1000)

I Short-cut to OLS dialog box

Undated: Full range 1- 73

ERaNEIEN Ii‘si B

Figure 5.1: The OLS shortcut button on the toolbar.

129

Model 1: OLS, using observations 1-75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value

const 118.914 6.35164 18.7217 0.0000
price —7.90785 1.09599 —7.2152 0.0000
advert 1.86258 0.683195 2.7263 0.0080

Mean dependent var 77.37467 S.D. dependent var 6.488537

Sum squared resid 1718.943 S.E. of regression 4.886124
R? 0.448258 Adjusted R? 0.432932
F(2,72) 29.24786 P-value(F) 5.04e-10
Log-likelihood —223.8695 Akaike criterion 453.7390
Schwarz criterion 460.6915 Hannan—Quinn 456.5151

Table 5.1: The regression results from Big Andy’s Burger Barn
5.3 Big Andy’s Burger Barn

Example 5.2 in POES5

Hansl is used to estimate the model for Big Andy’s. The following two lines are typed into a
script file, which is executed by clicking your mouse on the “gear” button of the script window.

1 open "@workdir\datalandy.gdt"
2 ml <- ols sales const price advert

This assumes that the gretl data set andy.gdt has been installed in a data folder! located in the
gretl working directory. The model is estimated and the result is saved to your current session as
ml. ml contains the output of a models window, giving you full access to the GUI after running a
script. From the session window, you can click on m1 to revisit the results.

The results were copied using INTEX>Copy>Tabular from the models window, pasted into
the source code for this chapter, and appear in Table 5.1. This illustrates what these look like in
use. Keep in mind, once pasted into a text file for IXTEX compilation, you can edit the format
and contents as you wish. Omit statistics, change titles, combine with other results. The output
appears in Table 5.1 and match those in POES.

Depending on your OS, a folder may be referred to as a directory.

130

Example 5.3 in POES5

Next, a prediction of sales for meals priced at $5.50 and advertising expenditures of $1200 is
made. Again, the accessors for the estimated regression coefficients are used to create the scalar
prediction.

1 scalar S_hat = S$coeff (const) + Scoeff (price)*5.5 + S$coeff (advert) 1.2
2 printf "\nPredicted sales when price=\
3 $5.50 and advertising=1200 is $%.3f\n", S_hat

This produces:

Predicted sales when price=$5.50 and advertising=$1200 is $77655.51

5.4 Goodness-of-Fit

Example 5.4 in POE5

Other important output is included in Table 5.1. For instance, you’ll find the sum of squared
errors (SSE) which gretl refers to as “Sum squared resid.” In this model SSE = 1718.94. To obtain
the estimated variance, 62, divide SSE by the available degrees of freedom to obtain

o SSE 1718.94
O- = =
n—k 75-3

= 23.874 (5.3)

The square root of this number is referred to by gretl as the “S.E. of regression” and is reported
to be 4.88612. Gretl also reports R? in this table. If you want to compute your own versions of
these statistics using the total sum of squares from the model, use Analysis>ANOVA from the
model’s pull-down menu to produce the ANOVA table. Refer to section 4.2 for details.

To compute R? from the standard gretl output recall that

. [SST
oy =\l 1 (5.4)

The statistic 7, is printed by gretl and referred to as “S.D. of dependent variable” which is reported
to be 6.48854. A little algebra reveals

SST = (n —1)62 = 74 6.48854 = 3115.485 (5.5)
Then,
SSE 1718.94
2
& SST 3115435 8 (5:6)

131

Otherwise, the goodness-of-fit statistics printed in the gretl regression output or the ANOVA table
are perfectly acceptable.

Gretl also reports the adjusted R? in the standard regression output. The adjusted R? imposes
a small penalty to the usual R? when a variable is added to the model. Adding a variable with
any correlation to y always reduces SSE and increases the size of the usual R?. With the adjusted
version, the improvement in fit may be outweighed by the penalty imposed from adding variables.
Thus, adjusted R? may become smaller as variables are added. The formula is:

_ SSE/(n — k)

B =1 STm) (5.7)

This sometimes referred to as “R-bar squared,” (i.e., R?) although in gretl it is called “adjusted
R-squared.” For Big Andy’s Burger Barn the adjusted R-squared is equal to 0.4329.

5.4.1 Variances and Covariances of Least Squares
Example 5.5 in POES5

The variances and covariances of the least squares estimator give us information about how
precise our knowledge of the parameters is from estimating them. Smaller standard errors mean
that our knowledge is more precise.

The precision of least squares (LS) depends on a number of factors.

2

1. Smaller variation in the dependent variable about its mean, o, makes LS more precise.

2. Larger samples, n, improve LS precision.

3. More variation in the independent variables about their respective means makes LS more
precise.

4. Less collinearity among the independent variables also improves LS precision.

The precision of least squares (and other estimators) is summarized by the variance-covariance
matrix, which includes a measurement of the variance of the intercept, each slope, and covariance
between each pair. The variances of the least squares estimator fall on the diagonal of this square
matrix and the covariances in the off-diagonal elements.

var(by) cov(by,ba) cov(by,bs)
cov(by, ba, b3) = |cov(bi,b2) war(ba) cov(ba,bs) (5.8)
cov(by,bs) cov(ba,b3) wvar(bs)

All of these have to be estimated from the data, and generally depends on your estimate of the
overall variance of the model, % and correlations among the independent variables. To print an

132

estimate of the variance-covariance matrix following a regression use the ——vcv option with the
regression in gretl :

1 ols sales const price advert —--vcv

The result is

Coefficient covariance matrix

const price advert
40.343 —6.7951 —0.74842 const
1.2012 —0.01974 price
0.46676 advert

For instance, the estimated variance of bj—the intercept—is 40.343 and the estimated covariance
between the LS estimated slopes bo and b3 is —0.01974.

A (estimated) standard error of a coefficient is the square root of its (estimated) variance,
se(by) = \/var(by). Assign the contents of the variance-covariance accessor to a matrix. Take the
square roots of the diagonal elements to obtain the estimated standard errors.

2 matrix covmat = S$vcv
3 matrix se = sqgrt (diag(covmat))
4 printf "Least squares standard errors:\n%.3f\n", se

These are printed:

Least Squares standard errors:
6.352
1.096
0.683

These match those found in the output table (Table 5.1) in-between the least squares estimates
and t-ratios.

5.4.2 Confidence Intervals

133

Example 5.6 in POES5

Confidence intervals can be obtained using the scalar command in the same way as in Chapter
3. In this section we reuse our t_interval function. A 95% confidence interval for [, the
coefficient of the price variable is generated:

[un

ols sales const price advert --vcv

scalar bL = S$coeff (price) — critical(t,$df,0.025) x $stderr (price)
scalar bU = S$coeff (price) + critical(t,$df,0.025) x S$stderr (price)
printf "\nThe lower = %.2f and upper = %$.2f confidence limits\n", bL, bU

B~ W N

or using the function:

5 t_interval ($coeff (price), $stderr(price), $df, 0.95)

The output produced by the t_interval function is:

The 0.95 confidence interval centered at -7.908 is (-10.0927, -5.7230)

Remember, you can also summon the 95% confidence intervals from the model window using the
pull-down menu by choosing Analysis>Confidence intervals for coefficients. The confidence
interval for 8o is shown below in Figure 5.2.

Ed gretl: coefficient confidence intervals - O *
- A= Change significance level .
HEE& DB A “K‘hu_ =
c(72. 0.0251 = 1.993 View, copy-or
(2, 0.025) = 1.59 save to LaTeX
VARIABLE COEFFICIENT 95% CONFIDEMCE INTERVAL
const 118.914 106 i -
price -T7.90785 —=10.0827 -5.72303
advert 1.86258 0,500 T.ecdol

Figure 5.2: The confidence intervals produced from the GUI through the model window. In the
model window, choose Analysis>Confidence intervals for coefficients

134

Example 5.7 in POES5

You can also estimate intervals for linear combinations of parameters as we did in Chapter
4. Suppose Big Andy wants to increase sales next week by lowering price and spending more on
advertising. If he increases advertising by $800 and lowers price by 40 cents the change in expected

sales would be
A = E(sales;) — E(salesp) = —0.4/32 + 0.803 (5.9)

The estimate of X is obtained by replacing the unknown parameters with the least squares estimates.
The standard error of this linear combination can be calculated in the same fashion as discussed in
section 3.6. A 90% interval is constructed using the script:

6 scalar chg = -0.4%Scoeff (price)+0.8%Scoeff (advert)

7 scalar se_chg=sqrt ((-0.4) "2x$vcv[2,2]+(0.872)*«Svev([3,3]+\
8 2% (=0.4)*(0.8)*xSvev[2,3])

9 t_interval (chg, se_chg, $df, .95)

This produces the expected result:

The 95% confidence interval centered at 4.653 is (3.2386, 6.0678)

5.4.3 t-Tests, Critical Values, and p-values

In section 3.5 the GUI was used to obtain test statistics, critical values and p-values. However,
it is often much easier to use the the genr or scalar commands from either the console or as a
script to compute these. In this section, the scripts will be used to test various hypotheses about
the sales model for Big Andy.

Significance Tests
Examples 5.8 and 5.9

Multiple regression models include several independent variables because one believes that each
as an independent effect on the mean of the dependent variable. To confirm this belief it is
customary to perform tests of individual parameter significance. If the parameter is zero, then the
variable does not belong in the model. In gretl the t-ratio associated with the null hypothesis that
Bj = 0 against the alternative 3; # 0 is printed in the regression results along side the associated
p-value. For the sake of completeness, these can be computed manually using a script as found
below. For t¢-ratios and one- and two-sided hypothesis tests the appropriate commands are:

135

[

ols sales const price advert

scalar tl = (Scoeff(price)-0)/S$stderr (price)
scalar t2 (Scoeff (advert)-0) /$stderr (advert)
printf "\n The t-ratio for HO: b2=0 is = %.3f.\n\
The t-ratio for HO: b3=0 is = %.3f.\n", tl, t2

gk W N

The results shown in Figure 5.3 As you can see, the automatic results and the manually generated

B grett: script output - O
HE&a&nB ~EIMH &
||Model 6: OLS, using observations 1-75 tﬂ

| Dependent variakle: sales

coefficient std. error t-ratio p-value
const 118.914 6.35164 2.21le-025 **=%
price -7. 1.0858%9 4.42e-010 **=*
advert 1.86258 0.683195 0.0080
|
||Mean dependent var T77.37467 5.D. dependent r
Sum sguared resid 1718.943 5.E. of regressin

|| R-sgquared Adjusted B-sgua

||F(z, 72) P-value (F) 5.04e-10
Log-likelihood —223.8695 Lkaike criterion| 453,7350 3
|| Schwarz criterion 460.6915 Hannan-Quinn 456.5151

? scalar tl (Scoeff (price)-0)/Sstderr (price)

? scalar t2 (Scoeff (advert)-0) /Sstderr (advert

? printf "\n The t-ratio for HO: b2=0 is = %.3
= %£.3f.\n", tl, t2

n The t-ratio for HO: b3=0 is

The t-ratio for HO: b2=0 is -7.215.
The t-ratio for HO: b3=0 is 2.726.

a T ||I|

Figure 5.3: Notice that the usual model estimation results produced by gretl prints the t¢-ratios
needed for parameter significance by default. These match the manual computation.

ones match perfectly.

One of the advantages of doing t¢-tests manually is that you can test hypotheses other than
parameter significance. You can test hypothesis that the parameter is different from values other
than zero, test a one-sided hypotheses, or test a hypotheses involving a linear combinations of
parameters.

Rather than comparing the statistic to a critical value one could compare the p-value to the
desired level of significance. If p > « then do not reject Hg. If p < «, reject Hy. Gretl includes
a pvalue function that computes p-values from various probability distributions. The syntax is
very similar to that of critical. The difference is that instead of using «/2 as the third argument,
use the computed statistic.

pvalue computes the area to the right of stat in the specified distribution (z for Gaussian,
t for Student’s t, X for chi-square, F for F, G for gamma, B for binomial, P for Poisson, exp for

Exponential, W for Weibull). So, to compute a p-value for a t-statistic use:

136

pvalue (t, $df, stat) # prints to the screen
scalar pval = pvalue(t, $df,stat) # saves Prob(stat>p) to scalar pval

The argument(s) in the middle is (are) the shape parameter(s). In our case it should be n — k,
which is the residual degrees of freedom from the Big Andy regression. Some distributions like
the Fj,_; have two parameters. Refer to the gretl help for details on how to use pvalue in those
situations.

For the examples we have

scalar t2 = ($Scoeff (advert)-0)/S$stderr (advert)
scalar t3 = (Scoeff (advert)-1)/S$stderr (advert)
pvalue t $df tl
pvalue t $df t3

=W N =

which produces:

t(72): area to the right of -7.21524 =" 1
(to the left: 2.212e-010)
(two-tailed value = 4.424e-010; complement = 1)

t(72): area to the right of 1.26257 = 0.105408
(two—tailed value = 0.210817; complement = 0.789183)

You can see that the function computes and prints areas to the right, left and the two-tailed p-
values for the computed values of t2 and t3, respectively. Advertising is significantly different
from zero at the 5% level. It is not significantly different from 1 at 5%.

When used as a function, pvalue returns the area to the right of the statistic as a scalar.

1 scalar t3 = (Scoeff (advert)-1)/S$stderr (advert)
2 scalar pval=pvalue (t, $df, t3)

which produces:

print pval

p = 0.10540831

137

One-tail Alternatives
Example 5.10 in POES5

If a decrease in price increases sales revenue then we can conclude that demand is elastic. So,
if o > 0 demand is elastic and if 5o < 0 it is inelastic. To test Hy: B2 > 0 versus Hy: (5 < 0, the
test statistic is the usual ¢-ratio.

ols sales const price advert

scalar t ($coeff (price)-0)/$stderr (price)
scalar crit = —-critical(t,$df,0.05)

scalar pval = l-pvalue (t,$df,t)

printf "\n Ho: b2=0 vs Ha: b2<0 \n \

the t-ratio is = %.3f. \n \

the critical value = %.3f \n \

and the p-value = %.3f\n", t, crit, pval

o N 9 g A W N

The rejection region for this test lies to the left of —t., which is the « level critical value from the
distribution of ¢. This is a perfect opportunity to use the pvalue function. The result is:

Ho: b2=0 vs Ha: b2<0
the t-ratio is = -7.215.
the critical value = -1.666
and the p-value = 0.000

You can see that the t-ratio —7.21524 lies to the left of the critical value —1.666. The p-value is
close to zero. That is less than 5% nominal level of the test and therefore we reject that (s is
non-negative.

Example 5.11 in POES5

A test of whether a dollar of additional advertising will generate at least a dollar’s worth of
sales is expressed parametrically as Hy: 3 < 1 versus Hy: B3 > 1. This requires a new t-ratio and
again we use the pvalue function to conduct the test.

ols sales const price advert

scalar t = (Scoeff (advert)-1)/S$Sstderr (advert)
scalar crit = critical(t,$df,0.05)

scalar pval = pvalue(t, $df,t)

printf "\n Ho: b3=1 vs Ha: b3>1 \n \

gk W N =

138

6 the t-ratio is = %.3f \n \
7 the critical value =
s and the p-value = %.3f\n", t, crit, pval

The results are

Ho: b3=1 vs Ha: b3>1
the t-ratio is = 1.263
the critical value = 1.666
and the p-value = 0.105

The rejection region for this alternative hypothesis lies to the right of the computed t-ratio. That
implies that the p-value is 0.105. At 5% level of significance, this null hypothesis cannot be rejected.

Linear Combinations of Parameters
Example 5.12 in POES5

Big Andy’s advertiser claims that dropping the price by 20 cents will increase sales more than
spending an extra $500 on advertising. This can be translated into a parametric hypothesis that
can be tested using the sample. If the advertiser is correct then —0.282 > 0.583. The hypothesis
to be tested is:

Ho: —0.285 — 0.585 < 0
Hqy: — 028, —0.563 >0

The test statistic is
_ —0.202 — 0.5b3

~ se(—0.2by — 0.5b3)
provided the null hypothesis is true. The script is

~ tro (5.10)

ols sales const price advert —--vcv
scalar chg = -0.2*Scoeff (price)-0.5+«Scoeff (advert)
scalar se_chg=sqrt (\
(=0.2)"2%Svev[2,2]+((-0.5)"2)*Svev[3,3]\
+2%(-0.2)*(-0.5)*Svev[2,3])

printf "\n Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0 \n \

the t-ratio is = %.3f \n \

the critical value = %.3f \n \

and the p-value = %.3f\n", \

chg/se_chg, critical(t,$df,0.05), pvalue(t,$df,t_ratio)

© 0 NN O s W N

=
=]

139

which generates the needed information to perform the test. Notice that the computations for the
t-ratio, critical value and p-value were carried out within the printf statement.

Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0
the t-ratio is = 1.622
the critical value = 1.666
and the p-value = 0.055

The results matches the ones in POE5 5. The hypothesis is not rejected at the 5% level. We
conclude that the proposed changes will not increase sales.

An alternate way to obtain the variance of the linear combination is to use matrix algebra. The
main advantage of this is that it reduces the opportunity to make a coding error in the computation.
The linear combination of parameters,

by
~0.2by — 0.5b3 = [0 0.2 —0.5] |by| =d’Db
b3

where d and b are 3 x 1 vectors. As the least squares estimator b ~ (5, Cov(b)). Estimating
Cov(b) with Cov(b), the estimated Cov(d?b) is

d”Cov(b)d

In gretl

ols sales const price advert

matrix covmat = $vcv

matrix d = { 0; -0.2; -0.5 }

matrix covest = d’xcovmatx*d

scalar se = sqrt (covest)

printf "\nThe estimated standard error of the\
linear combination is %.3f\n", se

N O Ot R W N

This yields the same result as previously obtained:

The estimated standard error of the linear combination is 0.4010

The benefits of using this method increase exponentially as the number of coefficients in the linear
combination increases. It takes 3 lines of code no matter how many coefficients are used in the
linear combination. Just change coefficients in the vector d accordingly.

140

5.5 Polynomials

One way to allow for nonlinear relationships between independent and dependent variables is
to introduce polynomials of the regressors into the model. In this example the marginal effect of
an additional dollar of advertising is expected to diminish as more advertising is used. The model
becomes:

sales; = 1 + Paprice; + Bzadvert; + Byadverts +e; i=1,2,...,n (5.11)

To estimate the parameters of this model, one creates the new variable, advert?, adds it to the
model, and uses least squares.

1 series a2 = advert”2
2 0ls sales price advert a2

which produces
OLS, using observations 1-75
Dependent variable: sales

Coefficient Std. Error t-ratio p-value
const 109.719 6.79905 16.1374 0.0000

price —7.64000 1.04594 —7.3044 0.0000
advert 12.1512 3.55616 3.4170 0.0011
a2 —2.76796 0.940624 —2.9427 0.0044

Mean dependent var 77.37467 S.D. dependent var 6.488537

Sum squared resid 1532.084 S.E. of regression 4.645283
R? 0.508235 Adjusted R? 0.487456
F(3,71) 24.45932 P-value(F) 5.60e—11
Log-likelihood —219.5540 Akaike criterion 447.1080
Schwarz criterion 456.3780 Hannan—Quinn 450.8094

The variable a2, which is created by squaring advert, is a simple example of what is sometimes
referred to as an interaction variable. The simplest way to think about an interaction variable
is that the magnitude of its effect on the dependent variable depends on another variable—the two
variables interact to determine the average value of the dependent variable. In this example, the
effect of advertising on average sales depends on the level of advertising itself.

Another way to square variables is to use the square command

1 square advert

141

This creates a variable sq_advert and adds it to the variable list. Notice that gretl just adds
the sg_ prefix to the existing variable name. You can square multiple variables at a time by just
by adding them to the square command’s list.

1 square advert price

5.5.1 Marginal Effects
Example 5.14 in POES5

When variables interact, the marginal effect of one variable on the mean of another has to be
computed manually based on calculus. Taking the partial derivative of average sales with respect
to advertising yields produces the marginal effect on average sales of an increase in advertising;

OE(sales)

= 2 dvert 12
Oadvert P + 2faadver (5.12)

The magnitude of the marginal effect depends on the parameters as well as on the level of adver-
tising. In the example marginal effect is evaluated at two points, advert=.5 and advert=2. The
code is:

series a2 = advert”2

ols sales price advert a2z

scalar mel = $coeff (advert)+2x(0.5) xScoeff (a2)

scalar me2 = S$coeff (advert)+2x2x$coeff (a2)

printf "\n The marginal effect at \$500 (advert=.5) is %.3f\n\
and at \$2000 is %.3f\n", mel, me2

[I R

and the result is:

The marginal effect at $500 (advert=.5) is 9.383
and at $2000 (advert=2) 1is 1.079

5.5.2 Interaction in a Wage Equation

Example 5.15 in POES5

In this example experience and education are interacted. The idea is that the level of experience
affects the return to another year of schooling (or, another year of education affects the return to

142

another year of experience). The model becomes:
wage = B + Poeduc + Bzexper + Byeduc X exper+ e

The marginal effects depend on levels of education and experience. These are measured for workers
having 8 and 16 years of schooling and for workers having 20 years experience.

OE(wage|educ, exper)

= B1 + Baeduc
Oexper
OE(wage|educ, exper) — B, + Baexper
Oeduc

This is estimated using the cps5_small.gdt data using the following script:

open "@workdir\datalcps5_small.gdt"

Jun

2 series educ_exper = educxexper

3 ols wage const educ exper educ_exper

4

5 scalar me_8year = Scoeff (exper)+Scoeff (educ_exper) *8

6 scalar me_lé6year = Scoeff (exper)+Scoeff (educ_exper) «16

7 scalar me_20year = Scoeff (exper)+Scoeff (educ_exper) 20

8 scalar me_ed_20exper = S$coeff (educ)+Scoeff (educ_exper) x20
9

10 printf "\nMarginal effect of another year of schooling when:\n\
11 experience is 0 = %.3f\n\

12 experience is 20 = %.3f\n", $coeff (educ), me_ed_20exper

13 printf "\nMarginal effect of experience when:\n\

14 education is 8 = %.3f \n\

15 education is 16 = %.3f \n\

16 education is 20 = %.3f \n", me_8year, me_l6year, me_20year

The results are:

Marginal effect of another year of schooling when:
experience is 0 = 2.656
experience is 20 = 2.601

Marginal effect of experience when:
education is 8 = 0.216
education is 16 = 0.194
education is 20 0.183

Example 5.16 in POES5

In this example a log-quadratic model is estimated and marginal effects computed. The model
becomes
In(wage) = B1 + Paeduc + Bsexper + Byeduc X exper+ Bsexper” + e

143

The marginal effects are:

OE(In(wage)|educ, exper)

= 33 + Baeduc + 255 exper
Odexper

OE(In(wage)|educ, exper)
Oeduc

There are quite a few combination of 0 and 20 years of experience and 8 and 16 years of schooling
to consider. To facilitate this, I have written functions that allow me to consider these and other

= P2 + Paexper

combinations easily.

The function for the first marginal effect (the % change in avg wage from another year of
experience, given years of schooling) is:

1 function void me_1(list wvars "all variables, including dep var first",
2 scalar ed "set years of schooling",

3 scalar expr "set years of experience")

4 ols vars —--quiet

5 scalar me = S$Scoeff (exper) + S$Scoeff (educ_exper)red +\

6 2*xScoeff (sq_exper) xexpr

7 printf "\nMarginal effect of another year of experience:\n \

8 Education = %.3g years and Experience = %.3g years\n \

9 Marginal effect is %.3f percent \n", ed, expr, me*100

10 end function

The function saves a lot of typing since the equation for the marginal effect only depends on
two scalar inputs (educ, and exper). Hence the function will work for whatever combination
you choose to enter. It also economizes on the programming of the somewhat fussy to program
printf statement. The function returns nothing (void) and takes 3 inputs. The variables from the
regression, the desired number of years of education, and the desired years of experience. Including
the regression in the function is not a great idea since the marginal effect will change depends on
the presence of the education, experience, their interaction, and squared experience in the model.
Other variable could be added without trouble.? That said, here is how we call it. First list the
variables for the model starting with the dependent variable, 1_wage. Be sure to include a constant
and educ, exper, educ_exper, and sq_exper. The second argument is years of schooling and
the third is years of experience at which the marginal effect will be measured.

list regression = 1_wage const educ exper educ_exper sJg_exper

me_1
me_1
me_1
me_1

regression, 8, 0)
regression, 16, 0)
regression, 8, 20)
regression, 16, 20)

Ut R W N

—~ o~ o~ —~

2However, this function is a not meant to be used generally, but only as a time saver in this specific context.
Don’t try to use this on another model without properly modifying the code.

144

This yields:

Marginal effect of another year of experience:
Education = 8 years and Experience = 0 years
Marginal effect is 3.875 percent

Marginal effect of another year of experience:
Education = 16 years and Experience = 0 years
Marginal effect is 2.861 percent

Marginal effect of another year of experience:
Education = 8 years and Experience = 20 years
Marginal effect is 1.979 percent

Marginal effect of another year of experience:
Education = 16 years and Experience = 20 years
Marginal effect is 0.965 percent

A similar function can be written for the marginal effect of another year of schooling. Since its
marginal effect is simpler it is likely to be more trouble that its worth, however once the other
marginal effect is programmed modifying it for the second one is trivial. Here is the function:

1 function void me_2(list vars "all variables, including dep var first",

2 scalar ed "set years of schooling",

3 scalar expr "set years of experience")

4 ols vars —--quiet

5 scalar mw = S$coeff (educ) + Scoeff (educ_exper) xexpr

6 printf "\nMarginal effect of another year of schooling:\n \
7 Education = %.3g years and Experience = %.3g years\n \

s Marginal effect is %.3f percent \n", ed, expr, mwx100

9 end function

Notice that only line 5 is different. It can be called similarly,

[

list regression = 1_wage const educ exper educ_exper sJg_exper

me_2
me_2
me_2
me_2

regression, 8, 0)
regression, 16, 0)
regression, 8, 20)
regression, 16, 20)

[

—~ o~ o~ —~

and the results:

Marginal effect of another year of schooling:
Education = 8 years and Experience = 0 years

145

Marginal effect is 13.595 percent

Marginal effect of another year of schooling:
Education = 16 years and Experience = 0 years
Marginal effect is 13.595 percent

Marginal effect of another year of schooling:
Education = 8 years and Experience = 20 years
Marginal effect is 11.059 percent

Marginal effect of another year of schooling:
Education = 16 years and Experience = 20 years
Marginal effect is 11.059 percent

Obviously, the marginal effect no longer depends on the years of schooling, only on the years of
experience. Hence the repetition of results.

5.6 Nonlinear Combinations of Parameters

5.6.1 Optimal level of advertising
Example 5.17 in POES5

The optimal level of advertising, advert,, is defined in this example to be the amount that
maximizes net sales. Andy will advertise up to the point where another dollar of expenditure adds
at least one dollar of additional sales—and no more. At this point the marginal effect is equal to
one,

B3 + 2Lsadvert, =1 (5.13)

Solving advert in terms of the parameters

1
advert, = g(3) = Ps (5.14)
204
which is nonlinear in the parameters of the model. A consistent estimate of the optimal level of
advertising can be obtained by substituting the least squares estimates for the parameters on the
right-hand side. Estimating the standard error via the delta method requires some calculus, but it

is quite straightforward to do in gretl.

The delta method is based on a first-order Taylor’s series expansion of a function that depends
on the parameters of the model. Let 8 be a 2 x 1 vector of parameters; an intercept and slope.
Consider a possibly nonlinear function of a parameters g(3). Also, let’s say that we estimate a set
of parameters 3 using an estimator called b and that b ~ N(B,V). So far, we've described the
least squares estimator of the simple regression. Then, by the delta theorem, the nonlinear function

146

evaluated at the estimates has the following approximate distribution:

9(b) ~ N(9(B), G(B)VG(B)") (5.15)

where G(8) = 0g(8)/0B". Hence, to use the delta method requires that you take the partial
derivatives of the function, which in our example is a hypothesis, with respect to each parameter
in the model. That is, you need the Jacobian.

In the example, g(B) = (1 — f3)/284. Taking the derivatives with respect to each of the
parameters, 31, 02, B3, and By yields:

50,
N

dy = 83(5[;) - —2;4 (5.16)

dy = agg) - —12_553 (5.17)

Note that the derivatives with respect to 51 and (2 are 0. To use the delta method, simply replace
the unknown parameters in equation (5.14) with least squares estimates. Then to get the estimated

standard error of g(b), substituted estimates into the derivatives d3 and d4, and compute

—

Var(g(b)) = (0 0 ds dy) [Cov(by, b, b, ba)] (5.18)

Sofvo o

This looks harder to do than it actually is. The gretl script to compute the variance and standard
error is:

1 ols sales const price advert sqg_advert --vcv
2 matrix b = S$coeff

3 matrix cov = $vcv

4 scalar g_beta = (1-b[3])/(2+xb[4])

5 scalar d3 = -1/ (2xb[4])

6 scalar d4 = -1+ (1-b[3])/(2xb[4]"2)

7 matrix d = { 0, 0, d3, d4}

8 scalar v = dxcovxd’

9 scalar se = sqgrt (v)

=
o

scalar lb = g_beta - critical (t,$df, .025) xse

scalar ub = g_beta + critical (t,$df, .025) xse

printf "\nThe estimated optimal level of advertising is $%.2f.\n",\
1000xg_beta

printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",\
1000%1b, 1000*ub

e e
S

147

The first line estimates the model using least squares and the ——vcv option is used to print the
covariance matrix. In line 2 the entire set of coefficients is saved into a vector (a one row matrix
in this case) called b. This will make the syntax that follows easier since each coefficient can
be referred to by its position in the vector, e.g., the third coefficient in b is b[3]. In line 3
the covariance matrix is saved as cov. In line 4 the least squares estimates are substituted for
the unknown parameters of g(3). In lines 5 and 6 the analytical derivatives are evaluated at the
estimates. The matrix d is 1 X 4 and contains the derivatives of the hypothesis with respect to each
of the parameters. The next line computes variance in equation (5.18). Finally, the square root is
taken to get the standard error and the confidence bounds are computed in lines 10 and 11 and
printed in 14 and 15.

The estimated optimal level of advertising is $2014.34.
The 95% confidence interval is ($1757.67, $2271.01).

According to this estimate the optimal level of advertising is $2014.34 and the 95% confidence
interval is ($1758, $2271).

5.6.2 How much experience maximizes wage?
Example 5.18 in POES5

Consider the log-wage equation estimated using the cpsd_small.gdt dataset.
In(wage) = p1 + Paeduc + Bzexper + Byeduc X exper+ Ps exper” + e

To determine the level of schooling that maximizes average log-wage (and hence, the wage) differ-
entiate the mean of the model with respect to education and set the result equal to zero. Then,
solving for experience you get:

_ —fP3 — Baeduc
B 2835

Estimating this point is simple. Estimate the linear model’s five parameters using least squares,
choose a value of eduction at which it will be evaluated (e.g., educ=16) and plug these into the
formula. This is nonlinear function of the least squares estimates and the delta method is used to
obtain its variance.

exper, = 9(B)

The partial derivatives of the function with respect to each of the parameters are:

Oexper,

T80 1 /9
8,83 / 55

Oezxper

I _ _16/2
aﬁ4 / /85

148

Oezxper,
9ps

The estimated vector of partial derivatives becomes

= (B3 + 1604) /252

d=(0 0 —1/2bs —16/2bs (b3 + 16bs)/2b%)

The estimated variance is - S
Var(exper,) =d Cou(b)d

where @(b) is the estimated least squares covariance matrix from the linear model.

Numerical derivatives

The analytic derivatives in this example are not hard to obtain, but why bother when numerical
ones are available. This is the approach taken in commercial software that includes the ability to
estimate nonlinear combinations of parameters and their standard errors.

The fdjac function in gretl takes numeric derivatives. fdjac stands for first difference
Jacobian. The fdjac function requires two arguments: a function, g(8), for which a derivative
is desired and a vector of parameters, 8, with which the derivatives will be taken. To illustrate its
use, consider the new matrix function for marginal effects below.

1 function matrix G(matrix xparam, list x)

2 matrix X = { x }

3 matrix rl = (-param[3].*ones ($nobs,1l)- param[4]*X) ./ (2+xparam[5])
4 return rl

5 end function

The » that prefixes the param argument is a pointer, the use of which is discussed below. Before
discusing its use, another function is written to evaluate g(-) at the least squares estimates for a
specific number of schooling years.

1 # Function computes the optimal experience for a given x=education
2 function matrix exper_0 (matrix param, scalar x)

3 matrix exper = (—-param[3]-param[4]*x)/ (2«param[5])

4 return exper

5 end function

This looks very similar to the G function. Both evaluate the function g(b). The difference lies in
the fact that G evaluates the function at each observation and exper_0 only evaluates g(b) at a
specific point, 2. Once the function is defined, fdjac operates on it to as prescribed by the delta
method.

149

open "@workdir\datalcps5_small.gdt"
set echo off

logs wage

square exper

series educ_exper = educ * exper

ols 1_wage const educ exper educ_exper sg_exper
matrix covmat = S$vcv

matrix b = $coeff

list ed = educ

© 0 9 A W N

=
=)

matrix jac = fdjac(b, G(&b, ed)) Numerical derivatives at each obs

#

matrix d = meanc (jac) # The sum of the derivatives = d
#
#

==
w N

matrix variance = gform(d, covmat) Var = d’ COV d
matrix se = sqgrt(variance) Std Error = sqgrt (Var)

== e
o R N e

printf "\nThe optimal experience given %2g years of schooling is =\
%.2f\n", 16, exper_0(b,16)

printf "\nThe estimated standard error of experience_0 = %.3f\n", se
20 t_interval (exper_0 (b, 16),se,$df, .95)

L
© 0w 3

The main difference in this version of the example lies in lines 12-14. In line 12 fdjac is used
on the function G (&b, ed). &b points to the contents of the current parameter vector b, ed is
a list that contains all observations on education. This returns an n x 5 matrix of derivatives.
The next line takes the column sums and is the 1 x 5 vector d. The quadratic form is computed
using the gform (d, covmat) command. The vector d is the first argument and the center of the
quadratic form, covmat, is the second argument. From there the script looks like its manually
calculated predecessor.

A pointer is used to supply the parameter vector to the function (matrix xparam). When
the function is called, the vector of parameters provided by the user in param are held in a specific
memory address. The * tells gretl to hold the contents of param in a memory address that can
later be recalled. To recall the current contents of that (sometimes referred to as dereferencing)
you must use the ampersand (&) in front of the param matrix being passed to the function, i.e.,
G (¶m, x). Thus, pointers require a pair of markers, » and &, when used.

Using pointers avoids having to make copies of objects within the program, and whatever is
passed around by it can be modified in the process. That may sound like a bad idea, but it makes
programs more modular. In the fdjac function, pointers allow the numerical derivative to be
solved for recursively. See section 13.4 of the Gretl Users Guide (Cottrell and Lucchetti, 2018) for
more details.

The script is run and the interval computed using our t_interval function. Note that we
use the exper_0 function evaluated at the least squares coefficients and an education level of 16.

150

t_interval (exper_0 (b, 16),se, $df, .95)

The result is:

The 95% confidence interval centered at 30.173 is (26.6721, 33.6738)

which is the same at shown in POES. The delta method using numercial derivatives appears to
have worked as intended.

5.7 POES5 Appendix 5

5.7.1 Condence interval using the delta method

In this example the food expenditure model is estimated via least squares and a nonlinear
function of its parameters is computed. The standard errors are estimated via the delta method.

The function estimated is
g1 = g(ba) = exp(b2)/10

Evaluated at the estimates g(ba) = exp(b2)/10 = exp(10.784/10) = 2.91. The derivative of g(b2) is
g(b2)/10. The script to estimate the 95% confidence interval that uses these is:

Example 5.19 in POES5

open "@workdir\data\mc20.gdt"
ols y const x
scalar g0 = exp ($coeff(x)/10)

1

2

3 Function
4 scalar d0 = (g0/10)

5

6

Derivative
Delta method std error
Confidence Interval

scalar se dO*Sstderr (x)
t_interval (g0, se, $df, .95)

HH= = H FH

This produces:

The 95% confidence interval centered at 2.911 is (1.6006, 4.2212)

which matches the values in POES.

151

Example 5.20 in POES5

In this example the nonlinear function depends on two parameters. The function is

g2 = g(b1,b2) = b1 /by

This requires two derivatives that we refer to as d; and do. The following script estimates the model
and estimates a 95% confidence interval centered at g(by,be) = by /be and standard error computed
via the delta method.

1 open "Q@workdir\data\mc20.gdt"

2 ols y const x

3 matrix covmat = S$vcv

4 scalar g = S$Scoeff (const)/S$coeff (x) # Function

5 scalar dl = 1/Scoeff (x) # Derivative bl

6 scalar d2 = —-$coeff (const)/$Scoeff (x) "2 # Derivative b2

7 matrix d = dl ~ d2 # Vector d

8 matrix variance = gform(d, covmat) # Delta method std error
9 scalar se = sqgrt (variance) # Standard Error

10 t_interval (g, se, $df, .95) # Confidence Interval

The result is:

The 95% confidence interval centered at 8.184 is (-1.8077, 18.1758)

which matches POES.

Monte Carlo: Simulation with y? errors

This simulation is designed to illustrate the repeated sampling properties of least squares. The
experimental design is the same at that used in section 3.7.1. In this case, errors are not normally
distributed, but generated by a x?(4). The variates are centered at the mean (E[x?(4)] = 4). These
are normalized by dividing by the stadard error, v/8. The variance of the overall errors is set to
02 = 2500. This appears in line 11. The rest of the script should be familiar. Confidence bounds
are computed in lines 19 and 20. A scalar pl is computed that takes the value 1 whenever the
statement in parenthesis is true, i.e., when Sy = 10 falls within the estimated interval; p2 will be
1 when the test statistic falls within the 0.05 rejection region of the test; and close is 1 when s
is between 9 and 10.

The print statement has the progressive loop compute summary statistics for those scalars
and the store command writes the given scalars to a new dataset.

152

© 0w N s W N

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

© 00 9 O ks W N =

e e =
=W N = O

=
ot

matrix sizes = { 20, 40, 100, 200, 500,
scalar size = sizes|[3]
print size
nulldata size —--preserve
genr index
series x = (index>size/2) ? 20 10
series ys = 100 + 10xx
scalar nu = 4
scalar s = 50
loop 10000 —--progressive —--quiet
series e = s * (randgen (c,nu)-nu)/sqrt (2+nu)

series y = ys + e
ols y const x
scalar bl Scoeff (const)

scalar b2 = S$Scoeff (x)
scalar s2 = $sigma”2
#Interval bounds
scalar c2L = S$Scoeff (x)
scalar c2R = Scoeff (x)

Compute
scalar pl

(10>c2L && 10<c2R)

Compute
scalar p2

Rejection of test
((Scoeff (x

1000}

S+ e 4 S e

H= = 4= 4 e

variable for obs number
Create X =10 and X=20
Systematic part of model
Deg-of-freedom for chi-square
Standard deviation of errors

Normed Chi-square
sample of y

Regression

Save intercept

Save slope

Save sigma-squared

- critical(t, $df, .025)*Sstderr (x)
+ critical (t,$df, .025) «$Sstderr (x)

coverage probabilities of the Confidence Intervals

)-10) /$stderr (x))>critical (t, Sdf, .05)

Compute whether slope is between 9 and 11.

scalar close (9>c2L && 11<c2R)

print bl b2 s2 pl p2 clo
store mc_5.1.gdt bl b2 s2 pl p2 clo
endloop

se
se

Dependent variable: y
mean of std. dev.
estimated estimated
Variable coefficients coefficien
const 99.7949 15.8964
X 10.0113 1.00646

Statistics for 10000 repetitions

mean std. dev
bl 99.7949 15.8964
b2 10.0113 1.00646
s2 2501.87 557.302

153

of

ts

mean of std. dev. of
estimated estimated
std. errors std. errors
15.7221 1.73307
0.994351 0.109609

16 pl 0.949400 0.219179
17 p2 0.0523000 0.222631
18 close 0.661500 0.473199

Based on the summary statistics, the average value of by = 99.79 and of by = 10.01. Estimated vari-
ance averages 2501.87. The confidence interval covers in 9494 /10000 times and the true hypothesis
rejected in 523/10000 samples. These would be predicted in a linear model with homoscedastic,
linearly independent error terms.

Now load the results that were written to mc_5.1.gdt. In the top panel of Figure 5.4 you’ll find
the histogram of by plotted along with a normal distribution curve. The histogram appears to be
approximately normally distributed (n=100), implying that the asymptotic normal approximation
for the least squares coeflicient starts at a very modest sample size. In a later example, we examine
whether this holds for the delta method approximations.

1 open "@workdir\mc_5.1.gdt"
2 grb2 <- freq b2 --normal --plot=display

Simulation of the delta method

In this example, we study the performance of the delta method. Using the same design as used
in the previous example we also compute functions g; = exp(ba/10) and g2 = b1 /by. The histogram
for the function g; = exp(ba/10) based on 10000 Monte Carlo samples is shown in the bottom of
Figure 5.4. The distribution of g; is skewed to the left, and does not look normally distributed (the
Doornik-Hansen test confirms this).

In Figure 5.5 histograms based on 10000 Monte Carlo samples for estimates of go = by /b are

shown for sample sizes of 40 and 200. At n = 40 the function is decidedly skewed. As the sample
size increases, the statistic is converging towards normality, though it is still badly skewed.

Monte Carlo: Simulation of the delta method

matrix sizes = { 20, 40, 100, 200, 500, 1000}
scalar size = sizes[2]
print size
nulldata size —--preserve
genr index
series x = (index>size/2) ? 20 : 10
series ys = 100 + 10x*x

e e S L S

154

scalar s = 50

oo

9 scalar nu = 4

10 loop 10000 —-—-progressive —-—-quiet

11 series e = s * (randgen(c,nu)-nu)/sqrt (2+nu)

12 series y = ys + e

13 ols y const x

14 scalar bl = S$coeff (const)

15 scalar b2 = S$coeff (x)

16 scalar s2 = $sigma”2

17 matrix covmat = S$vcv

18 # first function

19 scalar gl = exp(b2/10)

20 scalar dl = (gl1/10)

21 scalar se_gl = dl*S$stderr (x)

22 scalar p_gl = abs((gl-2.71828)/se_gl)>critical (t, $df, .025)
23 # second function

24 scalar g2 = bl/b2

25 scalar dl = 1/bl

26 scalar d2 = -bl/b2"2

27 matrix d = dl 7 d2

28 matrix vmat = gform(d,covmat)

29 scalar se_g2 = sqgrt (vmat)

30 scalar c2L = g2 - critical (t,$df, .025) «se_g2

31 scalar c2R = g2 + critical (t,$df, .025) «se_g2

32 # the coverage probabilities of the Confidence Intervals
33 scalar pl_g2 = (10>c2L && 10<c2R)

34 scalar p2_g2 = ((Scoeff(x)-10)/$stderr(x))>critical (t,$df, .05)
35 scalar close = (9>c2L && 11<c2R)

36 print gl se_gl g2 se_g2 p_gl pl_g2 p2_g2 close
37 store mc_5.2.gdt gl se_gl g2 se_g2 p_gl pl_g2 p2_g2 close

38 endloop

A few other statistics that were computed in the previous example are computed as well. The
coverage of the confidence interval and the t-test rejection rate. The results for n = 40, n = 200,
and n = 1000 are shown below:

Statistics for 10000 repetitions

n=40

mean std. dev

gl 2.74238 0.428058

se_gl 0.426886 0.103466

g2 10.7440 4.50758

se_g2 4.34602 1.94085
p_gl 0.0479000 0.213555
prl_g2 0.949500 0.218974
pP2_g2 0.0442000 0.205539
close 0.912700 0.282274

Statistics for 10000 repetitions

155

n=200

mean std. dev

gl 2.72402 0.192129
se_gl 0.192045 0.0203195
g2 10.1357 1.84695
se_g2 1.82731 0.311876
p_gl 0.0499000 0.217738
pl_g2 0.949400 0.219179
P2_g2 0.0495000 0.216910
close 0.846100 0.360853

Statistics for 10000 repetitions

n=1000

mean std. dev

gl 2.72025 0.0848627

se_gl 0.0859604 0.00406127

g2 10.0210 0.798622

se_g2 0.807781 0.0592096
p_gl 0.0485000 0.214820
pl_g2 0.953200 0.211210
P2_g2 0.0482000 0.214189
close 0.536900 0.498637

In all samples the average values of the two functions are very close to their theoretical values,
2.71828 and 10, though things improve slightly as n increases. The rejection rate for a a = .05
t-ratio for g1 is p_gl= .0485. The rejection rate for the ¢-ratio associated with g2 is 0.0482. The
95% confidence interval for /31 /82 covers 95.43% of the time in repeated samples.

To view frequency plots of the simulated functions load the results that were written to mc_5.2. gdt.

1 open "@workdir\mc_5.2.gdt"
2 grl <- freqg gl --normal —--plot=display
3 gr2 <- freq g2 --normal --plot=display

Bootstrap using the empirical distribution function

In this example, a t-statistic is bootstrapped based on the empirical distribution of the model
errors. This is achieved by resampling residuals. POES5 uses a different method for bootstrapping
that will be considered in the next section.

Resampling in gretl is done using the resample (x, blocksize) command. This resamples
from z (a series or a matrix) with replacement. In the case of a series argument, each value of the
returned series, Tpoor, 1S drawn from among all the values of x; with equal probability. When a
matrix argument is given, each row of the returned matrix is drawn from the rows of z with equal

156

probability. The blocksize argument is optional and is used if you want to resample in data
chunks larger than 1 observation.

The first example the model is estimated and bootstrap samples are drawn, with replacement,
from the estimated residuals. This amounts to using the empirical distribution of the errors. This
happens in line 11. A ¢-ratio is bootstrapped (a pivotal statistic) and stored to an external dataset,
tsim.gdt, for further analysis. The results are based on 1999 bootstrap samples.

1 # Bootstrap using EDF (Residuals)
2 open "Q@workdir\data\mc20.gdt"

3 ols y const x

4 matrix b=$coeff

5 series u=S$uhat

6 series yhat = S$yhat

7 scalar replics=1999

8 scalar tcount=0

9 series ysim

10 loop replics —--progressive

11 ysim = yhat + resample (u)

12 ols ysim const x ——quiet

13 scalar tsim = abs ((Scoeff (x)-b[2])/S$stderr (x))

14 tcount += (tsim>critical(n, .025))

15 print tsim

16 store tsim.gdt tsim

17 endloop

18 printf "Proportion of cases with |t|>2.5 = %g\n", tcount/replics

To find the ¢ critical value from the empirical distribution, load tsim.gdt and find the desired
percentile (95t in this case).

1 open tsim.gdt
2 scalar critv=quantile (tsim, .95)
3 print critv

which is 2.0815 in this example.

Pairwise Boostrap

In this type of bootstrapping, rows of the entire data are resampled with replacement, so-called
(yi, x;) pairs. To resample more than 1 variable at a time by observation gretl requires conversion
of multiple series into a matrix. Resample from the matrix, then disassemble the matrix columns
back into series. A script for this example is:

157

© 0w N s W N

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

open "@workdir\data\mc20.gdt"
scalar n_bootsamples 1999 #

ols y const x

scalar betal=$coeff (const)
scalar beta2=$coeff (x)

scalar gl_beta = exp(beta2/10)

H= o o

scalar g2_beta = betal/beta2
list allvars = y const x #
matrix X = { allvars } #

start bootstrap loop
loop i=1..n_bootsamples —--progressive
matrix ml = resample (X) #

matrix yl = ml[,1] #
matrix x1 = ml[, 3] #
series y = vyl #
series X1 = x1

ols y const X1 #

scalar b2=Scoeff (X1)
scalar bl=S$coeff (const)
Svev #

=

matrix covmat =
first function

scalar gl = exp(b2/10) #
scalar dl = (gl/10) #
scalar se_gl = dl*S$stderr (X1) #
scalar biasl = gl-gl_beta #
scalar tl = biasl/se_gl #
second function

scalar g2 = bl/b2 #
scalar dl = 1/b2 #
scalar d2 = -bl/b2"2 #
matrix G = dl ~ d2 #
matrix vmat = Gxcovmatx*G’ #
scalar se_g2 = sqgrt (vmat) #
scalar bias2 = (g2-g2_beta) #
scalar t2 = (bias2)/se_g2 #
print and store

print bl b2 gl s

store bootsampled0.gdt bl b2 gl s
endloop

set number of boostrap samples

save original coeff bl
save original coeff b2
gl function at original est
g2 function at original est

list of all variables
data into matrix for resampling

—-—quiet

resample rows of variables
extract dependent var
extract independent var
convert data back to series

run regression
save slope & intercept estimates

save the covariance estimate

first function
derivative of function
delta method se

bias
t-ratio, Ho true
second function
derivative dg/dbl
derivative dg/db2
vector of derivatives
Delta method variance
std error
bias
t-ratio, Ho true

e_gl g2 se_g2 biasl bias2 tl t2
e_gl g2 se_g2 biasl bias2 tl t2

Within the loop we compute both functions (g and g2), their biases, delta method standard errors,
and t-ratios. These are stored to a dataset bootsample20.gdt.

To analyze results, open the bootsample40.gdt and construct the desired statistics as series. The
summary statistics reveal the quantities of interest.

158

open bootsample20.gdt

summary

freq b2 —--normal --plot=display
summary biasl bias2 --simple

summary gl g2 —--simple

scalar g_025 quantile(gl, .025)
scalar g_975 = quantile(gl, .975)
scalar c_tl_05 = quantile(abs(tl), .95)
print g_025 g_975 c_t1_05

© 0 9 A W N

Here we take summary statistics for the bias and the functions. The 0.025 and 0.975 quantiles are
taken of g; to obtain a percentile bootstrap confidence interval. Finally, the 0.95 quantile of the
t-ratio is taken to reveal the bootstrap critical value for the ¢-test based on the sample size.

The results are:

Mean Median S.D. Min Max
biasl 0.05813 -0.04279 0.6544 -1.382 7.135
bias2 0.8788 0.2036 4.489 -10.18 34.22
Mean Median S.D. Min Max
gl 2.969 2.868 0.6544 1.529 10.05
g2 9.063 8.388 4.489 -1.995 42 .41
q 025 = 1.9977185
q_975 = 4.4955391

c_tl 05 = 3.1386137

The mc20.gdt dataset is based on samples of size 20. So, the first rows of Tables 5D.4b and 5D.5 are
the ones we use for comparison. In fact, the biases are quite close. Our bootstrap bias measure for
g1 measured 0.058 and POFE5’s measured 0.068. For go ours measures 0.88 and POFE5’s measured
0.79. The 95% confidence interval is (1.998,4.496) and the 5% t critical value for sample size 20 is
3.14. The bootstrap standard error is 4.489 for g which is slightly larger than that in POFE5, which
is 4.442. This accounts for the slightly larger t critical value and confidence intervals produced
from our script.

5.8 waldTest

Finally,? since the delta method received quite a bit of attention in this chapter, it is worth
mentioning the user written package, waldTest.gfn that is available on the gretl function package

3This section is optional and uses a gretl add-on from its function package server. The server and its use is
discussed later is used extensively in Chapter 16 below and is discussed in section 16.3.3.

159

server (see section 16.3.3 for some details on what this contains and how to use it). This function
package was written by Oleh Komashko and is able to test nonlinear hypotheses in just about any
gretl estimated model. It also can be used to estimate confidence intervals for nonlinear functions
as well. For the preceding example we could use:

1 include waldTest # grab this package from the server
2 open "@workdir\datalandy.gdt"

3 square advert

4 o0ls sales const price advert sg_advert

5

6 nlwaldtest (" (1-b[3])/(2+«b[4])",Scoeff, $vcv)

7 nlconfint ("(1-b[3])/(2xb[4])", Scoeff, Svcv,null, .95, $df)

The first step is to download and install the waldTest function package from the gretl function
package server. This process is described in section 16.3.3. Then, open the data, create the square
of advertising and estimate the linear regression as in line 4. Two of the functions from wald Test are
shown in lines 6 and 7. The syntax is realtively forgiving, but consult the help that comes with the
function package for guidance if the function returns something unexpected. In the first instance,
nlwaldtest computes a nonlinear wald test using the delta method. The first argument, which is
enclosed in double quotes, is the expression for the nonlinear combination of parameters you want
to test. In this case, (1 — 83)/284 = 0. The next arguments are the coefficient vector from the
estimated model, and the estimated variance-covariance matrix. Additional options can be added
to the argument list. For instance, you can specify either the chi-square or F' form of the Wald test
(see section 6.1.3).

The second command estimates a confidence interval centered at the nonlinear combination,
again using the delta method to obtain a standard error. This command uses five inputs. As in
nlwaldtest, the first two are the coefficient vector and the variance-covariance matrix. The next
argument is for the variable list (normally $x1ist) which in this case is set to null, meaning that
we give no value for it. Next is the desired coverage probability of the confidence interval, and the
last is the relevant degrees of freedom to use for the ¢-distribution.

The output produced by these nifty functions is:

Wald test of a (non)linear restriction:

(1-b[3])/(2%b[4]) = O

Chi (1) = 244.88, with p-value = 3.39431e-055

Confidence interval for function of model parameters:
(1-b[3]1)/(2xb[4])

£t (71, 0.025) = 1.994

160

value std. err 95% conf. interval

2.01434 0.128723 1.75767 2.27101

The confidence interval matches the results obtained manually in Example 5.17 above.

161

5.9

© 0 N9 O s W N

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48

Script

set verbose off

function estimates confidence intervals based on the t-distribution
function void t_interval (scalar b, scalar se, scalar df, scalar p)
scalar alpha = (1-p)
scalar 1lb = b - critical (t,df,alpha/2) *se
scalar ub = b + critical (t,df,alpha/2) *se
printf "\nThe %2g%% confidence interval centered at $%$.3f is\
($.4f, %.4f)\n", p*100, b, 1lb, ub
end function

Example 5.1
open "@workdir\datalandy.gdt"
#Change the descriptive labels and graph labels

setinfo sales —--description="Monthly sales revenue ($1000)" \
—-—graph—-name="Monthly Sales ($1000)"
setinfo price --description="Price in dollars" --graph-name="Price"

setinfo advert —--description="Monthly Advertising Expenditure ($1000)" \
—-—graph-name="Monthly Advertising ($1000)"

print the new labels to the screen

labels

summary statistics
summary sales price advert —--simple

Example 5.2
regression, prediction, variable rescaling
ml<-ols sales const price advert

Example 5.2

Predict sales when price is 5.50 and adv is 1200

scalar yhat = S$coeff (const) + S$coeff (price)*5.50 + S$coeff (advert)*1.2

printf "\nPredicted sales when price=$5.50 and advertising=$1200 is $%.2f\n"

Rescale variables

series sales_star = sales x= 1000
series price_star price %= 100

ols sales_star const price_star advert

Example 5.3

Calculate sigma-hat square
open "@workdir\datalandy.gdt"
list xvars = const price advert
ols sales xvars

scalar sighat2 = ess/Sdf
scalar sig2 = $sigma’2

print sighat2 sig2

162

14

yhat+10(

49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

eval function
eval (Ssigma”2)

Example 5.4
Goodness-of-fit
printf "\nR-square = %.3f\n", Srsqg

FWL
open "@workdir\datalandy.gdt"
list xvars = const price advert

ols sales xvars
series ehat=Suhat

printf "\nSum-of-Squared Errors from full regression:

ols sales const price —--quiet
series sales_resid=S$uhat

ols advert const price —--quiet
series advert_resid=Suhat

ols sales_resid advert_resid
series ehat_fwl=$uhat

smpl 1 5
print ehat_fwl ehat

%.3f\n",

printf "\nSum-of-Squared Errors from FWL: %.3f\n", S$ess

smpl full

Example 5.5

ols sales const price advert —--vcv

matrix covmat = S$Svcv

matrix se = sqgrt (diag(covmat))

printf "Least Squares standard errors:\n%.3f\n", se
/*———POE5 Example 5.6———x/

open "@workdir\datalandy.gdt"

ml <- ols sales const price advert

t_interval (Scoeff (price), $stderr (price), $df, .95)
t_interval ($Scoeff (advert), $stderr (advert), $df, .95)

/*——-POE5 Example 5.7-—-%/

linear combination of parameters

ols sales const price advert —--vcv

scalar chg = -0.4%Scoeff (price)+0.8*Scoeff (advert)

scalar se_chg=sqrt ((-0.4) "2x$vcv[2,2]1+(0.872)*xS$vev[3,3]\

+2%(-0.4)%(0.8)*Svcv[2,3])
t_interval (chg, se_chg, $df, .95)

Examples 5.8 and 5.9

significance tests

ols sales const price advert

scalar tl = (Scoeff (price)-0)/$stderr (price)
scalar t2 (Scoeff (advert)-0) /$stderr (advert)
printf "\n The t-ratio for HO: b2=0 is = %.3f.\n\

163

Sess

100 The t-ratio for HO: b3=0 is = %.3f.\n", tl, t2

102 scalar t3 = ($coeff (advert)-1)/S$stderr (advert)
103 pvalue t $df tl

104 scalar p=pvalue(t, $df, t3)

105 print p

106

107 /*———POE5 Example 5.10———x/

108 scalar t = (Scoeff (price)-0)/$stderr (price)
109 scalar crit = -critical(t,$df,0.05)

110 scalar pval = l-pvalue(t,$df,t)

111 printf "\n Ho: b2=0 vs Ha: b2<0 \n \

112 the t-ratio is = %.3f. \n \

113 the critical value = %.3f \n \

114 and the p-value = %.3f\n", t, crit, pval

115

116 /*———POE5 Example 5.11-——x/

117 scalar t = (Scoeff (advert)-1)/S$Sstderr (advert)
118 scalar crit = critical(t, $df,0.05)

119 scalar pval = pvalue (t,$df,t)

120 printf "\n Ho: b3=1 vs Ha: b3>1 \n \

121 the t-ratio is = %.3f \n \

122 the critical value = %.3f \n \

123 and the p-value = %.3f\n", t, crit, pval
124

125 # Example 5.12

126 # t-test of linear combination

127 ols sales const price advert —--vcv

128 scalar chg = —-0.2%Scoeff (price)-0.5+«Scoeff (advert)

129 scalar se_chg=sqgrt (\

130 (=0.2) "2xSvev[2,2]1+((-0.5)"2)*Svcv[3, 3]\

131 +2%(-0.2)*(-0.5)*Svev[2,3])

132

133 printf "\n Ho: d=-0.2b2-0.5b3=0 vs Ha: d > 0 \n \

134 the t-ratio is = %.3f \n \

135 the critical value = %.3f \n \

136 and the p-value = %.3f\n", \

137 chg/se_chg, critical(t,$df,0.05), pvalue(t,$df,chg/se_chqg)
138

139 # Using matrices to compute linear combination variance
140 ols sales const price advert

141 covmat = $vcv

42 d = { 0; -0.2; -0.5 }
143 covest = d’xcovmatxd
144 se = sqrt (covest)

145 printf "\nThe estimated standard error of the linear combination is %.4f\n", se
146

147 # Example 5.14

148 # interaction creates nonlinearity

149 open "@workdir\datalandy.gdt"

150 series a2 = advertsxadvert

164

151

153
154
155
156
157
158
159

161
162
163
164

166
167
168
169

171
172
173
174

176
177
178
179

181
182
183
184

186
187
188
189

191
192
193
194

196
197
198
199
200
201

square az2

ols sales const price advert a2 —--vcv
scalar mel = S$coeff (advert)+2+(0.5) «Scoeff (a2)
scalar me2 = S$coeff (advert)+2+x2xScoeff (a2)

printf "\n The marginal effect at \$500

and at \$2000 is %.3f\n",mel,me2

Example 5.15

open "@workdir\datalcps5_small.gdt"

series educ_exper

educx*exper

ols wage const educ exper educ_exper

scalar me_8year =

scalar me_lé6year =

scalar me_20year

set echo off

(advert=.5) is %.3f\n\

Scoeff (exper)+Scoeff (educ_exper) 8

Scoeff (exper)+Scoeff (educ_exper) x16
Scoeff (exper)+Scoeff (educ_exper) 20
scalar me_ed_20exper

= Scoeff (educ) +Scoeff (educ_exper) 20

printf "\nMarginal effect of another year of schooling when:\n\
%.3£\n\

experience is 0 =
experience is 20

education is 8 =
education is 16 =
education is 20

Example 5.16

j— o)
=3

.3f\n",

%$.3f \n\
%.3f \n\
%.3f \n", me_8year,

open "@workdir\datalcps5_small.gdt"

logs wage
square exper
series educ_exper

educ * exper

Scoeff (educ),
printf "\nMarginal effect of experience when:\n\

me_lo6year,

ols 1_wage const educ exper educ_exper sd_exper

function void me_1(list wvars

"all variables,

scalar ed "set years of schooling",
scalar expr "set years of experience")

ols vars —-—-quiet
scalar me = S$Scoeff (exper)

2+«Scoeff (sq_exper) xexpr

printf "\nMarginal effect of another year of experience:\n \
Education = %.3f years and Experience
.3f percent \n",

Marginal effect i
end function
list regression =

me_1
me_1
me_1
me_1

regression,
regression,
regression,

—~ o~ o~ —~

regression,

Q

S %

me_ed_20exper

me_20year

including dep var first",

+ Scoeff (educ_exper) red +\

= %.3f years\n \

ed, expr, mex100

1_wage const educ exper educ_exper sJ_exper

8/
16,
8/
16,

0)
0)
20)
20)

165

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

function void me_2 (list vars "all variables, including dep var first",
scalar ed "set years of schooling"
scalar expr "set years of experience")
ols vars —-—-quiet
scalar mw = S$coeff (educ) + Scoeff (educ_exper) xexpr
printf "\nMarginal effect of another year of schooling:\n \
Education = %.3g years and Experience = %.3g years\n \
Marginal effect is %.3f percent \n", ed, expr, mwx100
end function

list regression = 1_wage const educ exper educ_exper sg_exper

me_2 (regression, 8, 0)

(
me_2 (regression, 16, 0)
me_2 (regression, 8, 20)
me_2 (regression, 16, 20)

Example 5.17

delta method for nonlinear hypotheses
open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sqg_advert —--vcv
matrix b = $coeff
matrix cov = S$vcv
scalar g_beta = (1

b[3])/(2xb[4])
scalar d3 -1/ (2%b[4])
scalar d4 -1x(1-b[3])/(2+«b[4]72)
matrix 4 = { 0, 0, d3, d4}
scalar v = dxcovxd’
scalar se = sqrt(v)

scalar lb = g_beta - critical (t,$df, .025) xse
scalar ub = g_beta + critical (t,$df, .025) xse
printf "\nThe estimated optimal level of advertising is $%.2f.\n",1000xg_beta
printf "\nThe 95%% confidence interval is ($%.2f, $%.2f).\n",1000+x1b,1000xub

t_interval (g_beta, se, $df, .95)

Bonus: waldTest.gfn # first, install package from the funct server
include waldTest # once installed, this will work

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sqg_advert

nlwaldtest ("(1-b[3])/ (2xb[4])", Scoeff, Svcv)
nlconfint (" (1-b[31)/(2xb[4])", Scoeff, Svcv,null, .95, $df)

Example 5.18 Optimal Experience--the delta method

Function computes the optimal experience for a given x=education
function matrix exper_0 (matrix param, scalar x)

166

253
254
255
256
257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

matrix exper = (-param[3]-param[4]*x)/ (2«param[5])

return exper
end function

This function computes experience for all observations in sample

function matrix G(matrix xparam, list x)
matrix X = { x }
matrix rl = (-param[3].+*ones (Snobs,1)—- param[4]*X) ./ (2+xparam[5])

return rl
end function

open "@workdir\datalcps5_small.gdt"

set echo off

logs wage

square exper

series educ_exper = educ * exper

ols 1_wage const educ exper educ_exper sJ_exper

matrix covmat = S$vcv
matrix b = S$coeff
list ed = educ

matrix jac = fdjac(b, G (&b, ed))
matrix d = meanc (jac)

matrix variance = gform(d, covmat)
matrix se = sqgrt (variance)

Numerical derivatives at each obs
The sum of the derivatives

#

Var

= d’ Cov d

Std Error = sqgrt (Var)

printf "\nThe optimal experience given %2g years of schooling is =
printf "\nThe estimated standard error of experience_0 = %.3f\n",

t_interval (exper_0(b,16),se, $df, .95)
Example 5.19

open "@workdir\data\mc20.gdt"

ols y const x

scalar g0 = exp(Scoeff (x)/10)

scalar d0 = (g0/10)

scalar se = dOxS$stderr (x)
t_interval (g0, se, $df, .95)

Example 5.20

open "@workdir\data\mc20.gdt"

ols y const x

matrix covmat = $vcv

scalar g = S$Scoeff (const) /Scoeff (x)
scalar dl = 1/Scoeff (x)

scalar d2 = —-Scoeff (const)/Scoeff (x) "2
matrix d = dl ~ d2

matrix variance = gform(d, covmat)
scalar se = sqrt (variance)

t_interval (g, se, $df, .95)

167

H =

Function

Derivative

Delta method std error
Confidence Interval

S ok e S S 3 3

Function

Derivative bl
Derivative b2

Vector d

Delta method std error
Standard Error
Confidence Interval

=d

%.2f\n",
se

16,

exper._

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Monte Carlo simulation of linear model with chi-square errors
matrix sizes = { 20, 40, 100, 200, 500, 1000}

scalar size = sizes[3]

print size

nulldata size —--preserve

genr index # Generate index for obs numbers
series x = (index>size/2) ? 20 : 10 # Create X =10 and X=20
series ys = 100 + 10xx # Systematic part of model
scalar nu = 4 # Degrees of freedom for chi-square
scalar s = 50 # Standard deviation of errors
loop 10000 —--progressive ——quiet
series e = s * (randgen(c,nu)-nu)/sqrt(2+«nu) # Normalized Chi-square rv
series y = ys + e # sample of y
ols y const x # Regression
scalar bl = $coeff (const) # Save intercept
scalar b2 = S$coeff (x) # Save slope
scalar s2 = $sigma”2 # Save sigma-squared
#Interval bounds
scalar c2L = Scoeff(x) - critical(t, $df, .025)*$stderr (x)

scalar c2R = Scoeff(x) + critical(t, $df, .025)*S$Sstderr (x)
Compute the coverage probabilities of the Confidence Intervals

scalar pl = (10>c2L && 10<c2R)

Compute Rejection of test

scalar p2 = ((Scoeff(x)-10)/$stderr(x))>critical (t,$df, .05)
Compute whether slope is between 9 and 11.

scalar close = (9>c2L && 11<c2R)

print bl b2 s2 pl p2 close
store mc_5.1.gdt bl b2 s2 pl p2 close
endloop

open "@workdir\mc_5.1.gdt"
grb2 <- freq b2 --normal --plot=display

Monte Carlo simulation of delta method
matrix sizes = { 20, 40, 100, 200, 500, 1000}

scalar size = sizes|[4]
print size
nulldata size —-preserve
genr index
series x = (index>size/2) ? 20 : 10
series ys = 100 + 10+*x
scalar s = 50
scalar nu = 4
loop 10000 —--progressive —-—-quiet
series e = s * (randgen(c,nu)-nu)/sqrt (2+nu)

series y = ys + e

ols y const x

scalar bl Scoeff (const)
scalar b2 = S$coeff (x)
scalar s2 $sigma”2
matrix covmat = S$vcv

168

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

first function

scalar gl = exp(b2/10)

scalar dl = (gl1/10)

scalar se_gl = dl*S$stderr (x)

scalar p_gl = abs((gl-2.71828)/se_gl)>critical (t, $df, .025)

second function

scalar g2 = bl/b2

scalar dl 1/b2

scalar d2 = -bl/b2"2

matrix d = dl1 7 d2

matrix vmat = gform(d,covmat)

scalar se_g2 = sqgrt (vmat)

scalar c2L = g2 - critical (t,$df,.025) «se_g2

scalar c2R = g2 + critical(t,$df, .025) «se_g2

the coverage probabilities of the Confidence Intervals

scalar pl_g2 = (10>c2L && 10<c2R)

scalar p2_g2

scalar close (9>c2L && 11<c2R)

print gl se_gl g2 se_g2 p_gl pl_g2 p2_g2 close

store mc_5.2.gdt gl se_gl g2 se_g2 p_gl pl_g2 p2_g2 close
endloop

open "@workdir\mc_5.2.gdt"
grl <- freq gl --normal --plot=display
gr2 <- freq g2 --normal --plot=display

Use large df to approximate N(0,1) intervals
open "@workdir\data\mc20.gdt"

ols y const x

scalar g0 = exp(Scoeff (x)/10)

scalar d0 = (g0/10)

scalar se dO*S$stderr (x)

printf "\nco is %.3f, and se is %.3f\n", g0, se
t_interval (g0, se, 120000, .95)

Bootstrap using EDF (Residuals)
open "@workdir\data\mc20.gdt"
ols y const x
matrix b=$Scoeff
series u=S$uhat
series yhat = $yhat
scalar replics=1999
scalar tcount=0
series ysim
loop replics —-—-progressive
ysim = yhat + resample (u)
ols ysim const x —-—-quiet
scalar tsim = abs((Scoeff(x)-b[2])/$stderr (x))
tcount += (tsim>critical(n, .025))
print tsim
store tsim.gdt tsim

169

((Scoeff (x)-10) /S$stderr(x))>critical (t, $df, .05)

406 endloop

407 printf "Proportion of cases with |t|>2.5 = %g\n", tcount/replics
408

409 open tsim.gdt

410 scalar critv=quantile(tsim, .95)

411 print critv

412

413 # Pairwise Bootstrap

414 open "@workdir\data\mc20.gdt"

415 scalar n_bootsamples = 1999 # set number of boostrap samples
416

417 ols y const x

418 scalar betal=Scoeff (const) # save original coeff bl

419 scalar beta2=S$coeff (x) # save original coeff b2

420 scalar gl_beta = exp(beta2/10) # gl function at original est

421 scalar g2_beta = betal/beta?2 # g2 function at original est

422

423 list allvars = y const x # list of all variables

424 matrix X = { allvars } # put data into matrix for obs resampling
425

426 # start bootstrap loop

427 loop i=1l..n_bootsamples —--progressive —-—-quiet

428 matrix ml = resample (X) # resample rows of variables

429 matrix yl = ml[,1] # extract dependent var

430 matrix x1 = ml[, 3] # extract independent var

431 series y = vyl # convert data back to series

432 series X1 = x1

433 ols y const X1 # run regression

434 scalar b2=$coeff (X1) # save slope and intercept estimates
435 scalar bl=$coeff (const)

436 matrix covmat = $vcv # save the covariance estimate
437 # first function

438 scalar gl = exp(b2/10) # first function

439 scalar dl = (gl/10) # derivative of function

440 scalar se_gl = dlxS$stderr (X1) # delta method se

441 scalar biasl = gl-gl_beta # bias

442 scalar tl = biasl/se_gl # t-ratio, Ho true

443 # second function

444 scalar g2 = bl/b2 # second function

445 scalar dl = 1/bl # derivative dg/dbl

446 scalar d2 = -bl/b2"2 # derivative dg/db2

447 matrix G = dl 7 d2 # vector of derivatives

448 matrix vmat = Gxcovmatx*G’ # Delta method variance

449 scalar se_g2 = sqgrt (vmat) # std error

450 scalar bias2 = (g2-g2_beta) # bias

451 scalar t2 = (bias2)/se_g2 # t-ratio, Ho true

452 # print and store

453 print bl b2 gl se_gl g2 se_g2 biasl bias2 tl t2
454 store bootsampled0.gdt bl b2 gl se_gl g2 se_g2 biasl bias2 tl t2

455 endloop
456

170

457
458
459
460
461
462
463
464
465

open bootsampled(.gdt

summary
freq b2 —--normal --plot=display
summary biasl bias2 --simple
summary gl g2 —--simple

scalar g_025 = quantile(gl, .025)
scalar g_975 = quantile(gl, .975)
scalar c_tl1_05 = quantile(abs(tl), .95)
print g_025 g _975 c_t1_05

171

Histogram of b2, N=100

0.45 T T T T T T T

T
b2 mmmm
N(9.9828,1.0049) ——

-
=
i
[=4
w
o
5] 7 8 9 10 11 12 13 14
b2
Distribution of g1, N=40
1 T T T T T T T T
gl
N(2.7523,0.44154) —
by
i
@ _
(4]
o
. |
4.5 5

gl

Figure 5.4: Histogram of estimates of by for n = 100 and ¢; for n = 40. 10000 Monte Carlo samples.

172

Distribution of g2, N=40

0.12 . .

T T T
92 D
M(10.722,4.6687) ——

-
=
@
a 4
L
o
4 i
o 10 20 30 40
g2
Distribution of g2, N=200
0.25 — T T T T T T T T
g2
M(10.161,1.8365) ——
=
@
c
2]
o

Figure 5.5: Histogram of estimates

18 20

16

1z 14

a2

10

go for n =40 and n = 200. 10000 Monte Carlo samples.

173

Chapter 6

Further Inference in the Multiple
Regression Model

In this chapter several extensions of the multiple linear regression model are considered. First,
we test joint hypotheses about parameters in a model and then learn how to impose linear restric-
tions on the parameters. Model specification is considered using model selection rules, out-of-sample
forecasting, and a test for functional form. Collinearity and the detection of influential observations
are discussed and nonlinear least squares is introduced.

6.1 F-test

An F-statistic can be used to test multiple hypotheses in a linear regression model. In linear
regression there are several different ways to derive and compute this statistic, but each yields the
same result. The one used here compares the sum of squared errors (SSE) in a regression model
estimated under the null hypothesis (Hp) to the SSE of a model under the alternative (Hi). If the
sum of squared errors from the two models are similar, then there is not enough evidence to reject
the restrictions. On the other hand, if imposing restrictions implied by Hg alter SSE substantially,
then the restrictions it implies don’t fit the data and we reject them.

In the Big Andy’s Burger Barn example we estimated the model
sales = 31 + Boprice + Byadvert + Byadvert’ + e (6.1)

Suppose we wish to test the hypothesis that advertising has no effect on average sales against the
alternative that it does. Thus, Hy: 83 = 84 = 0 and Hy: 83 # 0 or 84 # 0. Another way to express
this is in terms of the models each hypothesis implies.

Hy E[sales|price] = B1 + Baprice
H, El[sales|price, advert] = 1 + Baprice + Bzadvert + Byadvert®

174

The model under Hj is restricted compared to the model under H; since in it 83 = 0 and 84 = 0.
The F-statistic used to test Hg versus Hp estimates each model by least squares and compares
their respective sum of squared errors using the statistic:

(SSE, — SSE,)/J
SSE./(n — k)

The sum of squared errors from the unrestricted model (H;) is denoted SSE, and that of the
restricted model (Hp) is SSE,. The numerator is divided by the number of hypotheses being
tested, J. In this case that is 2 since there are two restrictions implied by Hy. The denominator
is divided by the total number of degrees of freedom in the unrestricted regression, n — k. n is
the sample size and k is the number of parameters in the unrestricted regression. When the errors
of your model are (1) independently and identically distributed (iid) normals with zero mean and
constant variance (e; iid N(0,02)) and (2) Hy is true, then this statistic has an F distribution with
J numerator and n — k denominator degrees of freedom. Choose a significance level and compute
this statistic. Then compare its value to the appropriate critical value from the F' table or compare
its p-value to the chosen significance level.

F=

~ FJ’n_k if Hy is true (62)

Examples 6.1 and 6.2 in POES5

The script to estimate the models under Hy and H; and to compute the test statistic is given
below.

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sg_advert

scalar sseu = $ess

scalar unrest_df = S$df

ols sales const price

scalar sser = $ess

scalar Fstat=((sser—-sseu)/2)/ (sseu/ (unrest_df))
pvalue F 2 unrest_df Fstat

© 0w 9 O s W N

The square command is used to square any variable or variables that follow. The string sq_ is
appended as a prefix to the original variable name, so that squared advertising (advert?) becomes
sg_advert.

Gretl refers to the sum of squared residuals (SSE) as the “error sum of squares” and it is
retrieved from the regression results using the accessor $ess (i.e., in line 4 scalar sseu =
$ess). In line 5 the degrees of freedom in the unrestricted model are saved so that you can use
it in the computation of the p-value for the F-statistic. The F-statistic has 2 known parameters
(J=1and n — k =unrest_df) that are used as arguments in the pvalue function.

There are a number of other ways within gretl to do this test. These are available through
scripts, but it may be useful to demonstrate how to access them through the GUI. First, estimate

175

the model using least squares. From the pull-down menu (see Figure 2.6) select Mlodel>Ordinary
Least Squares, specify the unrestricted model (Figure 2.7), and run the regression. This opens
the models window (Figure 2.9).

Choose Tests from the menu bar of the models window, to open the fly-out menu shown in
Figure 6.1. The first four options in 6.1 are the most pertinent to the discussion here. These

QOmit variables
Add vanables

Sum of coefficients

Linear restrictions

Man-linearity (squares)
Man-linearity (logs)
Ramsey's RESET

Figure 6.1: Choosing Tests from the pull-down menu of the model window reveals several testing
options

allow one to test hypotheses by omitting variables from the model, adding variables to the model,
summing coefficients, or by imposing arbitrary linear restrictions on the parameters of the model.

Since the test in this example involves imposing a zero restrictions on the coefficients of adver-
tising and squared advertising, we can use the Omit variables option. This brings up the dialog
box shown in Figure 6.2.

Notice the two radio buttons at the bottom of the window. The first is labeled Estimate
reduced model; choose this one to compute equation 6.2. If you select the Wald, no harm is
done. Both are computed using a Wald statistic. The advantage of the Wald test is that a restricted
model does not have to be estimated in order to perform the test. Consequently, when you use the
-—wald option, the restricted model is not printed and the unrestricted model remains in gretl’s
memory where its statistics can be accessed.

Select the variable advert and sq_advert as shown. Click OK to reveal the result shown in
Figure 6.3.

From a script use

1 ols sales const price advert sqg_advert
2 omit advert sg_advert --test-only

The —-test-only option of the omit statement will produce the test statistic and p-value only,
suppressing the printed output from the restricted model to the screen.

The linear restrictions option can also be summoned from the pull-down menu as shown

176

EA gretl: model tests >

Select variables to omit

const advert

price sq_adwvert

®
L«

I@ Estimate reduced model I

() Wald test, based on covariance matrix

C Sequential elimination of variables
using two-sided p-value:

(Boe | [Bow] (Kow [&]

Figure 6.2: The model tests dialog box for using omit variables to test zero hypotheses using the
fly-out menu in the models window.

in Figure 6.1. This produces a large dialog box that deserves explanation. The box appears in
Figure 6.4.

Enter the hypotheses to test (or restrictions to impose) here. Each restriction in the set should
be expressed as an equation with a linear combination of parameters on the left and a numeric value
to the right of the equals sign. Parameters are referenced in the form b[variable number],
where variable number represents the position of the regressor in the independent variable list,
starting with 1. This means that 3 is equivalent to b [3]. Restricting S35 = 0 is done by issuing
b[3]=0 and setting 84 = 0 by b[4]=0 in this dialog. When a restriction involves a multiple of a
parameter e.g., 383 = 2, place the multiplier first, then the parameter, and use * to multiply. In
this case the restriction 353 = 2 is expressed as 3*b[3] = 2.

From the console or a script you must indicate where the restrictions start and end. The re-
strictions start with a restrict statement and end with end restrict. The restrict statement
usage is:

1 restrict —--quiet
2 b[3] =0
3 b[4] =0
4 end restrict

177

Test on Model 7:

Null hypothesi=:
advert, sg advert

Test statistic: F(2, T71)

the regression parameters are zero for the variakles

= §.44136, p-value 0.00051415%
Cmitting wvariables improved 0 of 3 information criteria.

Model 8: CLS, using observations 1-75
Dependent wvariable: sales
coefficient std.

Error

COnst 121.500 8

price -T.82807 1
Mean dependent var T77.37467
Sum sqguared resid 18%6.391
R-=squared 0.351301
F(l, 73) 4§,92790
Log-likelihood —-227.5536
Schwarz criterion 4683.7422

5.D. dependent wvar
5.E. of regression
Adjusted E-sguared
P-walue (F)

RAkaike criterion
Hannan-Quinn

Figure 6.3: The results using the Omit variables dialog

parameters of a linear model.

p-value
1.59e-025 **=*
1.97e-09 Baw

6.48

5.09

0.38

1.97

4539,

480,

box to test zero restrictions on the

Put each restriction on its own line. The ——quiet option suppresses the restricted regression from

the results window.

Another example of a set of restrictions from a gretl script is:

restrict
b[1l] =0
b[2] - b[3] =0
b[4] + 2%xb[5] =1

end restrict

The restrict and end restrict statements can omitted when using the dialog box (Figure
6.4) to impose or test restrictions. The results from the restrict statements appear below.

ml saved
Restriction set

1: bl[advert] = 0

2: blsg_advert] = 0

Test statistic: F (2, 71) = 8.44136, with p-value = 0.000514159
Restricted estimates:
coefficient std. error t-ratio p-value
const 121.900 6.52620 18.68 1.59e-025 xxs
price 7.82907 1.14286 6.850 1.97e-09 x*x*

178

ﬁ gretl: linear restricticns >

Specify restrictions:
(Please refer to Help for guidance)
right-click for some shortcuts

B[3]=0 A—
ble]=0 ot pesobr o " b banet hors |
List restrictions to test here. Each

restnction appears on a separate line

[C] Use bootstrap

‘ ;_.‘;—ﬂelp | %Qancel H @QK ‘

Figure 6.4: The linear restriction dialog box obtained using the Linear restrictions option in
the Tests pull-down menu.

advert 0.000000 0.000000 NA NA
sq_advert 0.000000 0.000000 NA NA
Standard error of the regression = 5.09686

Notice that the restricted estimates are printed; the coefficients on advert and sq_advert are
zero. Use the ——quiet option in the restrict line to suppress the restricted estimates. One
disadvantage of using restrict is that there is currently no way to assign the output from the
restricted model to a session icon. This is something that omit allows.

6.1.1 Regression Significance

Example 6.3 in POE5

The F-statistic is used to statistically determine whether the variables in a model have any
effect on the average value of the dependent variable. In this case, Hy is the proposition that y
does not depend on any of the independent variables, and H; is that it does.

H,: Ely] =
Hy: Elyilzie, - ,zig) = b1+ Baxia + ... + Bizi

The null hypothesis can alternately be expressed as 52, 83, ..., 0 = 0, a set of kK — 1 linear restric-
tions. In Big Andy’s Burger Barn the script is

179

[

open "@workdir\datalandy.gdt"
square advert
ols sales const price advert sqg_advert
restrict —--quiet
b[2] =0
b[3] =0
b[4] =0
end restrict

0 N O s W N

In lines 3 the model is estimated and in 4-8 each of the slopes is restricted to be zero. The test
result is shown in Figure 6.5 below. You can see that the F'-statistic for this test is equal to 24.4593.

E& greth script output - O X

B80~FEME [&)

> U‘

Model 1: CLS, using observations 1-75
Dependent variakle: sales

coefficient std. error t-ratio p-value
const 108.71%9 6.79905 16.14 1.87e-025 **=
price -7.64000 1.04594 -7.304 3.24e-010 **= =
advert 12.1512 3.556l6 3.417 0.0011
sq_advert -2.76796 0.940624 -2.943 0.0044
Mean dependent var T77.37467 5.D. dependent wvar 6.488537
Sum squared resid 1532.084 S5.E. of regression 4.645283
—S Q.o02235 Sdiust —San 0,457
Fi3z, 71) 24,455932 PB-value (F) 5.60e-11
Log-I1kel1nooa —210.0000 REalKe CIlLerlom aq7.10500 =
Schwarz criterion 456.37380 Hannan-Quinn 450.8094

Restriction set

1: b[price] = 0

2: bladvert] = 0

3: b[sg_advert] = 0

ITest statistic: F(3, 71) = 24.4593, with p-valus = 5.53336e—oll|

Figure 6.5: The results obtained from using the restrict statements via the dialog box to conduct
the overall F-test of regression significance.

The same number appears in the regression results as F'(3, 71). This is no coincidence. The test of
overall regression significance is important enough that it appears on the default output of every
linear regression estimated using gretl. The statistic and its p-value are highlighted in Figure 6.5.
Since the p-value is less than = 0.05, we reject the null hypothesis that the model is insignificant
at the five percent level.

The command reference for restrict is:

restrict

Options: -—--quiet (don’t print restricted estimates)
—--silent (don’t print anything)

180

-—-wald (system estimators only see below)
——bootstrap (bootstrap the test if possible)
—-—-full (OLS and VECMs only, restricts to last model)

Imposes a set of (usually linear) restrictions on either (a)

the model last estimated or (b) a system of equations previously

defined and named. In all cases the set of restrictions should be
started with the keyword ‘‘restrict" and terminated with ‘‘end restrict".

Omit This is a good opportunity to use the omit statement and to show the effect of the
——test-only and ——chi-square options. Consider the script

-

open "@workdir\datalandy.gdt"

2 square advert

3 list xvars = price advert sg_advert
4 o0ls sales const xvars —-—quiet

5 omit xvars

6 o0ls sales const xvars —-—-quiet

7 omit xvars —--chi-square

8 o0ls sales const xvars —-—-quiet

9 omit xvars —-test-only

The regressors that carry slopes are collected into the list called xvars. Then, the overall F-test
can be performed by simply omitting the xvars from the model. This tests the hypothesis that
each coefficient is zero against the alternative that at least one is not.

The unrestricted regression is estimated in lines 4, 6 and 8. The first instance of omit in line 5
returns the restricted model and uses the F' version of the test statistic. The second omit xvars
statement repeats the test, imposing the restrictions on the model, but using the x? version of
the test statistic. By default, the omit command replaces the current model in memory with the
restricted one. To keep the unrestricted model in memory, and thus its statistics available using
accessors, use the ——test-only option as in line 9. The output from the three forms is shown
below.

omit xvars
Null hypothesis: the regression parameters are zero for the variables
price, advert, sqg_advert
Test statistic: F(3, 71) = 24.4593, p-value 5.59996e-011
Omitting variables improved 0 of 3 information criteria.

omit xvars —--chi-square
Null hypothesis: the regression parameters are zero for the variables
price, advert, sqg_advert
Wald test: Chi-square(3) = 73.3779, p-value 8.06688e-016
(LR test: Chi-square(3) = 53.2316, p-value 1.63633e-011)

181

Omitting variables improved 0 of 3 information criteria.

omit xvars —--test-only
Null hypothesis: the regression parameters are zero for the wvariables
price, advert, sqg_advert
Test statistic: F (3, 71) = 24.4593, p-value 5.59996e-011

The three sets of results are nearly identical. The one difference is that the ——test-only option
offers no information about whether omitting variables improves any of the information criteria
(AIC, or SC). The ——test-only option produces no regression output since a restricted model is
not estimated. Finally, statistics from the unrestricted regression are available using the accessors.
The regression output was suppressed using the ——quiet option with the ols command.

Without the ——quiet option, the model is restricted and the estimate of the constant (the
series mean in this case) is given before printing the test result.

A summary of the omit syntax is given:

omit
Argument: varlist
Options: ——test-only (don’t replace the current model)
—-—chi-square (give chi-square form of Wald test)
—-—quiet (print only the basic test result)
—-silent (don’t print anything)
—--vcv (print covariance matrix for reduced model)
—-—auto[=alpha] (sequential elimination, see below)
Examples: omit 5 7 9
omit seasonals —-—-quiet
omit --auto
omit —--auto=0.05

6.1.2 Relationship Between t- and F-tests
Example 6.4 in POES5

Using the model for Big Andy
sales = 31 + Boprice + Bsadvert + Byadvert’ + e (6.3)

and suppose we want to test whether price affects sales. Using the omit command produces the
F-test and saves the computed statistic to a scalar I call F_test using the $test accessor.

182

1 ols sales const price advert sqg_advert
2 omit price —--test-only
3 scalar F_test = $test

The output is shown below:

Test on Model 2:

Null hypothesis: the regression parameter is zero for price
Test statistic: F(1, 71) = 53.3549, p-value 3.23648e-010

The F(1, 71) statistic is equal to 53.355 and has a p-value that is much smaller than 0.05; the
coefficient is significant at the 5% level. Compare these results to that of a ¢-test that have been
squared.

4 scalar t_2 = ($coeff(price)/S$stderr(price)) "2
5 print t_2 F_test

This yields:

t_2 = 53.354875

F_test 53.354875

This confirms that ti_ & = F1n—k and therefore the ¢-ratio and the F-test must produce identical
answers. For two-sided tests, the p-values will be equivalent as well.

6.1.3 Optimal Level of Advertising
Example 6.5 in POES5

The optimal level of advertising is that amount where the last dollar spent on advertising results
in only 1 dollar of additional sales (we are assuming here that the marginal cost of producing and
selling another burger is zero!). Find the level of level of advertising, advert,, that solves:

OFE[sales|
Oadvert
Plugging in the least squares estimates from the model and solving for advert, can be done in gretl.
A little algebra yields
$1 — B3

advert, = ————— 6.5
T (6.5)

= 33 + 2B4advert, = $1 (6.4)

The script in gretl to compute this follows.

183

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sqg_advert

scalar Ao =(1-Scoeff (advert))/ (2x$Scoeff (sq_advert))

printf "\nThe optimal level of advertising is $%.2f\n", Ao*1000

which generates the result:

The optimal level of advertising is $2014.34

To test the hypothesis that $1900 is optimal (remember, advert is measured in $1000) based on
equation (6.4).

Hy: Bs+3884=1
Hy: B3+3.861 #1

you can use a t-test or an F-test. Following the regression, use

restrict —--quiet
b[3]+3.8%xb[4]=1
end restrict

Remember that b [3] refers to the coefficient of the third variable in the regression (advert) and
b[4] to the fourth (sq_advert). A coefficient can also be referred to by its variable name. So,
the following statement is equivalent:

restrict —--quiet
bladvert]+3.8xb[sg_advert]=1
end restrict

This is an attractive option since one does not have to keep track of the variable number in the
variable list. The disadvantage is that it requires more typing.

The output from either version of the script is:

Restriction:
bladvert] + 3.8xb[sg_advert] =1
Test statistic: F(1, 71) = 0.936195, with p-value = 0.336543

The F-statistic is =0.936 and has a p-value of 0.33. We cannot reject the hypothesis that $1900 is
optimal at the 5% level.

184

Example 6.6 in POES5

A one-tailed test is a better option in this case. Andy decides he wants to test whether the
optimal amount is greater than $1900.

Ho:B3 +3.864 <1
Hltﬂg + 3864 >1

A one-sided alternative has to be tested using a t-ratio rather than the F-test. The script below
computes such a test statistic much in the same way that we did in section 5.4.3.

1 ols sales const price advert sg_advert --vcv

2 scalar r = S$coeff (advert)+3.8x$coeff (sg_advert)-1
3 scalar v = $vcv([3,3]1+((3.8) 7 2)*xSvev[4,4]1+2*(3.8)*Svev[3,4]
4

5 scalar tratio = r/sqgrt (v)

6 scalar crit = critical(t,$df, .05)

7 scalar p = pvalue (t,$df,tratio)

8

9 printf "\n Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1 \n \
10 the t-ratio is = %.3f \n \

11 the critical value is = %.3f \n \

12 and the p-value = %.3f\n", tratio, crit, p

The hypothesis is in line 2 and the estimated variance in line 3. This was easily done in the script.
The results are:

Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1
the t-ratio is = 0.968
the critical value is = 1.667
and the p-value = 0.168

The t-ratio is .9676 and the area to the right is 0.168. Once again, this is larger than 5% and the
hypothesis cannot be rejected at that level.

Example 6.7 in POES5

Finally, Big Andy makes another conjecture about sales. He is considering a price of $6 and
buying $1900 in advertising; he expects sales to be $80,000. Combined with the estimated optimality
of $1900 in advertising leads to the following joint test:

Hy: B3 +3.88s =1 and B + 682 + 1.985 + 1.928, = 80
Hi: not Hy

The model is estimated and the hypotheses tested:

185

ols sales const price advert sqg_advert
restrict
b[3]1+3.8xb[4]=1
b[1]1+6%xb[2]+1.9xb[3]1+3.61xb[4]1=80
end restrict

G W N =

The result is:

Restriction set

1: bl[advert] + 3.8+b[sg_advert] =1
2: blconst] + 6xb[price] + 1.9«bl[advert] + 3.6lxb[sg_advert] = 80
Test statistic: F(2, 71) = 5.74123, with p-value = 0.00488466

Andy is disappointed with this outcome. The null hypothesis is rejected since the p-value associated
with the test is 0.0049 < .05. Sorry Andy!

Examples 6.2 and 6.5 revisited

In these examples a comparison is made between the finite-sample size version of the hypotheses
tests in Examples 6.2 and 6.5 of POE5 and their asymptotic counterparts. The x? form used in
asymptotic tests is very similar to the F-form; divide the x?(.J) by its degrees of freedom, .J,
and you get the F. Their are slight differences in the x2(J)/J and the F Jn—k distributions, which
accounts for the small difference in the reported p-values.

The two versions are shown below. The F-statistic is:

_ (SSE. — SSE,)/J . .
F= SSE.J(n — k) Frn—k if Hy is true (6.6)

and the y? is:
(SSE, — SSE,)

¢= SSE./(n—k)

X2(J) if Hy is true (6.7)
It is easy to see that C'/J = F.

To illustrate this we compare p-values of the F-statistic version of the test and the y? version.
First, the null hypothesis that 53 = 54 = 0 is tested against the two-sided alternative as in Example
6.2 (p. 175).

The script for the first hypothesis test uses the omit statement with the ——test-only option.
The second omit command adds the ——chi-square option that computes the x? version of the
test. This option is not available with the restrict version of the test.

186

[

ols sales const price advert sqg_advert

omit advert sqg_advert --test-only
scalar F_2_nk = Stest

omit advert sqg_advert --test-only —--chi-square
scalar Chi_2 = S$test

N O o s WoN

This produces:

Test on Model 2: (-—-test-only)

Null hypothesis: the regression parameters are zero for the variables
advert, sg_advert
Test statistic: F (2, 71) = 8.44136, p-value 0.000514159

Test on Model 2: (--test-only --chi-square)

Null hypothesis: the regression parameters are zero for the wvariables
advert, sqg_advert

Wald test: Chi-square(2) = 16.8827, p-value 0.000215757

(F-form: F (2, 71) = 8.44136, p-value 0.000514159)

The —-chi-square option produces both versions of the statistic and both p-values. The F
version of the test has a larger p-value, but they are both well below a 5% threshold and are
significant.

The second example considers a single hypothesis and compares the Fy,,_; to a x2(1). The
null-hypothesis is 33 + 3.8, = 1 against the two-sided alternative (not equal one).

9 restrict —--quiet

10 b[3]1+3.8xb[4]=1

11 end restrict

12

13 scalar F_1_nk = S$test
14 scalar Chi_1 = Stest
15

16 pvalue F 1 $df F_1_nk
17 pvalue C 1 Chi_1

This produces:

F(l, 71): area to the right of 0.936195 = 0.336543
(to the left: 0.663457)

187

Chi-square(l): area to the right of 0.936195 = 0.333258
(to the left: 0.666742)

As expected the F' version of the test has a slightly larger p-value, but they are very similar in
magnitude and neither is significantly different from zero at 5%.

Example 6.8 in POES5

In section 5.6.1 a nonlinear function of the parameters was proposed as an estimate of the
optimal level of advertising. In this example we test to determine whether this optimal level of
advertising is equal to $1900. The optimal level was determined to be:

1— 3
2034

The null hypothesis is that advert, = 1.9 against the alternative advert, # 1.9.

(6.8)

advert, =

Gretl’s restrict block can be used to test a nonlinear hypothesis after estimation of a single
equation linear model. The basic syntax is:

1 ols y const x2 x3 x4

2 restrict —-—-quiet

3 rfunc = [some function of the estimates, b returned by ols]
4

end restrict

First, a linear regression is estimated by least squares. Then the restrict block is initiated (using
——quiet is optional). The next line uses rfunc as the name given to a user written function that
depends on the elements of the estimated coefficient matrix before closing the restrict block.

In this example the null hypothesis is (1 — 83)/(264) = 1.9. Rearranging it becomes v =
((1 = p3)/(284)) — 1.9 = 0. The function argument must be

const matrix b

which stands for constraint matrix b. This says the the function is a constraint (to test), and
that the argument b, i.e., the coefficient matrix from the previous estimation, is a matrix. The
only part of this that is user defined is the function name, restr. Leave the rest alone!!

Run the function and estimate the model using restrict.

!That is, unless the routine you are using calls the estimated parameters something other than b. ols refers to
it as b so it works here.

188

function matrix restr (const matrix b)
matrix v = (1-b[3])/(2xb[4])-1.9

return v

end function

ols sales const price advert sqg_advert
restrict —--quiet
rfunc = restr

© 0 9 O A W N

end restrict

The result displayed to the screen is:

Test statistic: chi®2 (1) = 0.789008, with p-value = 0.3744

The hypothesis cannot be rejected at the 5% level.

6.2 Nonsample Information

Example 6.9 in POES5

In this section a log-log beer demand model is estimated. The data are in beer.gdt and are in
level form. The model is:

In(q) = B1 + B2 In(pb) + B3 In(pl) + B4 In(pr) + B5In(i) +e (6.9)

First, convert each of the variables into natural logs using the GUI or the 1ogs command.

From the GUI use the cursor to highlight the variables you want transformed in the main
window. Right-click the mouse and choose Add Logs from the pop-up menu as shown in Figure
6.6. The natural log of each of the variables is obtained and the result stored in a new variable
with the prefix 1_ (“el” underscore). As shown previously this can be done in a script or from the

console using the 1ogs command logs g pb pl pr i.2

A no money illusion restriction can be parameterized in this model as 8y + 83 + 84 + 85 = 0.
This is easily estimated within gretl using the restrict dialog or a script as shown below.

1 open "@workdir\data\beer.gdt"
2 logs g pb pl pr i
3 ols 1_g const 1 _pb 1 pl 1 _pr 1_i --quiet

2Recall that the there is also a menu item Add>Add logs of selected variables that does this too.

189

“ gretl _ 0 w9

File Tools Data View Add Sample J=nsble Model Help %

beer.gdt ChlUsers\leead\Documents'\grethpoed

D= Variable name Descriptive label

const

litres of beer | Display values

price of beer Edit values
oo Sumimary statistics
e Correlation matrix
income (§) Collinearity

XY scatterplot

0
1
2
3
4
5

Copy to clipboard
Delete

Add logs

Add differences

E' fx @ . Add percent changes...

Al indev valies

Figure 6.6: Highlight the desired variables, right-click in the variables window, and choose Add
Logs.

4 restrict
5 b2+b3+b4+b5=0
6 end restrict

The syntax for the restrictions is undocumented. The command reference suggests referring to the
coefficients by their position number in the parameter vector as in:

restrict
b[2]1+b[3]4+b[4]1+b[5]=0
end restrict

The abbreviated version remains undocumented in the gretl 2018a and whether it will continue
to work is unknown. It does for now and I've shown it here. Apparently gretl is able to correctly
parse the variable number from the variable name without relying on the brackets. The output
from the gretl script output window appear below.

Restriction:
bll_pb]l + b[l_pl] + b[l_pr] + b[l_i] =0

Test statistic: F(l1, 25) = 2.49693, with p-value = 0.126639
Restricted estimates:

Restricted estimates:

190

coefficient std. error t-ratio p-value

const -4.79780 3.71390 -1.292 0.2078
1_pb -1.29939 0.165738 -7.840 2.58e-08 *x*x
1 _pl 0.186816 0.284383 0.6569 0.5170
1l _pr 0.166742 0.0770752 2.163 0.0399 * %
11 0.945829 0.427047 2.215 0.0357 * %

Standard error of the regression = 0.0616756

6.3 Model Specification

Example 6.10, 6.11, and 6.12 in POES5

There are several issues of model specification explored here. First, it is possible to omit relevant
independent variables from your model. A relevant independent variable is one that affects the
mean of the dependent variable. When you omit a relevant variable that happens to be correlated
with any of the other included regressors, least squares suffers from omitted variable bias.

The other possibility is to include irrelevant variables in the model. In this case, you include
extra regressors that either don’t affect y or, if they do, they are not correlated with any of the
other regressors. Including irrelevant variables in the model makes least squares less precise than
it otherwise would be—this increases standard errors, reduces the power of your hypothesis tests,
and increases the size of your confidence intervals.

The example used in the text uses the dataset edu_inc.gdt. The first regression

I_faminc, = 1 + Bahe; + Pawe + ¢; (6.10)

where [_faminc is the natural logarithm of family income, he is husband’s years of schooling, we is
woman’s years of schooling. Several variations of this model are estimated that include the number
of children in the household under age 6 (kl6) and two irrelevant variables, x5 and x.

open "@workdir\dataledu_inc.gdt"
logs faminc

ml <- ols 1_faminc const he we
modeltab add

m2 <- omit we

modeltab add

modeltab show

modeltab —-—-output=two_models.tex

0o N O s W N

The data are opened, log of family income is taken and the baseline regression is estimated. A
hypothesis test of the significance of woman’s schooling is conducted.

191

This adds the models to the current session and adds the models to a model table. This also

populates the model table icon in gretl’s icon view (a.k.a. session window). The window is shown
below in Figure 6.7.

B gret:: model table — O X

B & F 4 =™ % I

COLS estimates
Dependent variakle: 1 faminc

(1] 2]
const 10.26%% 10,.54%%
[(0.1220) (0.09209)
he 0.04385%* 0.08132%*%

(0.008723) (0.007100)

we 0.03503%%
(0.01158)
n 423 423
Adj. RE*2 0.1673 0.1470
1nL -254.4 -260.0

Standard errors in parentheses
* indicates significance at the 10 percent level
k% indicates significance at the 5 percent lewvel

&

Figure 6.7: The modeltab commands can be used to construct a model table. This can be saved
as INTEX or RTF.

The ITEX output is shown below:

OLS estimates
Dependent variable: 1_faminc

(1) (2)

const 10.26** 10.54**
(0.1220) (0.09209)
he 0.04385** 0.06132**
(0.008723) (0.007100)
we 0.03903**
(0.01158)
n 428 428
R? 0.1673 0.1470
Y4 —254.4 —260

192

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

One interesting thing here is that the omit command accepts the assignment operator (<-)
that adds the restricted model to the current session.

In the above script, we have used the modeltab function after each estimated model to add
it to the model table. The next to last line tells gretl to display the model table in a window and
the last line writes the table to a IXTEX file. You can also write it to an .rtf file for inclusion in a
MS Word document.

The models estimated from the GUI can be estimated and saved as icons (File>Save to session
as icon) within gretl. Once they’ve all been estimated and saved as icons, open a session window
(Figure 1.17) and drag each model onto the model table icon. Click on the model table icon to
reveal the output shown in Figure 6.7.

In Table 6.1 of POE5 five models of family income are estimated. I've created a variable list
for each model’s set of regressors:

1 list x1 = const he

2 list x2 = const he we

3 list x3 = const he we kl6

4 list x4 = const he we kl6 xtra_x5 xtra_x6
5 list x5 = const he kl6 xtra_ x5 xtra_x6

Using these it is easy to assemble all five models into a model table.

1 modeltab free

2 ml <- ols 1_faminc x2 —--quiet
3 modeltab add

4 m2 <- ols 1_faminc x1 --quiet
5 modeltab add

6 m3 <- ols 1_faminc x3 —-—-quiet
7 modeltab add

8§ m4 <- ols 1_faminc x4 --quiet
9 modeltab add

10 m5 <- ols 1_faminc x5 —-—-quiet

modeltab add
modeltab show
modeltab —--output=family_inc_modeltable.tex

= e
Vo=

-
w

The gretl script to estimate these models and test the implied hypothesis restrictions follows.

193

const

he

we

k16

xtra_xb

xtra_x6

(1)
10.26**
(0.1220)

0.04385**
(0.008723)

0.03903**
(0.01158)

428
0.1673
—254.4

OLS estimates
Dependent variable: 1_faminc

(2)
10.54**
(0.09209)

0.06132**
(0.007100)

428
0.1470
—260

(3)
10.24**
(0.1210)

0.04482**
(0.008635)
0.04211**
(0.01150)

—0.1733**
(0.05423)

428
0.1849
—249.3

(4)
10.24**
(0.1214)

0.04602**
(0.01355)

0.04922**
(0.02470)

—0.1724**
(0.05468)
0.005388
(0.02431)
—0.006937
(0.02148)
428

0.1813
—249.2

Standard errors in parentheses

* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Table 6.3: Model Table from KTEX

194

(5)
10.31**
(0.1165)

0.05171**
(0.01329)

—0.1690**
(0.05484)

—0.03214**
(0.01543)

0.03093**
(0.01007)

428
0.1756
—251.2

Correlation matrix

1
I_faminc - 0.4 0.3 -0.1 0.3 0.4 I
S TRE OB
we | 0.3 0.5 -
=40

kl6 -
xtra_xb -
xtra_x6 -
. &o & & \é‘o o) O
%50 ST N
\f} 4 5

Table 6.4: Heatmat of the correlation matrix produced in gretl .

Table 6.2 in POES5 contains the correlation matrix for variables used in the family income
example. This is easily produced using the corr function.

1 corr 1_faminc he we kl6 xtra_x5 xtra_x6 —--plot=heatmap.tex

which produces the a heatmap shown in Table 6.4. The IATEX code is written to the heatmap.tez?
file in the gretl working directory. Darker shades indicate higher correlation and red (blue) indicates
positive (negative) correlation.

6.4 Model Selection

Choosing an appropriate model is part art and part science. Omitting relevant variables that are
correlated with regressors causes least squares to be biased and inconsistent. Including irrelevant
variables reduces the precision of least squares. So, from a purely technical point, it is important
to estimate a model that has all of the necessary relevant variables and none that are irrelevant.
It is also important to use a suitable functional form. There is no set of mechanical rules that one
can follow to ensure that the model is correctly specified, but there are a few things you can do to
increase your chances of having a suitable model to use for decision-making.

3This required a little editing because the variable names included the underline character. KTEX uses this symbol
in math mode to signify a subscript. That is not what we wanted so the I¥TEX code had to be modified slightly by
using _ in place of _ in the ¥TEX source code.

195

Here are a few rules of thumb:

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then you
probably want to reevaluate either the functional form or whether relevant variables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can use model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give you some gretl commands to help with the last two: model selection
and RESET.

In this section we consider three model selection rules: R?, AIC, and SC. I'm not necessarily
recommending that these be used, since there are plenty of statistical problems caused by using
the sample to both specify, estimate, and then test hypotheses in a model, but sometimes you have
little other choice. Lag selection discussed later in this book is a reasonable application for these.

6.4.1 Adjusted R-square

The adjusted R? was introduced in Chapter 5. The usual R? is ‘adjusted’ to impose a small
penalty when a variable is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usual R?. With the adjusted version, the improvement
in fit may be outweighed by the penalty and it could become smaller as variables are added. The
formula is:

L SSE/(n—k)
B =1 o1

This sometimes referred to as “R-bar squared,” (i.e., R?) although in gretl it is called “adjusted
R-squared.” The biggest drawback of using R? as a model selection rule is that the penalty it
imposes for adding regressors is too small on average. It tends to lead to models that contain
irrelevant variables. There are other model selection rules that impose larger penalties for adding
regressors and two of these are considered below.

(6.11)

196

6.4.2 Information Criteria

The two model selection rules considered here are the Akaike Information Criterion (AIC) and
the Schwarz Criterion (SC'). The SC is sometimes called the Bayesian Information Criterion (BIC).
Both are computed by default in gretl and included in the standard regression output. The values
that gretl reports are based on maximizing a log-likelihood function (normal errors). There are
other variants of these that have been suggested for use in linear regression and these are presented
in the equations below:

AIC = In(SSE/n) + 2k/n (6.12)
BIC = SC=1n(SSE/n) + kln(n)/n (6.13)

The rule is, compute AIC or SC for each model under consideration and choose the model that
minimizes the desired criterion. The models should be evaluated using the same number of obser-
vations, i.e., for the same value of n. You can convert the ones gretl reports to the ones in (6.12)
using a simple transformation; add (1 + In(27)) and then multiply everything by n. Since sample
size should be held constant when using model selection rules, you can see that the two different
computations will lead to exactly the same model choice.

Since the functions have to be evaluated for each model estimated, it is worth writing a function
in gretl that can be reused. The use of functions to perform repetitive computations makes
programs shorter and reduced errors (unless your function is wrong, in which case every computation
is incorrect!) In the next section, I will introduce you to gretl functions and offer one that will
compute the three model selection rules discussed above.

6.4.3 A gretl Function to Produce Model Selection Rules

As discussed in section 3.2 gretl offers a mechanism for defining functions, which may be called
via the command line, in the context of a script, or (if packaged appropriately) via the programs
graphical interface.

The model selection function is designed to do two things. First, it prints values of the model
selection rules for R?, R?, AIC and SC. It also prints the sample size, number of regressors, and
their names. It also sends the computed statistics to a matrix. This allows us to collect results
from several candidates into a single table.

The basic structure of the model selection function is

function matrix modelsel (series y, list xvars)
[some computations]
[print results]
[return results]

end function

197

As required, it starts with the keyword function. The next word, matrix, tells the function
that a matrix will be returned as output. The next word is modelsel, which is the name given the
function. The modelsel function has two inputs. The first is a data series that will be referred
to inside the body of the function as y. The second is a variable 1ist that will be referred to as
xvars. The inputs are separated by a comma and there are spaces between the list of inputs. Feed
the function a dependent variable and a list of the independent variables as inputs. The function
estimates a model using ols, computes the criteria based on it, the statistics are printed to the
screen, and collected into a matrix that will be returned. The resulting matrix is then available for
further manipulation outside of the function.

1 function matrix modelsel (series y, list xvars)
2 ols y xvars —-—-qgquiet

3 scalar sse = S$ess

4 scalar n = $nobs

5 scalar k = nelem(xvars)

6 scalar aic = ln(sse/n)+2xk/n

7 scalar bic = ln(sse/n)+k*1ln(n)/n

8 scalar rbar2 = 1-((1-Srsqg)*(n-1)/Sdf)

9 matrix A = { k, n, S$rsq, rbar2, aic, bic}
10 printf "\nRegressors: %s\n",varname (xvars)
11 printf " k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f,\n\

12 AIC = %.4f, and SC = %.4f\n", k, n, $rsq, rbar2, aic, bic
13 return A

In line 2 the function inputs y and the list xvars are used to estimate a linear model by least
squares using the ——quiet option to suppress the least squares output. In lines 3-5 the sum of
squared errors, SSE, the number of observations, n, and the number of regressors, k, are put into
scalars. In lines 6-8 the three criteria are computed. Line 9 puts various scalars into a matrix called
A. Lines 10 sends the names of the regressors to the screen. Lines 11 and 12 send formatted output
to the screen. Line 13 sends the matrix A as a return from the function. The last line closes the

function.?

At this point, the function can be highlighted and run.
To use the function create a 1ist that will include the desired independent variables (called

x in this case). Then to use the function you will create a matrix called a that will include the
output from modelsel.

1 list all_x = const he we xtra_x5 xtra_xo6
2 matrix a = modelsel (l_faminc,all_x)

The output is:

4TbgetthegreﬂnwﬂueofAIC:scalar aic.g = (1+1ln(2x$pi)+aic) *n

198

Regressors: const,he,we,kl6,xtra_x5,xtra_x6
k = 6, n= 428, R2 = 0.1909, Adjusted R2 = 0.1813,
AIC = -1.6452, and SC = -1.5883

You can see that each of the regressor names is printed out on the first line of output. This is
followed by the values of k, n, R?, R?, AIC, and SC.

To put the function to use, consider the following script where we create four sets of variables
and use the model selection rules to pick the desired model.

1 list x1 = const he

2 list x2 = const he we

3 list x3 = const he we k16

4 list x4 = const he we kl6 xtra_x5 xtra_x6
5 list x5 = const he kl6 xtra_x5 xtra_x6
6 matrix a = modelsel (1_faminc,x1)

7 matrix b = modelsel (1_faminc, x2)

s matrix c¢c = modelsel (1_faminc, x3)

9 matrix d = modelsel (1_faminc, x4)

10 matrix e = modelsel (1_faminc, x5)

11

12 matrix MS = alblcldle

cnameset (MS, "k n R2 Adj_R2 AIC SC")
printf "%10.5g", MS

— e
s ow

In this example the model selection rules will be computed for five different models. Lines 1-5
construct the variable list for each of these. The next five lines run the model selection function
for each set of variables. Each set of results is saved in a separate matrix (a, b, c, d, e).
The cnameset function is used to give each column of the matrix a meaningful name. Then, the
printf statement prints the matrix.

The biggest problem with function proliferation is that you may inadvertently try to give a
variable the same name as one of your functions that is already in memory. If that occurs, clear
the function using function modelsel clear or rename the variable.

The first part of the output prints the results from the individual calls to modelsel.

Regressors: const, he
K =2, N =428, R2 = 0.1490, Adjusted R2 = 0.1470,
AIC = -1.6135, and SC = -1.5945

Regressors: const, he,we
K= 3, N =428, R2 = 0.1712, Adjusted R2
AIC = -1.6352, and SC = -1.6067

0.1673,

199

Regressors: const,he,we, k16
K =4, N = 428, R2 = 0.1907, Adjusted R2 = 0.1849,
AIC = -1.6543, and SC = -1.6164

Regressors: const,he,we,kl6,xtra_x5,xtra_x6
K =6, N =428, R2 = 0.1909, Adjusted R2 = 0.1813,
AIC = -1.6452, and SC = -1.5883

Regressors: const,he,kl6,xtra_x5,xtra_x6

K =5, N =428, R2 = 0.1833, Adjusted R2 = 0.1756,
AIC = -1.6405, and SC = -1.5931
The last part prints the matrix MS.

k n R2 Adj_R2 AIC SC
2 428 0.14903 0.14704 -1.6135 -1.5945
3 428 0.17117 0.16727 -1.6352 -1.6067
4 428 0.19067 0.18494 -1.6543 -1.6164
6 428 0.19091 0.18132 -1.6452 -1.5883
5 428 0.18329 0.17557 -1.6405 -1.5931

In this example all three criteria select the same model: k£ = 4 and the regressors are const, he,
we, k16. This model minimized AIC and SC and maximizes the adjusted R?.

6.4.4 RESET
Example 6.14 in POES5

The RESET test is used to assess the adequacy of your functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F-statistic.

Consider the model
Yi = B+ Paxio + Baxiz + € (6.14)
and the hypothesis
Hy: Elylzig, 23] = 1 + Powio + Bawiz
Hi: not Hy

Rejection of Hy implies that the functional form is not supported by the data. To test this, first
estimate (6.14) using least squares and save the predicted values, ;. Then square and cube § and
add them back to the model as shown below:

yi = B+ Bowiz + Bawiz + G + e
yi = P1+ Boxio + Baxis + 71@3 + 72@? +e;

200

The null hypotheses to test (against alternative, ‘not Hy’) are:

H(): ’}/120
Hy: v1=7=0

Estimate the auxiliary models using least squares and test the significance of the parameters of §?
and/or §>. This is accomplished through the following script. Note, the reset command issued
after the first regression computes the test associated with Hy: 73 = v2 = 0. It is included here so
that you can compare the ‘canned’ result with the one you compute using the two step procedure
suggested above. The two results should match.

1 ols 1_faminc x3 —--qgquiet
2 reset --quiet
3 reset —-—-quiet --squares-only

The results of the RESET for the family income equation is

RESET test for specification (squares only)
Test statistic: F = 1.738326¢,
with p-value = P (F(1,423) > 1.73833) = 0.188

RESET test for specification (squares and cubes)

Test statistic: F = 1.278259,
with p-value = P(F(2,422) > 1.27826) = 0.28

The adequacy of the functional form is not rejected at the 5% level for both tests.

6.5 Prediction

Example 6.15 in POES5

In this example we compute a prediction interval for sales at Andy’s Burger Barn. The pre-
diction is for a price of $6 and advertising expenditures of $1900. This type of problem was first
encountered in section 4.1 and refined using matrices in section 4.8. That latter approach is taken
here.

The computation is based on the in_sample_fcast_error function which computes forecast
errors for every observation in a sample. In this example, I only want to evaluate the prediction at
one specific point and to compute its standard deviation to use in a prediction interval.

In the script below, the data are loaded, advertising squared added to the data, and a regression
estimated. The coefficients are saved in a vector, b, and the variance-covariance saved in covmat.

201

Line 6 is the point at which the prediction will be computed. When price is $6 and advertising
is 1.9 ($100). Advertising squared is added as well. This requires the variables to be ordered in the
same way that they are in the variable list used in the regression (sales const price advert
sqg_advert). Line 7 computes the prediction and the quadratic form for the variance computation
is done in line 8 using the gform command. The variance is computed and the square root taken
to produce the standard error.

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sqg_advert
matrix b = S$Scoeff

matrix covmat = S$vcv

matrix x 0 = { 1, 6, 1.9, 1.972 }
matrix pred = x_0%b

matrix v = (gform(x_0,covmat))+$sigma”2

© 0 N O s W N

matrix se = sqrt (v)
t_interval (pred, se, $df, .95)

=
o

Finally, our t_interval program (see page 59) is used to compute the interval and to print the
output to the screen. This produces:

The 95% confidence interval centered at 76.974 is (67.5326, 86.4155)

These are measured in $100 and match the results in POES exactly.

Example 6.16 POES5

Table 6.4 in POE5 contains model selection criteria for housing data. The data are found
in brd.gdt. Load them, square age, and take the natural logarithm of price. A list of regressors
is created and two scalars are added. The first will make the last observation in a n; = 800
observation subsample and the second will mark the last observation in the data. These will be
used in a moment.

The model under study is of housing prices in Baton Rouge. The model is

In(price) = B1 + Prage + Bsqft + Brage® + Bssqft® + PBs(age x sqft) + e (6.15)

1 open "@workdir\data\br5.gdt"

2 square age

3 logs price

4 list xvars = const sqgft age sqg_age

202

5 scalar tl = 800
900

6 scalar t2

The model will be estimated using the first 800 observations. Based on these estimates, the 100
remaining observations, referred to as a hold-out sample, will be predicted using the estimated
model. Gretl produces a number of statistics that are useful in evaluating the quality of forecasts.
Among them is the Root-Mean-Square-Error:

1 < A
RMSE = . Z (yi — 9i)?
2 ni1+1

ng is the number of observations in the hold-sample, n; the number in the estimation sample.

Fortunately, the fcast function will compute what we need for this example.

1 smpl 1 tl

2 ols 1_price xvars

3 smpl 1 t2

4 fcast 801 900 --static --stats-only

The smpl command restricts the sample to observations 1-800. The model is estimated, the sample
restored, and the fcast command used to produce ——static forecast of observations 901-900.
The ——-stats—only option limits the output to the forecast quality measures shown below:

Forecast evaluation statistics

Mean Error -0.029709
Root Mean Squared Error 0.27136
Mean Absolute Error 0.19242
Mean Percentage Error -1.104
Mean Absolute Percentage Error 4.1927
Theil’s U 0.30121
Bias proportion, UM 0.011986
Regression proportion, UR 0.043132
Disturbance proportion, UD 0.94488

The RMSE for this model and sample is 0.27136, which matches POFES.

Table 6.4 in POE5 contains model selection criteria and RMSE for eight different models. To
facilitate the computation of RMSE multiple times, I wrote a crude RMSE program to compute
the statistics for the table.

203

1 # Function to compute RMSE for tl, t2

matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
return

function matrix rmse (series yvar, list xvars, scalar tl, scalar t2)

y = yvar # yvar into matrix
X_all = { xvars } xvars into matrix
vyl = y[1:t1l,] Estimation subset y

X = X_all[l:t2,]
X1l = X_all[l:t1,]

Sample restricted to 1-t2
Estimation subset regressors
Pxl = Xxinv (X1’'X1)*X1’'yl Yhat for entire 1:t2 sample
ehat = y[1:t2,]-Px1 Y-Yhat for entire 1:t2 sample
ehatp = ehat[tl+1:t2,] # Residuals for pred. sub-period
RMSE = sqgrt (ehatp’ehatp/ (t2-tl))# MSEP residuals

RMSE

HH HH H FH H HF

13 end function

All of the computations are in matrix form and this won’t work if your data contain missing values.
However, ours does not and this works fine for what we want it to do. The function returns a
matrix (a scalar equal to RMSE) and uses four inputs. The dependent variable for a regression, a
list of independent variables to use in the regression, and two scalars to mark the last observation
in the estimation sample and the last observation in the hold-out sample.

To confirm that it works, it is used on the preceding model:

1 scal

ar rl

= rmse(l_price, xvars, 800, 900

)
2 printf "RMSE for observations %g to %g = %.4f\n", 800, 900, rl

This produces:

RMSE for observations 800 to 900 = 0.2714

which matches the result from fcast.

To reproduce what is in the table you can try this rudimentary script.

seri
list
list
list
list
list
list
list
list

© 0w N O s W N

[
o

es age
x1l =
X2 =
X3 =
x4 =
x5 =
X6 =
X7 =
x8 =

_sqgft = agexsqgft
= const sqgft age

x1 sqg_age

x1 sqg_sqgft

x1 age_sqgft

x1 sqg_age sqg_sqgft

x1 sqg_age age_sqgft

x1 sqg_sqgft age_sqgft

x1 sqg_sqgft sg_age age_sqgft

204

11 matrix a = modelsel (l_price,xl)
12 matrix b = modelsel (1_price,x2)
13 matrix c¢ = modelsel (l_price, x3)
14 matrix d = modelsel(l_price, x4)
15 matrix e = modelsel (l_price, x5)
16 matrix f = modelsel(l_price, x6)
17 matrix g = modelsel (1_price,x7)
18 matrix h = modelsel (1_price, x8)

19

20 matrix ra = rmse(l_price,xl,tl,t2)
21 matrix rb = rmse(l_price,x2,tl,t2)
22 matrix rc = rmse(l_price,x3,tl,t2)
23 matrix rd = rmse(l_price,x4,tl,t2)
24 matrix re = rmse(l_price,x5,tl,t2)
25 matrix rf = rmse(l_price,x6,tl,t2)
26 matrix rg = rmse(l_price,x7,tl,t2)
27 matrix rh = rmse(l_price,x8,tl,t2)

28
29 matrix MS = albl|c|dle|f|glh

30 matrix RMS = ralrbl|rclrd|rel|rflrglrh

31 matrix all_crit = MSTRMS

32 cnameset (all_crit,"k n R2 Adj_R2 AIC SC RMSE")
33 printf "%$10.5g", all_crit

The resulting matrix matches Table 6.4 quite well.

k n R2 Adj_R2 AIC SC RMSE
3 900 0.6985 0.6978 -2.534 -2.518 0.2791
4 900 0.7207 0.7198 -2.609 -2.587 0.2714
4 900 0.6992 0.6982 -2.535 -2.513 0.2841
4 900 0.6996 0.6986 -2.536 -2.515 0.279
5 900 0.7208 0.7196 -2.607 -2.58 0.2754
5 900 0.721 0.7197 -2.608 -2.581 0.2712
5 900 0.7006 0.6993 -2.537 -2.51 0.284
6 900 0.7212 0.7197 -2.606 -2.574 0.2754

We could clearly improve upon this by adding the actual model variables in a row, but I'll leave
that as an exercise. Also, keep in mind that the column labeled n pertains to the estimation sample
for the model selection rules, not the RMSE calculation.

6.6 Collinearity in Rice Production

The data set riced.gdt is included in package of datasets that are distributed with this manual.
In most cases it is a good idea to print summary statistics of any new dataset that you work
with. This serves several purposes. First, if there is some problem with the dataset, the summary

205

statistics may give you some indication. Is the sample size as expected? Are the means, minimums
and maximums reasonable? If not, you’ll need to do some investigative work. The other reason is
important as well. By looking at the summary statistics you’ll gain an idea of how the variables
have been scaled. This is vitally important when it comes to making economic sense out of the
results. Do the magnitudes of the coefficients make sense? It also puts you on the lookout for
discrete variables, which also require some care in interpreting.

The summary command is used to get summary statistics. These include mean, minimum,
maximum, standard deviation, the coefficient of variation, skewness and excess kurtosis. The corr
command computes the simple correlations among your variables. These can be helpful in gaining
an initial understanding of whether variables are highly collinear or not. Other measures are more
useful, but it never hurts to look at the correlations. Either of these commands can be used with
a variable list afterwards to limit the list of variables summarized of correlated.

Consider the rice production example from POFES. This is log-log model of production (tonnes
of rice) that is a depends on area under cultivation (hectares), labor input (person-days), and

fertilizer (kilograms).

In(prod) = 1 + B2 In(area) + B3 In(labor) + B4 In(fert) + e

The script is

open "@workdir\datalriceb5.gdt"
summary —--simple

corr area fert labor prod

logs area fert labor prod

corr 1 area 1 _fert 1_labor 1_prod

[N S

The summary statistics in levels are:

Mean Median S.D. Min Max
firm 22.50 22.50 12.77 1.000 44.00
area 2.120 1.750 1.420 0.2000 5.500
fert 176.4 128.7 154.3 10.00 595.7
labor 107.4 90.50 71.12 11.00 381.0
prod 6.169 4.995 4.849 0.6000 21.07
year 1994 1994 0.5029 1993 1994

The correlation matrix of the levels is:

Correlation coefficients, using the observations 1:1-44:2
5% critical value (two-tailed) = 0.2096 for n = 88

206

area fert labor prod year
1.0000 0.8531 0.9093 0.8347 —0.0056 area
1.0000 0.8656 0.8584 0.0461 fert
1.0000 0.8865 —0.0002 labor
1.0000 —0.0439 prod
1.0000 year

The variables are quite highly correlated in the sample. For instance the correlation between
area and labor input is 0.9093. Large farms use more labor. What a surprise!

Taking logarithms won’t change much. The correlations among the log variables are:

Correlation coefficients, using the observations 1:1-44:2
5% critical value (two-tailed) = 0.2096 for n = 88

l.area 1fert 1labor 1.prod year
1.0000 0.8387 0.9320 0.8856 —0.0048 1l area
1.0000 0.8790 0.8981 0.0343 1fert
1.0000 0.9130 —0.0409 llabor
1.0000 —0.0784 1_prod
1.0000 year

The correlation between In(area) and In(labor) actually increases slightly to 0.932.

The production model is estimated for 1994.

1 smpl (year==1994) —--restrict
2 m_1994 <- ols 1_prod const 1_area 1_labor 1_fert
3 omit 1_area 1_labor —--test-only

The regression result is:

m_1994: OLS, using observations 1-44
Dependent variable: 1_prod

Coefficient Std. Error t-ratio p-value

const —1.94729 0.738487 —-2.637 0.0119
l_area 0.210607 0.182074 1.157 0.2543
1 labor 0.377584 0.255058 1.480 0.1466
1 fert 0.343335 0.127998 2.682 0.0106

207

Mean dependent var 1.457871 S.D. dependent var 0.852785

Sum squared resid 3.924527 S.E. of regression 0.313230
R? 0.874501 Adjusted R? 0.865089
F(3,40) 92.90939 P-value(F) 4.53e-18
Log-likelihood —9.260529 Akaike criterion 26.52106
Schwarz criterion 33.65782 Hannan—Quinn 29.16771

The test of the individual significance of the coefficients can be read from the table of regression
results. Only the coefficient of 1_fert is significant at 5%. The overall F-statistic is 92.9 and its
p-value is well below 5%. The R? = 0.875, which seems fairly large. The joint significance of S35
and f3 is tested using omit. The coefficients are jointly different from zero, since the p-value for
this test is 0.0021 < 0.05.

Null hypothesis: the regression parameters are zero for the variables
1l area, 1_labor
Test statistic: F(2, 40) = 7.1918, p-value 0.00214705

Finally, collinearity is examined using the vi f function after the regression. vif stands for variance
inflation factor and it is used as a collinearity diagnostic by many programs, including gretl. The
vif is closely related to the recommendation provided by (Hill et al., 2018, p. 291) who suggest
using the R? from auxiliary regressions to determine the extent to which each explanatory variable
can be explained as linear functions of the others. They regress x; on all of the other independent
variables and compare the RJQ- from the auxiliary regression to 10. If the RJQ- exceeds 10, then there
is evidence of a collinearity problem.

The vif; reports the same information, but in a less straightforward way. The vif associated

with the j*" regressor is computed
1

2
1-R;

vif; = (6.16)
which is, as you can see, simply a function of the R? from the j** auxiliary regression. Notice that
when R? > .80, the vif; > 10. Thus, the rule-of-thumb for the two rules is actually the same. A
vif; greater than 10 is equivalent to an R? greater than .8 from the auxiliary regression. The vifs
for the log-log rice production model estimated for 1994 are:

Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

1_area 9.149
1 labor 17.734
1_fert 7.684
VIF(j) = 1/(1 - R(J)"2), where R(Jj) is the multiple correlation

coefficient between variable j and the other independent variables

208

Once again, the gretl output is very informative. It gives you the threshold for high collinearity
(vif;) > 10) and the relationship between vif; and R?. Clearly, these data are highly collinear. Two
variance inflation factors above the threshold and the one associated with wgt is fairly large as
well.

The variance inflation factors can be produced from the dialogs as well. Estimate your model
then, in the model window, select Tests>Collinearity and the results will appear in gretl’s
output.

Interval estimates for each of the slopes can be obtained using the t_interval function after
estimation. However, since the model results were sent to the session window, it is easier to use the
GUI. Navigate to the session window and double-click on the m_1994 icon to bring up its models
window. From its menu bar choose Analysis>Confidence intervals for coefficients to reveal

£t (40, 0.025) = 2.021

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const -1.94729 -3.43982 -0.454749
1_area 0.210607 -0.157378 0.578592
1_labor 0.377584 -0.137907 0.893075
1_fert 0.343335 0.0846404 0.602029

One suggestion for mitigating the effects of collinearity is to impose restrictions on the param-
eters of the model. Suppose one knows that returns to rice production are constant. This implies
that B2 + B3 + 84 = 1. Using this as a restriction

1 restrict m_1994 —--full
2 b[2]+b[3]+b[4]=1
3 end restrict

This particular script includes two new options for restrict. The first allows the restrict state-
ment to be applied to a model that you have stored. In this case it is the model m_1994 that was
saved to a session as an icon. The second is the ——full option. This option when used in most
contexts replaces the current contents of most accessors with the ones from the restricted model.
So in this example we want to form confidence intervals for the restricted coefficients, we would
need the restricted least squares results. Those become available from the accessors if the ——full
option is used with restrict. leads to:

Restriction:
b[l_area] + b[l_labor] + b[l_fert] =1
Test statistic: F(1, 40) = 1.04387, with p-value = 0.313062

209

Restricted estimates:

coefficient std. error t-ratio p-value
const -2.16830 0.706472 -3.069 0.0038 xxx
1_area 0.226228 0.181528 1.246 0.2197
1_labor 0.483419 0.233200 2.073 0.0445 xx
1_fert 0.290353 0.117086 2.480 0.0173 *=

The restriction as a hypothesis is not rejected at 5%. Its p-value is 0.31. From the restricted model,
1_labor is now statistically significant at 5%.

To find the confidence intervals use the t_interval program:

1 t_interval ($Scoeff(l_area), $stderr(l_area), $df, .95)
2 t_interval (Scoeff (1_labor), $stderr (1l_labor), $df, .95)
3 t_interval (Scoeff (1_fert), $stderr(l_fert), $df, .95)

which produces:

The 95% confidence interval centered at 0.226 is (-0.1404, 0.5928)
The 95% confidence interval centered at 0.483 is (0.0125, 0.9544)
The 95% confidence interval centered at 0.290 is (0.0539, 0.5268)

Finally, we’ll repeat the estimation of the rice production model using the full sample, computing
vifs, and computing 95% confidence intervals.

1 smpl full

2 m_full <- ols 1_prod const 1l_area 1_labor 1_fert

3 vif

4 t_interval (Scoeff (l_area), $Sstderr(l_area), $df, .95)

5 t_interval ($coeff (1_labor), $stderr(l_labor), $df,.95)
6 t_interval (Scoeff (1_fert), $stderr(l_fert), $df, .95)

The results are:

m_full: Pooled OLS, using 88 observations
Included 44 cross-sectional units

210

Time-series length = 2
Dependent variable: 1_prod

Coefficient Std. Error t-ratio p-value

const —1.86940 0.456543 —4.095 0.0001
l_area 0.210789 0.108286 1.947 0.0549
1 .labor 0.399672 0.130650 3.059 0.0030
1_fert 0.319456 0.0635063 5.030 0.0000

Mean dependent var 1.520993 S.D. dependent var 0.809932

Sum squared resid 6.898693 S.E. of regression 0.286579
R? 0.879121 Adjusted R? 0.874804
F(3,84) 203.6369 P-value(F) 1.99e-38
Log-likelihood —12.84238 Akaike criterion 33.68476
Schwarz criterion 43.59411 Hannan—Quinn 37.67699

The confidence intervals can either be obtained using our function or from the GUI in the models
window. Recall that this is available even using a script if you assign the output to a name (as we
have here with m_full).

t (84, 0.025) = 1.989
VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const -1.86940 -2.77728 -0.961510
1_area 0.210789 -0.00454921 0.426127
1_labor 0.399672 0.139861 0.659483
1_fert 0.319456 0.193166 0.445745

The vif output is

Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem

1 _area 7.705
1_labor 10.051
1_fert 4.455
VIF(J) = 1/(1 - R(j)"2), where R(j) is the multiple correlation

coefficient between variable j and the other independent variables

The largest vif is now down to around 10, which is a bit better that in the unrestricted model
(where it was 17.7).

211

6.7 Influential Observations

Example 6.18 in POES5

In section 4.5 we developed programs for computing diagnostics that can be used to detect the
influence of an observation on the regression output. In this example, we use those to analyze the
housing model estimated using the brj.gdt data.

In(price) = B1 + Baage + B3sqft + Brage® + Bssqft® + Bs(age x price) + e

The script to estimate the model and to collect the desired statistics is:

open "@workdir\datalbr5.gdt"
genr index

logs price

square age sqft

[

list xvars = const sgft age sg_age
ols 1_price xvars
leverage —--save —-—-quiet

© 0w N O s W N

series uhat = S$Suhat

11 series lev_t = h_t(xvars)

12 series sig_t = delete_1 variance(l_price, xvars)
13 series stu_res = uhat/sqrt (sig_tx*(l-lev_t))

14 series DFFits=stu_res*sqrt (lev_t/(1l-lev_t))

15

-
o

16 list x1 = xvars

17 scalar k = nelem(xvars)

18 matrix results = zeros(k,1)

19 loop i=1l..k —-—-quiet

20 list y1 = x1[1]

21 list y2 = x1[2:k]

22 ols yl y2

23 series dfbS$i=stu_resx*$uhat/sqrt (Sess* (1-lev_t))
24 list x1 = y2 vyl

25 endloop

26

27 store influential.gdt index sig_t lev_t stu_res DFFits)\
28 dfbl dfb2 dfb3 dfb4

29 series ab_dfb2 = abs (dfb2)

30 series ab_stu_res = abs(stu_res)

31 series ab_DFFits = abs (DFFits)

There is not much new here. In lines 10-14 we collect residuals, use our user written programs from
section 4.5 h_t to compute leverage and sig_t to compute the delete-one variances. Studentized

212

residuals and DFFits follow. The loop in lines 18-25 collect the DFBETAS for all of the regressors.
Everything is stored to an external datset infuential. gdt that will be located in the working directory.

Lines 29-31 create series that contain the absolute values of DFBETA(2), studentized residuals,
and DFFits. We want to find the observations that are most influential and these statistics can be
large negative or positive numbers.

Then, to reduce the amount of output to a manageable level we sort by each series and print
only the largest five values of the statistic, along with its original observation number.

dataset sortby ab_dfb2
smpl $nobs-5 $nobs
print index dfb2 --byobs

smpl full

dataset sortby lev_t

smpl $nobs-5 $nobs

print index lev_t --byobs

© 0 N9 3 s W N

smpl full

dataset sortby ab_stu_res
smpl $nobs-5 $nobs

print index stu_res —--byobs

e e e
[S R R e)

smpl full

dataset sortby ab_DFFits
smpl $nobs-5 $nobs

print index DFFits —-byobs

= e
® N o

The sorting is done based on the full sample using the dataset sortby command. Then the
sample is reduced to the last five in the data using smpl S$nobs-5 $nobs, and printed using the
—-—byobs option in line 8. Here is some output for the DFBETA for the sqrt coefficient:

index dfb2
895 836 -0.2055396
896 472 -0.2403838
897 356 -0.2441436
898 859 0.2570806
899 787 -0.2708825
900 411 -0.6577355

The most influential observation on the second coefficient is 411 followed by observation 787.

For leverage, hy

213

index lev_t

895 420 0.04012
896 148 0.06205
897 392 0.06232
898 605 0.06244
899 150 0.06369
900 497 0.06395

Observation 797 has the highest leverage.

For studentized residuals we have

index stu_res
895 283 -3.853597
896 51 -3.885458
897 503 -4.258513
898 524 -4.313883
899 898 -4.744688
900 411 -4.980408

which shows observation 411 being influential by this measure.

Finally, DFFits

index DFFits
895 160 0.4602006
896 831 -0.4619299
897 94 -0.4685957
898 150 0.5114895
899 524 -0.5600395
900 411 -0.9036011

Predictions are influenced most by observation 411 with observation 524 a close runner-up.

6.8 Nonlinear Least Squares

Example 6.19

Models that are nonlinear in the parameters and an additive error term are candidates for
nonlinear least squares estimation. In this example we estimate a one parameter model using
nonlinear least squares.

214

The model is
yp = Bry + /82$t2 + ey

Since the parameter is squared and the error is additive, this model is a candidate for nonlinear
least squares estimation. The minimum of the sum of squared errors function cannot be solved
analytically for 8 in terms of the data. So, a numerical solution to the least squares normal
equations must be found.

The biggest reason is that nonlinear least squares requires more computational power than
linear estimation, though this is not much of a constraint these days. Also, gretl requires an extra
step on your part. You have to type in an equation that contains parameters and variables for gretl
to estimate. This is the way one works in EViews and other software by default, so the relative
burden here is low.

Nonlinear least squares (and other nonlinear estimators) use numerical methods rather than
analytical ones to minimize the sum of squared errors objective function. The routines that do this
iterative until the user is satisfied that no more improvements in the sum-of-squares function can
be had.

The routines require you to provide a good first guess as to the value of the parameters and
it evaluates the sum of squares function at this guess. The program looks at the slope of sum
of squares function at the guess, points you in a direction that leads closer to smaller values of
the objective function, and computes a step in the parameter space that takes you toward the
minimum (further down the hill). If an improvement in the sum of squared errors function is
found, the new parameter values are used as the basis for another step. Iterations continue until
no further significant reduction in the sum of squared errors function can be found.

The routine in gretl that does this is nls. To use nls the user must specify a regression
function. The function will contain variables as named in the dataset and a set of user named
parameters. The parameters must be “declared” and given initial values. Optionally, one may
supply analytical derivatives of the regression function with respect to each of the parameters that
determine the direction of the next step. If derivatives are not given, you must give a list of the
parameters to be estimated (separated by spaces or commas), preceded by the keyword params.
The tolerance (criterion for terminating the iterative estimation procedure) can be adjusted using
the set command. The syntax for specifying the function to be estimated is the same as for the
genr command.

For the single parameter model we have:

1 open "@workdir\data\nlls.gdt"
2 scalar b=1

3 nls y=b*x1+b"2%x2

4 params b

5 end nls

215

The dataset is nlls.gdt and the starting value for the parameter b is set to 1. The third line is the
model, and the params statement b follows (since we are not supplying analytical derivatives of
the function in line 3). Run the routine to obtain:

Using numerical derivatives
Tolerance = 1.81899e-012
Convergence achieved after 11 iterations

Model 1: NLS, using observations 1-20
y = bxx1+b"2%x2

estimate std. error t-ratio p-value

b 1.16121 0.130666 8.887 3.40e-08 *x*x*

Mean dependent var 1.184900 S.D. dependent var 1.047650

Sum squared resid 16.30797 S.E. of regression 0.926452
Uncentered R-squared 0.217987 Centered R-squared -0.000618
Log-likelihood 26.33799 Akaike criterion 54.67597
Schwarz criterion 55.67171 Hannan-Quinn 54.87035
GNR: R-squared = 0, max |t]|] = 1.45037e-009

Convergence seems to be reasonably complete

The nonlinear least squares estimate of § is 1.612. The estimated standard error is 0.131. Notice
other common regression statistics are reported as well (though a few a missing). Notice that the
centered R? is negative. Obviously this statistic is not bounded between 1 and 0 in a nonlinear
model.

Example 6.20

In this example another simple nonlinear model is estimated. This one is a logistic growth curve
and is estimated using data on the share of total U.S. crude steel production that is produced by
electric arc furnaces. The output is a function of time, t.

B a
1 +exp(—p —dt)

Yt + e
This is interesting. There is one variable, t=time period, and three parameters («, 3, and J).

The script is:

1 open "@workdir\datalsteel.gdt"
2 # Starting Values
3 scalar alpha = 1 # Starting Values

216

© 0 N D O

scalar delta = .1
scalar beta = -1

nls eaf = alpha/ (1 + exp(-beta-deltaxt))

params alpha delta beta
end nls

Regression function

Parameters: remember the order

The starting values are given in lines 3-5. Here you have to use your judgement (or in my case,
luck). The logistic growth curve is in line 7, where eaf is the dependent variable.

Run the routine to obtain:

Using numerical derivatives
Tolerance = 1.81899e-012

Convergence achieved after 29 iterations

Model 1: NLS, using observations 1970-2015 (T = 406)

eaf = alpha/ (1 + exp(-beta-deltaxt))

estimate std. error t-ratio p-value

alpha 0.814375 0.0510501 15.95 1.14e-019 *x*x*

delta 0.0572226 0.00430389 13.30 7.85e=017 **%*

beta 1.37767 0.0563557 24.45 7.50e-027 **%*
Mean dependent var 0.401087 S.D. dependent var 0.146314
Sum squared resid 0.017272 S.E. of regression 0.020042
Uncentered R-squared 0.982070 Centered R-squared -0.000128
Log-likelihood 116.1364 Akaike criterion 226.2728
Schwarz criterion 220.7868 Hannan-Quinn 224.2177
rho 0.794149 Durbin-Watson 0.392075
GNR: R-squared = 2.22045e-016, max |t| = 9.54129e-008

Convergence seems to be reasonably complete

It took 29 iterations to converge and gretl appears to be satisfied that convergence to a (local)
minimum has been achieved.

An inflection point occurs in this model at —/3/4. This can be computed using accessors. A
parameter can no longer be referenced by the variable that accompanies it. There is no longer a
one-to-one correspondence. Instead, the accessors can be used on the parameter name that you
have designated. Therefore to compute the inflection and print it to the screen we use:

10
11

printf "\n Inflection Point =

5.3f\n ", \

—-Scoeff (beta) /Scoeff (delta) # Function

217

which yields:

Inflection Point = 24.076

Finally, I'll add a little lagniappe. Since the model is estimated we might as well go ahead and
compute a confidence interval for the inflection point. It is a nonlinear function of the estimates
and the Delta method can be used to compute its variance.

-

ook N

matrix covmat = $vcv # Save the covariance
matrix d={0; Scoeff (beta)/ (Scoeff (delta) "2);-1/Scoeff(delta)} # Derivative
scalar se = sqrt (d’ xcovmat=xd) # Std errors

t_interval (-Scoeff (beta) /$coeff (delta), se, $df, .95) # t_interval
printf "\nThe Delta estimated standard error is %.3f \n", se

The accessor $vcv is used to save the variance-covariance matrix computed by nls. The second
line consists of the derivatives of the function with respect to «, 3, and §. Line 3 is the standard
error of the inflection point, i.e., the square root of the quadratic form. All of this is combined and
used in the t_interval function in line 4. For good measure, I print out the estimated standard

error.

6.9

Script

6.9.1 Functions

© 0w N s W N

-
o

12
13
14
15
16
17

set verbose off
function estimates confidence intervals based on the t-distribution
function void t_interval (scalar b, scalar se, scalar df, scalar p)
scalar alpha = (1-p)
scalar 1lb = b - critical (t,df,alpha/2) *se
scalar ub = b + critical (t,df,alpha/2) *xse
printf "\nThe %2g%% confidence interval centered at $%$.3f is\
(%$.4f, %.4f)\n", p*100, b, 1lb, ub
end function

function computes prediction standard errors
function series in_sample_fcast_error (series y, list xvars)
ols y xvars
scalar sig = $sigma”2
matrix X = { xvars }
matrix f_e = sig*I(Snobs)+sig*xXxinv (X’ X) «X’
series se = sqgrt(diag(f_e))

218

18 return se

19 end function

20

21 # function to compute diagonals of hat matrix
22 function series h_t (list xvars)

23 matrix X = { xvars }

24 matrix Px = X*inv (X’X) *X’
25 matrix h_t = diag(Px)

26 series hats = h_t

27 return hats

28 end function

29

30 # delete-one variance function

31 function series delete_1_variance (series y, list xvars)

32 matrix sig = zeros($nobs, 1)

33 loop i=1..$nobs —-—-quiet

34 matrix e_t = zeros($nobs,1)
35 matrix e_t[i,1l]=1

36 series et = e_t

37 ols y xvars et —-—quiet

38 matrix sig[i,l]=$sigma”2

39 endloop

40 series sig_t = sig

11 return sig_t

42 end function

44 # model selection rules and a function
45 function matrix modelsel (series y, list xvars)

46 ols y xvars —--quiet

a7 scalar sse = S$ess

48 scalar N = $nobs

49 scalar k = nelem(xvars)

50 scalar aic = 1ln(sse/N)+2xk/N

51 scalar bic = 1ln(sse/N)+k*1ln(N) /N

52 scalar rbar2 = 1-((1-Srsq)* (N-1)/$df)

53 matrix A = { k, N, S$rsq, rbar2, aic, bic}
54 printf "\nRegressors: %s\n",varname (xvars)
55 printf "k = %d, n = %d, R2 = %.4f, Adjusted R2 = %.4f, AIC = %.4f,\
56 and SC = %.4f\n", k, N, $rsq, rbar2, aic, bic
57 return A

583 end function

59

60 # Function to compute RMSE for tl, t2

61 function matrix rmse (series yvar, list xvars, scalar tl, scalar t2)

62 matrix y = yvar # Put yvar into matrix

63 matrix X_all = { xvars } # Put xvars into matrix

64 matrix yl = y[1l:t1,] # Estimation subset y

65 matrix X = X_all[l:t2,] # Sample restricted to 1-t2

66 matrix X1 = X_all[l:t1l,] # Estimation subset regressors
67 matrix Pxl = X+xinv (X1’X1l)*X1’'yl # Yhat for entire 1:t2 sample
68 matrix ehat = y[1:t2,]-Px1 # Y-Yhat for entire 1:t2 sample

219

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107

109
110
111
112
113
114
115
116
117
118
119

matrix ehatp = ehat[tl+1:t2,] # Residuals for the prediction sub-period

matrix RMSE = sqrt (ehatp’ehatp/ (t2-tl))# Mean of
return RMSE
end function

f-test

Example 6.1

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sqg_advert
scalar sseu = $ess

scalar unrest_df = $df

ols sales const price

scalar sser = S$ess

scalar Fstat=((sser-sseu)/2)/ (sseu/ (unrest_df))
pvalue F 2 unrest_df Fstat

Example 6.2

f-test using omit

ols sales const price advert sqg_advert
omit advert sqg_advert —--test-only

f-test using restrict

set echo off

set messages off

m2 <- ols sales const price advert sqg_advert

restrict —--quiet
b[3]1=0
b[4]1=0

end restrict

Example 6.3

overall f

set echo off

set messages off

open "@workdir\datalandy.gdt"

square advert

ols sales const price advert sg_advert

restrict —--quiet
b[2] =0
b[3] =0
b[4] = 0

end restrict

ols sales const price advert sg_advert
scalar sseu = $ess

scalar unrest_df = $df

ols sales const

scalar sser = S$ess

scalar rest_df = $df

220

squared prediction residuals

120

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167
168
169
170

scalar J = rest_df - unrest_df
scalar Fstat=((sser—-sseu)/J)/ (sseu/ (unrest_df))
pvalue F J unrest_df Fstat

Using the Wald option with omit
open "@workdir\datalandy.gdt"
square advert

list xvars = price advert sqg_advert
ols sales const xvars —--quiet

omit xvars —--wald

omit xvars

Example 6.4

t-test

ols sales const price advert sqg_advert

omit price ——-test-only

scalar t_2 = (Scoeff (price)/S$stderr (price)) "2
scalar F_test = Stest

print t_2 F_test

Example 6.5
optimal advertising
open "@workdir\datalandy.gdt"
square advert
ols sales const price advert sqg_advert
scalar Ao =(1-S$Scoeff (advert))/ (2x$Scoeff (sq_advert))
printf "\nThe optimal level of advertising is $%.2f\n", Ao%1000
test of optimal advertising
restrict —--quiet
bladvert]+3.8+b[sqg_advert]=1
end restrict

Example 6.6
One-sided t-test

ols sales const price advert sqg_advert —--vcv

scalar r = S$coeff (advert)+3.8x$coeff (sg_advert)-1

scalar v = $vev([3,3]1+((3.8)"2)*Svcv[4,4]1+2x(3.8)*Svev[3,4]
scalar tratio = r/sqgrt(v)

scalar crit = critical (t, $df, .05)

scalar p = pvalue(t, $df,tratio)

printf "\n Ho: b2+3.8b3=1 vs Ha: b2+3.8b3 > 1 \n \
the t-ratio is = %.3f \n \

the critical value is = %.3f \n \

and the p-value = %.3f\n", tratio, crit, p

Example 6.7
joint test
ols sales const price advert sqg_advert
restrict —--quiet
b[3]1+3.8xb[4]=1
b[1]+6xb[2]+1.9xb[3]1+3.61xb[4]1=80

221

171

173
174
175
176
177
178
179

181
182
183
184

186
187
188
189

191
192
193
194

196
197
198
199

201
202
203
204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

end restrict

Examples 6.2 and 6.5
ols sales const price
omit advert sqg_advert
scalar F_2_nk = Stest
omit advert sqg_advert
scalar Chi_2 = $test
pvalue F 2 $df F_2_nk
pvalue C 2 Chi_2

restrict —--quiet
b[3]1+3.8+b[4]=1

end restrict

scalar F_1_nk = S$test

scalar Chi_1 = S$test

pvalue F 1 $df F_1_nk

pvalue C 1 Chi_1

Example 6.8

Nonlinear Hypothesis

function matrix restr
matrix v = (1-b[3

return v

end function

ols sales const price

restrict —--—-quiet
rfunc = restr

end restrict

Example 6.9
restricted estimatio
open "@workdir\data\be

logs g pb pl pr i

revisited

advert sqg_advert
-—test-only

-—test-only —--chi-square

(const matrix b)
1)/ (2«b[4]1)-1.9

advert sqg_advert

n
er.gdt"

ols 1_qg const 1_pb 1 pl 1 _pr 1_i —--quiet

restrict
b2+b3+b4+b5=0
end restrict

restrict —--quiet
b[2]+b[3]+b[4]1+b[5
end restrict

Example 6.10
model specification

1=0

—— relevant and irrelevant vars

open "@workdir\dataledu_inc.gdt"

logs faminc

ml <- ols 1_faminc const he we

modeltab add
m2 <- omit we

222

222 modeltab add

223 modeltab show

224

225 corr 1_faminc he we kl6 xtra_x5 xtra_x6 —--plot=corr.tex
226

227 # Example 6.11

228 o0ls 1_faminc const he we klo6

229

230 # Example 6.12

231 list all_x = const he we k16 xtra_ x5 xtra_x6
232 ols 1_faminc all_x

233 matrix a = modelsel (1_faminc,all_x)

234

235 list x1 = const he

236 list x2 = const he we

237 list x3 = const he we kl6

238 list x4 = const he we kl6 xtra_ x5 xtra_x6
239 list x5 = const he kl6 xtra_ x5 xtra_x6
240 matrix a = modelsel (1_faminc,x1)

241 matrix b = modelsel (1_faminc, x2)

242 matrix ¢ = modelsel (1_faminc, x3)

243 matrix d = modelsel (1_faminc, x4)

244 matrix e = modelsel (1_faminc, x5)

245

246 matrix MS = albl|c|dle

247 cnameset (MS, "k n R2 Adj_R2 AIC SC")
248 printf "%$10.5g", MS

249

250 # Table 6.1 in POES

251 modeltab free

252 ml <- ols 1_faminc x2 —--quiet
253 modeltab add
254 m2 <— ols 1_faminc x1 —--quiet
255 modeltab add
256 m3 <— ols 1_faminc x3 —-—-quiet
257 modeltab add
258 m4 <—- ols 1_faminc x4 —--quiet
250 modeltab add
260 m5 <- ols 1_faminc x5 —--quiet

261 modeltab add

262 modeltab show

263 modeltab —--output=family_inc_modeltable.tex
264

265 # Example 6.13

266 # Control for ability in wage equation

267 open "@workdir\datal\koop_tobias_87.gdt"

268 logs wage

269 square exper

270 ols 1_wage const educ exper sg_exper score
271 omit score

272

223

273 # Example 6.14

274 # reset test

275 open "@workdir\dataledu_inc.gdt"
276 logs faminc

277

278 ols 1_faminc const he we klo6

279 reset —--quiet —--squares-only
280 reset —-—-quiet

281

282 ols 1_faminc he we kl6 —-—-quiet

283 reset

284

285 /+———POE5 Example 6.15-——x/

286 # Forecasting SALES for the Burger Barn
287 open "Q@workdir\datalandy.gdt"

288 square advert

289 0ls sales const price advert sqg_advert

200 matrix b = Scoeff

201 matrix covmat = $vcv

202 matrix x 0 = { 1, 6, 1.9, 1.972 }

203 matrix pred = x_0+b

204 matrix v = (gform(x_0,covmat))+S$Ssigma”2
205 matrix se = sqgrt (v)

206 t_interval (pred, se, $df, .95)

208 /*———POE5 Example 6.16———x/

209 # Predicting House Prices

300 open "Q@workdir\datal\br5.gdt"

301 set echo off

302 set messages off

303 square age sqgft

304 logs price

305 list xvars = const sqft age sqg_age

306 scalar tl = 800

307 scalar t2 = 900

308

300 smpl 1 tl

310 ols 1_price xvars

311 smpl 1 t2

312 fcast 801 900 --static --stats-only

313

314 scalar rl = rmse(l_price, xvars, 800, 900)
315 matrix ml = modelsel (1_price,xvars)

316 printf "RMSE for observations %g to %g = %.4f\n", 800, 900, rl
317

318 series age_sqgft = agexsqgft
319 list x1 = const sqgft age
320 list x2 = x1 sqg_age

321 list x3 = x1 sqg_sgft
322 list x4 = x1 age_sqgft
323 list x5 = x1 sg_age sqg_sqgft

224

324 list x6 = x1 sg_age age_sqgft
325 1list x7 = x1 sqg_sqgft age_sqgft
326 list x8 = x1 sqg_sqgft sg_age age_sqgft

327 matrix a = modelsel (1l_price,x1)

328 matrix b = modelsel (l_price,x2)

329 matrix ¢ = modelsel (l_price,x3)

330 matrix d = modelsel (1_price,x4)

331 matrix e = modelsel (1_price,x5)

332 matrix f = modelsel (l_price,x6)

333 matrix g = modelsel (l_price,x7)

334 matrix h = modelsel (l_price,x8)

335

336 matrix ra = rmse(l_price,x1,tl,t2)
337 matrix rb = rmse(l_price,x2,tl,t2)
338 matrix rc = rmse(l_price,x3,tl,t2)
339 matrix rd = rmse(l_price,x4,tl,t2)
340 matrix re = rmse(l_price,x5,tl,t2)
341 matrix rf = rmse(l_price,x6,tl,t2)
342 matrix rg = rmse(l_price,x7,tl,t2)
343 matrix rh = rmse(l_price,x8,tl,t2)

344

345 matrix MS alblcldlelflglh

346 matrix RMS = ral|rbl|rc|rd|re|lrflrglrh

347 matrix all_crit = MSTRMS

348 cnameset (all_crit,"k n R2 Adj_R2 AIC SC RMSE")
349 printf "$10.5g", all_crit

350

351 /+———POE5 Example 6.17-——x/

352 # Collinearity in a Rice Production Function
353 open "@workdir\datalrice5.gdt"

354 summary ——-simple

355 corr area fert labor prod year

356 1logs area fert labor prod

357 corr 1_area 1_fert 1_labor 1_prod year

358

359 smpl (year==1994) --restrict

360 m_1994 <- ols 1_prod const 1_area 1_labor 1_fert
361 omit 1_area 1_labor —--test-only

362 vif

363

364 restrict m_1994 —-full

365 b[2]1+b[3]+b[4]=1

366 end restrict

367

368 t_interval (Scoeff (1_area), $Sstderr(l_area), $Sdf, .95)
3690 t_interval (Scoeff (1_labor), $stderr (1_labor), $df, .95)
370 t_interval (Scoeff (1_fert), $stderr(l_fert), $Sdf, .95)
371

372 smpl full

373 m_full <- ols 1_prod const 1_area 1_labor 1_fert
374 vif

225

375 t_interval ($Scoeff (1_area), $Sstderr(l_area), $df, .95)

376 t_interval ($coeff (1_labor), $stderr (l_labor), $df, .95)
377 t_interval (Scoeff (1_fert), $Sstderr (1_fert), $Sdf, .95)

378 /+*———POE5 Example 6.18-——%/

379 # Influential Observations in the House Price Equation
380 open "@workdir\datalbr5.gdt"

381 genr index

382 logs price

383 square age sqgft

384

385 list xvars = const sqgft age sqg_age

386 0ols 1_price xvars

387 leverage —-—-save ——-quiet

388

389 series uhat = $uhat

390 series lev_t = h_t (xvars)

391 series sig_t = delete_1_variance (l_price, xvars)
392 series stu_res = uhat/sqrt(sig_tx(l-lev_t))

393 series DFFits=stu_res*sqrt (lev_t/(l-lev_t))
394

395 list x1 = xvars

396 scalar k = nelem(xvars)

397 matrix results = zeros(k,1)

398 loop i=1..k —-—-quiet

399 list y1 = x1[1]

400 list y2 = x1[2:k]

401 ols yl y2

402 series dfb$i=stu_res*Suhat/sqgrt (Sess* (1l-lev_t))
403 list x1 = y2 yl

404 endloop

405

406 store influential.gdt index sig_t lev_t stu_res DFFits dfbl dfb2 dfb3 dfb4
407 sSeries ab_dfb2=abs (dfb2)

408 series ab_stu_res = abs(stu_res)
409 series ab_DFFits = abs (DFFits)
410

411 dataset sortby ab_dfb2

412 smpl $nobs-5 $nobs

413 print index dfb2 --byobs

414

415 smpl full

416 dataset sortby lev_t

417 smpl S$nobs-5 S$nobs

418 print index lev_t --byobs

419

420 smpl full

421 dataset sortby ab_stu_res

422 smpl S$nobs-5 S$nobs

423 print index stu_res —--byobs
424

425 smpl full

226

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

dataset sortby ab_DFFits
smpl $nobs-5 $nobs
print index DFFits —--byobs

/*———POE5 Example 6.19-——x/
Nonlinear Least Squares Estimates for Simple Model
open "@workdir\datal\nlls.gdt"
scalar b=1
nls y=b*xl+b"2xx2
params b
end nls

/*———POE5 Example 6.20——-—x/

A Logistic Growth Curve

open "@workdir\datal\steel.gdt"
Starting Values

scalar alpha =1 # Starting Values
scalar delta = .1
scalar beta = -1
nls eaf = alpha/(l + exp(-beta-deltaxt)) # Regression function
params alpha delta beta # Parameters: remember the order
end nls
matrix covmat = $vcv # Save the covariance

printf "\nInflection Point = %.3f\n ", —-$coeff (beta)/Scoeff (delta)

matrix d={0; Scoeff (beta)/ (Scoeff (delta) "2);-1/Scoeff(delta)} # Derivative
scalar se = sqrt (d’ xcovmatxd) # Std errors
t_interval (-Scoeff (beta)/Scoeff (delta), se, $df, .95) # confidence interval
printf "\nThe Delta estimated standard error is %.3f \n", se

227

Chapter 7

Using Indicator Variables

In this chapter we will explore the use of indicator variables in regression analysis. The dis-
cussion will include how to create them, estimate models using them, and how to interpret results
that include them in the model. Several applications will be discussed as well. These include using
indicators to create interactions, regional indicators, and to perform Chow tests of regression equiv-
alence across different categories. Finally, their use in linear probability estimation is discussed and
their use in evaluating treatment effects and the differences-in-difference estimators that are used
in their estimation.

7.1 Indicator Variables

Indicator variables allow us to construct models in which some or all of the parameters of a
model can change for subsets of the sample. As discussed in Chapter 2, an indicator variable
indicates whether a certain condition is met. If it does the variable is equal to 1 and if not, it is 0.
They are often referred to as dummy variables, and gretl uses this term in a utility that is used
to create indicator variables.

Example 7.1 in POE5

The example used in this section is again based on the utown.gdt real estate data. First we will
open the dataset and examine the data.

1 open "@workdir\data\utown.gdt"
2 summary -—--simple

3 smpl 1 6

4

print —--byobs

228

5 smpl full
6 smpl $nobs-4 S$nobs
7 print --byobs

The sample is limited to the first 6 observations in line 3. The two numbers that follow the smpl
command indicate where the subsample begins and where it ends. Logical statements can be
used as well to restrict the sample. Examples of this will be given later. In the current case, six
observations are enough to see that price and sqgft are continuous, that age is discrete, and
that utown, pool, and fplace are likely to be indicator variables. The print statement is used
with the ——byobs option so that the listed variables are printed in columns.

price sgft age utown pool fplace

1 205.452 23.46 6 0 0 1

2 185.328 20.03 5 0 0 1

3 248.422 27.77 6 0 0 0

4 154.690 20.17 1 0 0 0

5 221.801 26.45 0 0 0 1

6 199.119 21.56 6 0 0 1
996 257.195 22.84 4 1 0 0
997 338.295 30.00 11 1 0 1
998 263.526 23.99 6 1 0 0
999 300.728 28.74 9 1 0 0
1000 220.987 20.93 2 1 0 1

The sample is restored to completeness and then limited to the last five observations. These are
printed as well.

The simple summary statistics for the entire sample from line 2 appear below. These give an
idea of the range and variability of price, sqft and age. The means tell us about the proportions
of homes that are near the University and that have pools or fireplaces.

Mean Median S.D. Min Max
price 247.7 245.8 42.19 134.3 345.2
sqgft 25.21 25.36 2.918 20.03 30.00
age 9.392 6.000 9.427 0.0000 60.00
utown 0.5190 1.000 0.4999 0.0000 1.000
pool 0.2040 0.0000 0.4032 0.0000 1.000
fplace 0.5180 1.000 0.4999 0.0000 1.000

You can see that half of the houses in the sample are near the University (519/1000). It is also
pretty clear that prices are measured in units of $1000 and square feet in units of 100. The oldest
house is 60 years old and there are some new ones in the sample (age=0). Minimums and maximums

229

of 0 and 1, respectively usually mean that you have indicator variables. This confirms what we
concluded by looking at the first few observations in the sample.

7.1.1 Creating indicator variables

It is easy to create indicator variables in gretl. Suppose that we want to create a dummy
variable to indicate that a house is large. Large in this case means one that is larger than 2500
square feet.

1 series 1d = (sgft>25)
2 discrete 1d
3 print 1d sgft --byobs

The first line generates a variable called 1d that takes the value 1 if the condition in parentheses
is satisfied. It will be zero otherwise. The next line declares the variable to be discrete. Often this
is unnecessary. “Gretl uses a simple heuristic to judge whether a given variable should be treated
as discrete, but you also have the option of explicitly marking a variable as discrete, in which case
the heuristic check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where
this is taken to mean that they are all integer multiples of 0.257 If this criterion is met, we then
ask whether the variable takes on a fairly small set of distinct values, where fairly small is defined
as less than or equal to 8. If both conditions are satisfied, the variable is automatically considered
discrete.” (Cottrell and Lucchetti, 2018, p. 84)

Also from the Gretl Users Guide:

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A
dialog box will appear and, if the variable seems suitable, you will see a tick box
labeled “Treat this variable as discrete”. This dialog box [see Figure 7.1 below]
can also be invoked via the context menu (right-click on a variable and choose Edit
attributes) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command
takes one or more arguments, which can be either variables or list of variables.

So, the discrete declaration for 1d in line 2 is not strictly necessary. Printing the indicator and
square feet by observation reveals that the homes where sqft > 25 in fact are the same as those
where ld = 1.

230

1d sgft

1 0 23.46

2 0 20.03

3 1 27.77

4 0 20.17

5 1 26.45

6 0 21.56
ﬁ gretl: variable attributes x
Name: [Id ID number: | a4 3

|Descripti0n: o] |

[l

Display name (shown in graphs): [

| Treat this variable as discrete |

| .;_;HElp | | x;lose || dgl{ |

Figure 7.1: From the main gretl window, F2 brings up the variable attributes dialog. From here
you can declare a variable to be discrete. The keyboard shortcut CRTL+4-e also initiates this dialog.

Indicator variables can also be created using the conditional assignment operator. The variable
ld could be created using:

1 series large = (sqgft > 25) 2 1 : O

The series would be called large and if the expression inside parentheses is true (i.e., the house
has more than 2500 square feet, then it takes the value that follows the question mark (7), which
is 1. If the statement is not true, it is assigned the value that follows the colon (i.e., 0). The
conditional assignment operator can be used with compound logic as well. In the next example, a
series called midprice is given the value 1 if the price falls between 215 and 275 using:

1 series midprice = (215 < price) && (price < 275) 21 : O

The double ampersands means and in this case. If both are true (price greater than 215 and less
than 275, midprice is assigned the value 1. Otherwise, it is zero. A brief printout of the result
demonstrates success.

price sqgft large midprice

231

1 205.452 23.46 0 0
2 185.328 20.03 0 0
3 248.422 27.77 1 1
4 154.690 20.17 0 0
5 221.801 26.45 1 1

Finally, indicators can be interacted with other indicators or continuous variables using lists.
Suppose we create two lists. The first contains an indicator, utown, which is 0 if the house is
not located in the University Town subdivision. The second list contains both continuous and
indicators (sqft, age, and pool). A set of interaction variables can be created using the following

syntax:
1 list house = sqgft age pool
2 list loc = utown
3 list inter = utown ~ house
4 print inter -o

The list called inter in line 3 contains the interaction of the utown list and the loc list; the
operator is ~. Note, the indicator list must be to the left of ~. This produces:

sgqft_utown_0 sgft_utown_1 age_utown_0

1 23.46 0.00 6
2 20.03 0.00 5
3 27.77 0.00 6
4 20.17 0.00 1
5 26.45 0.00 0
age_utown_1 pool_utown_0 pool_utown_1
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Recall that none of the first five houses in the sample are in University Town. So, when inter-
acted with utown=1, the interaction variables are all zero. Also, none of the houses had a pool,
hence pool_utown is 0 for utown=1 and for utown=0. Also, notice that the ——byobs option is
abbreviated with the simple switch —o in the print statement.

232

7.1.2 Estimating a Regression

The following regression in Example 7.1 is based on the University Town real estate data. The
regression is:

price = (1 + d1utown + Basqft + v(sqft x utown)
+Bsage + dapool + dsfplace + e

The estimated model is

OLS, using observations 1-1000
Dependent variable: price

Coefficient Std. Error t-ratio p-value

const 24.5000 6.19172 3.9569 0.0001

utown 27.4530 8.42258 3.2594 0.0012

sqft 7.61218 0.245176 31.0477 0.0000

sqft_utown 1.29940 0.332048 3.9133 0.0001

age —0.190086 0.0512046 —3.7123 0.0002

pool 4.37716 1.19669 3.6577 0.0003

fplace 1.64918 0.971957 1.6968 0.0901
Mean dependent var 247.6557 S.D. dependent var 42.19273
Sum squared resid 230184.4 S.E. of regression 15.22521
R? 0.870570 Adjusted R? 0.869788
F(6,993) 1113.183 P-value(F) 0.000000
Log-likelihood —4138.379 Akaike criterion 8290.758
Schwarz criterion 8325.112 Hannan—Quinn 8303.815

The coefficient on the slope indicator variable sqft x utown is significantly different from zero at
the 5% level. This means that size of a home near the university has a different impact on average
home price. Based on the estimated model, the following conclusions are drawn:

The location premium for lots near the university is $27,453

The change in expected price per additional square foot is $89.12 near the university and
$76.12 elsewhere

Homes depreciate $190.10/year

A pool is worth $4,377.30

A fireplace is worth $1649.20

233

The script that generates these is:

scalar premium = S$coeff (utown)=*1000

scalar sq u = 10+ (Scoeff (sqgft)+Scoeff (sqft_utown))
scalar sqg _other = 10%Scoeff (sqgft)

scalar depr = 1000«S$Scoeff (age)

scalar sp = 1000xS$coeff (pool)

scalar firep = 1000*Scoeff (fplace)

printf "\n University Premium = $%8.7g\n\

Marginal effect of sgft near University = $%7.6g\n\
Marginal effect of sgft elsewhere = $%7.6g\n\
Depreciation Rate = $%7.2f\n\

Pool = $%7.2f\n\

Fireplace = $%7.2f\n",premium, sq_u, sq_other,depr, sp, firep

© 00 N O s W N

== e
N o~ O

Notice that most of the coefficients was multiplied by 1000 since home prices are measured in
$1000 increments. Square feet are measured in increments of 100, therefore its marginal effect is
multiplied by 1000/100 = 10. It is very important to know the units in which the variables are
recorded. This is the only way you can make ecnomic sense of your results.

7.2 Applying Indicator Variables

In this section a number of examples will be given about estimation and interpretation of
regressions that include indicator variables.

7.2.1 Interactions
Example 7.2 in POES5

Consider the simple wage equation

wage = (1 + Baeduc + 61 black + do female
+7(female x black) + e

where black and female are indicator variables. Taking the expected value of In(wage) reveals each
of the cases considered in the regression

B1 + Baeduc White, Males
) d Black, Mal
Elwage| educ] = b1+ 01 + Preduc ac. s e (7.1)
B1 + 62 + Breduc White, Females

B1 + 61 + 62 + v + Baeduc Black, Females

234

The reference group is the one where all indicator variables are zero, i.e., white males. The
parameter d; measures the effect of being black, relative to the reference group; d2 measures the
effect of being female relative to the reference group, and v measures the effect of being both black
and female.

The model is estimated using the cpss_small.gdt data which is from March 2013. The script is:

open "@workdir\datalcps5_small.gdt"

series black_female = black * female

list demographic = black female black_female
ml <- ols wage const educ demographic

omit demographic —--test-only

G W N

The results appear below:

ml: OLS, using observations 1-1200
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const —9.482 1.958 —4.843 0.0000
educ 2.474 0.1351 18.31 0.0000
black —2.065 2.162 —0.9554 0.3396
female —4.223 0.8249 —5.120 0.0000
black_female 0.5329 2.802 0.1902 0.8492

Mean dependent var 23.64004 S.D. dependent var 15.21655

Sum squared resid 214400.9 S.E. of regression 13.39459
R? 0.227720 Adjusted R? 0.225135
F(4,1195) 88.09155 P-value(F) 1.21e-65
Log-likelihood —4814.042 Akaike criterion 9638.084
Schwarz criterion 9663.534 Hannan—Quinn 9647.671

Holding the years of schooling constant, black males earn $2.07/hour less than white males. For
the same schooling, white females earn $4.22 less, and black females earn $.53 more. The coefficient
on the interaction term is not significant at the 5% level however.

A joint test of the hypothesis that 61 = do = v = 0 is conducted using the omit command in
line 5. The results are:

Test on Model 1:

Null hypothesis: the regression parameters are zero for the variables

235

black, female, black_female
Test statistic: F(3, 1195) = 10.5183, p-value 7.8715e-007
Omitting variables improved 0 of 3 information criteria.

The test statistic is 10.5 and the p-value from the F(3, 1195) distribution is well below 5%. The
null hypothesis is rejected.

and the result is

Test on Model 1:

Null hypothesis: the regression parameters are zero for the variables
black, female, black_female

Test statistic: F (3, 1195) = 10.5183, p-value 7.8715e-007

Omitting variables improved 0 of 3 information criteria.

7.2.2 Regional indicators

Example 7.3 in POES5

In this example a set of regional indicator variables is added to the model. There are four
mutually exclusive regions to consider. A reference group must be chosen, in this case for the
northeast. The model becomes:

wage = B + Boeduc + 61 south + domidwest + dzwest + e

where black and female are indicator variables. Taking the expected value of In(wage) reveals each
of the cases considered in the regression

B1 + B2educ Northeast
B1+ 61 + Boeduc South

B1 + 02 + Boeduc Midwest
B1+ 03 + Poeduc West

Elwage|educ| = (7.2)

Once again, the omitted case (Northeast) becomes the reference group.

The regional dummy variables are added to the wage model for black females and is estimated
by least squares. The regional indicator variables are tested jointly for significance using the omit
statement.

1 list regions = south midwest west
2 m2 <- ols wage const educ demographic regions
3 omit regions —--test-only

236

The results from both models appear below:

OLS estimates
Dependent variable: wage

(1) (2)
const —0.4K82** —R.371**
(1.958) (2.154)
educ 2.474** 2.467**
(0.1351) (0.1351)
black —2.065 —1.878
(2.162) (2.180)
female —4.223* —4.186**
(0.8249) (0.8246)
black_female 0.5329 0.6190
(2.802) (2.801)
south —1.652
(1.156)
midwest —1.939
(1.208)
west —0.1452
(1.203)
n 1200 1200
R? 0.2251 0.2263
14 —4814 —4812

Standard errors in parentheses

* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Workers in the south are expected to earn $1.65 less per hour than those in the northeast holding
other variables constant. Howerver, none of the regional indicators is individually significant at
5%. The joint test results are

Test on Model 2:

Null hypothesis: the regression parameters are zero for the wvariables
south, midwest, west
Test statistic: F (3, 1192) = 1.57923, p-value 0.192647

The test statistic has an F(3, 992) distribution under the null and is equal to 1.57. The p-value

237

is greater than 5% and we conclude that the indicators are not jointly significant. We could not
conclude that workers with the same education, race and gender in the regions earn different
amounts per hour.

7.2.3 Testing Equivalence of Two Regions

Example 7.4 in POES5

The question arises, is the wage equation different for the south than for the rest of the country?
There are several ways to do this in gretl. One uses the ability to interact variable lists. The other
uses smpl commands to estimate models in different subsamples. The chow command is able to test
the equivalence of subsample regressions based on a indicator variable to determine the subsamples.

To illustrate its use, consider the basic wage model

wage = B1 + Boeduc + 61 black + dofemale
+7(black x female) + e

Now, if wages are determined differently in the south, then the slopes and intercept for southerners
will be different.

The first method used to estimate the model uses the indicator variable south to create inter-
actions. The script is:

open "@workdir\datalcps5_small.gdt"

series black_female = black » female

list demographic = black female black_female
list xvars = const educ demographic

list inter = south ~ xvars

ols wage inter

S Uk W N

First, black and female are interacted and a series formed. This is included in the list demographic
along with its elements, black and female. All of the variables are assembled into another list
xvars which is then interacted with the indicator south in line 5. The regression is estimated in
line 6. The result appears below:

Model 4: OLS, using observations 1-1200
Dependent variable: wage

coefficient std. error t-ratio p-value

const_south_0 9.99910 2.38723 4.189 3.01e-05 *x«*

238

const_south_1 8.41619 3.43377 2.451 0.0144 * %

educ_south_0 2.52714 0.164196 15.39 6.95e-049 *+*x*
educ_south_1 2.35572 0.238825 9.864 4.10e-022 *x*xx*
black_south_0 1.12757 3.52466 0.3199 0.7491
black_south_1 3.49279 2.80905 1.243 0.2140
female_south_0 4.15199 0.984150 4.219 2.64e—-05 *x#*x
female_south_1 4.34001 1.51665 2.862 0.0043 * %k
black_female_s"_0 4.45398 4.48577 0.9929 0.3210
black_female_s"_1 3.66549 3.71079 0.9878 0.3235

Mean dependent var 23.64004 S.D. dependent var 15.21655

Sum squared resid 213774.0 S.E. of regression 13.40306
R-squared 0.229978 Adjusted R-squared 0.224154
F(9, 1190) 39.49009 P-value (F) 7.85e-62

This matches the results in the first column of Table 7.5 in POES5. By interacting each of the
variables including the constant with the indicator, we have essentially estimated two separate
regressions in one model. Note, the standard errors are computed based on the assumption that
the two subsamples have the same overall variance, 0. The next approach does not assume this
and the standard errors will be a bit different.

To estimate the equations separately we employ the smpl command to restrict the sample to
either the south or elsewhere.

1 smpl full

2 smpl (south==1) --restrict
3 M_south <- ols wage xvars
4

5 smpl full

6 smpl (south==0) --restrict
7

M_other <- ols wage xvars

We start with the full sample and use the restrict statement with the boolean argument (south==1)
to limit the sample to observations where this is true. The model is estimated, the sample restored
to full and restricted again to only include observations where south==0. The two models appear
below:

OLS estimates
Dependent variable: wage

M_south M_other

const —8.416™ —9.999**
(3.871) (2.227)
educ 2.356** 2.527**

239

(0.2692) (0.1532)

black —3.493 1.128
(3.167) (3.288)
female —4.341** —4.152**
(1.710) (0.9182)
black_female 3.665 —4.454
(4.183) (4.185)
n 390 810
R? 0.1635 0.2597
{ —-1610 —-3193

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient estimates match those that were obtained using the indicators. As expected the
standard errors differ.

A Chow test is used to test for structural breaks or changes in a regression. In other words,
one subsample has different intercept and slopes than another. It can be used to detect structural
breaks in time-series models or to determine whether, in our case, the south’s wages are determined
differently from those in the rest of the country. The easy method uses gretl’s built-in chow
command to test for a change in the regression. It must follow a regression and you must specify
the indicator variable that identifies the two subsets.

The null hypothesis is that the coefficients of the two subsets are equal and the alternative is
that they are not. The gretl commands to perform the test are:

1 smpl full
2 M _pooled <- ols wage xvars
3 chow south —-dummy

Line 2 estimates the model using least squares. Line 3 contains the test command. It is initiated
by chow followed by the indicator variable that is used to define the subsets, in this case south.
The ——dummy option is used to tell gretl that south is an indicator. When this option is used,
chow tests the null hypothesis of structural homogeneity with respect to the named indicator.
Essentially, gretl is creating interaction terms between the indicator and each of the regressors and
adding them to the model as done above in Model 4. The dialog box to perform the Chow test
is found in the model window. After estimating the regression via the GUI the model window
appears. Click Tests>Chow test on its menu bar to open the dialog box in Figure 7.2. The
results from the test appear below.

240

ﬁ gretl: Chow test X

() Observation at which to split the sample:

@ Mame of dummy variable to use:

l south o3 l

[] Test a subset of regressors

|‘%§ancel || -C'BQI{ ‘

Figure 7.2: Click Tests>Chow test from a model window to reveal the dialog box for the Chow
test. Select an indicator variable or a break point for the sample.

Augmented regression for Chow test

OLS,

black

female
black_female
south

so_educ
so_black
so_female
so_black_female

Mean dependent var
Sum squared resid
R-squared

F(9, 1190)
Log-likelihood

using observations 1-1200
Dependent variable:

wage
coefficient std. error t-ratio p-value
9.99910 2.38723 4.189 3.01le-05 *x*x*
2.52714 0.164196 15.39 6.95e-049 *x*x*
1.12757 3.52466 0.3199 0.7491
4.15199 0.984150 4.219 2.64e-05 xxx
4.45398 4.48577 0.9929 0.3210
1.58291 4.18206 0.3785 0.7051
0.171420 0.289824 0.5915 0.5543
4.62036 4.50710 1.025 0.3055
0.188612 1.80798 0.1043 0.9169
8.11947 5.82169 1.395 0.1634
23.64004 S.D. dependent var 15.21655
213774.0 S.E. of regression 13.40306
0.229978 Adjusted R-squared 0.224154
39.49009 P-value (F) 7.85e-62
4812.285 Akaike criterion 9644.570
9695.470 Hannan-Quinn 9663.744

Schwarz criterion

Chow test for structural difference with respect to south

F(5, 1190) =

0.697969 with p-value 0.6250

Notice that the p-value associated with the test is 0.625, thus providing insufficient evidence to
convince us that wages are structurally different in the south.

The other way to do this uses interactions. Though the chow command makes this unnecessary,
it is a great exercise that demonstrates how to create more general interactions among variables.
Replicating a portion of the script found on page (238):

241

1i
1i
m

re

© 0w N s W N

-
o

en

st xvars = const educ demographic
st inter = south "~ xvars
<- ols wage inter
strict
bl-b2=0
b3-b4=0
b5-b6=0
b7-b8=0
b9-b10=0
d restrict

The first line includes each of the variables in the model that are to be interacted with south.
Line 2 adds the interactions to the list and the regression is estimated by least squares in line 3.
The coefficient restrictions are used to conduct the Chow test. The result indicates exactly what

is going

Re

1:

Te

Re

g W N

0

w w o o

.45e-06 *x%*
.45e-06 *x*

3.35e-066 **xx*
3.35e-066 **=*

.3396
.3396
.56e-07 Hx%
.56e-07 xxx%

0.8492
0.8492

on:
striction set

blconst_south_0] - b[const_south_1] = 0

bleduc_south_0] - b[educ_south_1] = 0

b[black_south_0] - b[black_south_1] = 0

b[female_south_0] - b[female_south_1] = 0

b[black_female_south_0] - b[black_female_south_1] =
st statistic: F(5, 1190) = 0.697969, with p-value = 0.625034
stricted estimates:

coefficient std. error t-ratio

const_south_0 9.482006 1.95797 4.843
const_south_1 9.48200 1.95797 4.843
educ_south_0 2.47370 0.135104 18.31
educ_south_1 2.47370 0.135104 18.31
black_south_0 2.06526 2.16163 0.9554
black_south_1 2.06526 2.16163 0.9554
female_south_0 4.22346 0.824927 5.120
female_south_1 4.22346 0.824927 5.120
black_female_south_0 0.532927 2.80203 0.1902
black_female_south_1 0.532927 2.80203 0.1902
Standard error of the regression = 13.3946

The coefficients of the constants, education, black, female, and black-female are restricted to be
equal to one another and the restriction is tested using an F-test. The test statistic is identical to

that pro

duced by chow.

242

7.2.4 Log-Linear Models with Indicators
Examples 7.5 and 7.6 in POES5

In this example an indicator variable is included in a log-linear model. It is based on a wage
example used earlier.
In(wage) = p1 + Paeduc + dfemale + e (7.3)

Estimation of this model by least squares allows one to compute percentage differences between
the wages of females and males. As discussed in POES, the algebra suggests that the percentage

difference is R
100(e~H% (7.4)

The model is estimated and the computation carried out in the following script.

open "@workdir\datalcps5_small.gdt"
logs wage
ols 1_wage const educ female

scalar wd = exp (Scoeff (female))-1
printf "\nThe estimated male/female wage differential is\
= %.3f percent.\n", wd%100

N O U W N

The natural logarithm of wage is taken in line 2. Then the model is estimated an the percentage
difference computes.

m: OLS, using observations 1-1200
Dependent variable: 1 wage

Coefficient Std. Error t-ratio p-value

const 1.623 0.06917 23.46 0.0000
educ 0.1024 0.004799 21.34 0.0000
female —0.1778 0.02794 —6.364 0.0000

Sum squared resid 272.2378 S.E. of regression 0.476900
R? 0.282005 Adjusted R? 0.280806
F(2,1197) 235.0716 P-value(F) 7.74e-87

The coefficient on education suggests that an additional year of schooling increases the average
wage by 10.24%, holding sex constant. The estimated wage differential between men and women
of similar education is 17.78% . Using equation (7.4), which is estimated in line 5, we obtain:

The estimated male/female wage differential is = -16.288 percent.

243

for a computed difference is —16.288, suggesting that females earn about 16.29% less than males
who have comparable levels of education. An approximate standard error can be computed via the
delta method (discussed at length in section 5.6.1).

scalar variance = exp(S$Scoeff (female)) "2+x$vcvI[3, 3]
scalar se = sqrt (variance)

printf "\nThe estimated standard error is\

= $%$.3f%% .\n", sex100

P

o

The estimated standard error is = 2.339%.

7.3 Linear Probability

A linear probability model is a linear regression in which the dependent variable is an indicator
variable. The model is estimated by least squares.

Suppose that

1 if alternative is chosen
Yyi = . . (7.5)
0 if alternative is not chosen
Suppose further that the Pr(y; = 1) = m;. For a discrete variable
Ely)=1xPr(y;=1)+0x Pr(y; =0) =m; (7.6)

Thus, the mean of a binary random variable can be interpreted as a probability; it is the probability
that y = 1. When the regression E[y;|zi2, ;3 - - ., ;x| is linear then Ely;| = 1+ Bowia+. . .+ BrTik
and the mean (probability) is modeled linearly.

Elyi|lzio, xi3, . .., k] = m = 1 + Bazio + ... + Brwik (7.7)
The variance of a binary random variable is
varly;] = mi(1 — m) (7.8)

which means that it will be different for each individual. Replacing the unobserved probability,
E(y;), with the observed indicator variable requires adding an error to the model that we can
estimate via least squares.

Example 7.7 in POES5

In this following example we have 1140 observations from individuals who purchased Coke
or Pepsi. The dependent variable takes the value of 1 if the person buys Coke and 0 if Pepsi.

244

These depend on the ratio of the prices, pratio, and two indicator variables, disp_coke and
disp_pepsi. These indicate whether the store selling the drinks had promotional displays of
Coke or Pepsi at the time of purchase.

The script to estimate the model is:

open "@workdir\datal\coke.gdt"
summary

ols coke const pratio disp_coke disp_pepsi —--robust
series p_hat = $yhat

series 1lt_zero = (p_hat<0)

matrix count = sum(lt_zero)

[

printf "\nThere are %.2g predictions that are less than zero.\n", count

[TN T - N N O N

The data are loaded and summary statistics computed. The regression is estimated by ordinary
least squares, with the binary variable coke as the dependent variable. The predictions from OLS
are saved as a series in line 5 and in line 6 we count the number of predictions that are less than
zero. The main problem with the LPM is that it can predict a probability that is either less than
zero or greater than 1, both of which are inconsistent with the theory of probability.

OLS, using observations 1-1140
Dependent variable: coke
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 0.8902 0.0656 13.56 5.88¢-039
pratio —0.4009 0.0607 —6.60 6.26e-011
disp_coke 0.0772 0.0340 227 0.0235
disp_pepsi ~ —0.1657 0.0345 —4.81 1.74e-006

Sum squared resid 248.0043 S.E. of regression 0.467240
R? 0.120059 Adjusted R? 0.117736
F(3,1136) 56.55236 P-value(F) 4.50e-34

The model was estimated using a variance-covariance matrix estimator that is consistent when the
error terms of the model have variances that depend on the observation. That is the case here. I'll
defer discussion of this issue until the next chapter when it will be discussed at some length.

The last line of the script indicates that 16 of the 1140 observation fell below zero:

There are 16 predictions that are less than zero.

245

7.4 Treatment Effects

In order to understand the measurement of treatment effects, consider a simple regression model
in which the explanatory variable is a dummy variable, indicating whether a particular individual
is in the treatment or control group. Let y be the outcome variable, the measured characteristic
the treatment is designed to affect. Define the indicator variable d as

1 if treated
i = . (7.9)
0 if not treated
The effect of the treatment on the outcome can be modeled as
yi=p1+ Pedi e i=1,2,...,N (7.10)

where e; represents the collection of other factors affecting the outcome. The regression functions
for the treatment and control groups are

Bly:) = B1 + B2 %f individual is treated (7.11)
051 if not treated
The treatment effect that we want to measure is 82. The least squares estimator of S is
N n _
N (d — Dy —
b2 — 27,21(1)(yl y) — ,7]1 o ?30 (712)

o (d; — d)?
where g1 is the sample mean for the observations on y for the treatment group and gy is the sample
mean for the observations on y for the untreated group. In this treatment/control framework the
estimator by is called the difference estimator because it is the difference between the sample
means of the treatment and control groups.

Examples 7.8 in POES5

To illustrate, we use the data from project STAR described in POFE5, Chapter 7.5.

The first thing to do is to take a look at the descriptive statistics for a subset of the variables.
The list v is created to hold the variable names of all the variables of interest. Then the summary
command is issued for the variables in v with the ——by option. This option takes an argument,
which is the name of a discrete variable by which the subsets are determined. Here, small and
regular are binary, taking the value of 1 for small classes and 0 otherwise. This will lead to two
sets of summary statistics.

1 open "@workdir\datalstar.gdt"

2 list v = totalscore small tchexper boy freelunch white_asian \
3 tchwhite tchmasters schurban schrural

4 summary v ——-by=small —--simple

5 summary v ——by=regular —--simple

246

Here is a partial listing of the output:

regular = 1 (n = 2005):

Mean Median S.D. Min Max
totalscore 918.0 912.0 73.14 635.0 1229
small 0.0000 0.0000 0.0000 0.0000 0.0000
tchexper 9.068 9.000 5.724 0.0000 24.00
boy 0.5132 1.000 0.4999 0.0000 1.000
freelunch 0.4738 0.0000 0.4994 0.0000 1.000
white_asian 0.6813 1.000 0.4661 0.0000 1.000
tchwhite 0.7980 1.000 0.4016 0.0000 1.000
tchmasters 0.3651 0.0000 0.4816 0.0000 1.000
schurban 0.3012 0.0000 0.4589 0.0000 1.000
schrural 0.4998 0.0000 0.5001 0.0000 1.000

small = 1 (n = 1738):

Mean Median S.D. Min Max
totalscore 931.9 924.0 76.36 747.0 1253
small 1.000 1.000 0.0000 1.000 1.000
tchexper 8.995 8.000 5.732 0.0000 27.00
boy 0.5150 1.000 0.4999 0.0000 1.000
freelunch 0.4718 0.0000 0.4993 0.0000 1.000
white_asian 0.6847 1.000 0.4648 0.0000 1.000
tchwhite 0.8625 1.000 0.3445 0.0000 1.000
tchmasters 0.3176 0.0000 0.4657 0.0000 1.000
schurban 0.3061 0.0000 0.4610 0.0000 1.000
schrural 0.4626 0.0000 0.4987 0.0000 1.000

Examples 7.9 in POE5

Next, we want to drop the observations for those classrooms that have a teacher’s aide and to
construct a set of variable lists to be used in the regressions that follow.

In addition it may be that assignment to treatment groups is related to one or more of the
observable characteristics (school size or teacher experience in this case). One way to control for
these omitted effects is to used fixed effects estimation. This is taken up in more detail later.
Here we introduce it to show off a useful gretl function called dummi fy.

The dummify command creates dummy variables for each distinct value present in a series, x.
In order for it to work, you must first tell gretl that x is in fact a discrete variable. We want to
create a set of indicator variables, one for each school in the dataset.

1 smpl aide != 1 —--restrict
2 discrete schid

247

3 list fe = dummify (schid)
4 list x1 = const small
5 list x2 = x1 tchexper

In the first line the smpl command is used to limit the sample (-—restrict) to those observations
for which the aide variable is not equal (!=) to one. To include school effects, a set of indicator
variables is created based on the identification number of the school, schid. To be safe, it is declared
to be discrete in line 2 before using the dummi fy command in line 3 to create the indicators. The
indicators are put into a list called fe (fixed effects). The 1ist commands are interesting. Notice
that x1 is constructed in a conventional way using 1ist; to the right of the equality is the name
of two variables. Then x2 is created with the first elements consisting of the list, x1 followed by
the additional variable tchexper. Thus, x2 contains const, small, and tchexper

Now each of the models is estimated with the ——quiet option and put into a model table.

modeltab free

ml <- ols totalscore x1 —--quiet
modeltab add

m2 <- ols totalscore x2 —-—-quiet
modeltab add

© 0w 9 O s W N

m3 <- ols totalscore x1 fe —--quiet
omit fe —--test-only
modeltab add

e e =
w N = O

m4 <- ols totalscore x2 fe —--quiet

t_interval (Scoeff (small), $Sstderr (small), $df, .95)
omit fe —--test-only

modeltab add

modeltab show

e
N O o s

For the models that include the school fixed effects, the omit statement is used to test the hypoth-
esis that the school differences are jointly insignificant. A portion of the results appears below:

OLS estimates
Dependent variable: totalscore

ml m2 m3 m4
const 918.0%x* 907.6%x% 838.8x% 830.8x%

(1.667) (2.542) (11.56) (11.70)
small 13.90*% 13.98%x 16.00x% 16.07*%

248

(2.447) (2.437) (2.223) (2.218)

tchexper 1.156*x% 0.9132%%
(0.2123) (0.22506)

Dschid 123056 55.51 %% 52.90+**
(16.16) (16.14)

Dschid_128068 48 .27 %% 51.12%%
(16.55) (16.53)

School effects NO NO YES YES

n 3743 3743 3743 3743
Adj. R#*%*2 0.0083 0.0158 0.2213 0.2245

InL -2.145e+004 -2.144e+004 -2.096e+004 -2.095e+004

The coefficient on the small indicator variable is not affected by adding or dropping teacher
experience from the model. This is indirect evidence that it is not correlated with other regressors.
The effects of a small class increase a bit when the school fixed effects are taken into account. The
effect of teacher experience on test scores falls quite a bit at the same time. The estimated slopes
in columns (3) and (4) match those in POES. The intercepts are different only because a different
reference group was used. The substance of the results is unaffected.

The hypothesis tests for fixed effects are significant at 5%. The test results produced for m3
and m4, respectively are:

Test statistic: F (78, 3663) 14.1177, p-value 1.70964e-154
Test statistic: F (78, 3662) = 13.9048, p-value 6.65072e-152

Also, the 95% confidence interval for the coefficient of small in model four (summoned in line 14)
is:

The 95% confidence interval centered at 16.066 is (11.7165, 20.4148)

It includes each of the other estimates and therefore we would conclude that there is no measurable
difference between the size of the effects of small class size on test scores.

7.4.1 Using Linear Probability to Verify Random Assignment

A number of variables are omitted from the model and it is safe to do so as long as they are not
correlated with regressors. This would be evidence of assignments to the control group that are
systematic. This can be checked using a regression. Since small is an indicator, we use a linear
probability regression.

249

Example 7.11 in POES5

The independent variables include a constant, boy white_asian, tchexper and freelunch.
The result is

OLS, using observations 1-3743
Dependent variable: small
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 0.4665 0.0253 18.46 7.33e-073
boy 0.0014 0.0163 0.09 0.931
white_asian 0.0044 0.0197 0.22 0.823
tchexper —0.0006 0.0014 —0.42 0.676
freelunch —0.0009 0.0183 —0.05 0.961

Sum squared resid 930.9297 S.E. of regression 0.499044
R? 0.000063 Adjusted R? -0.001007
F(4,3738) 0.059396 P-value(F) 0.993476

The overall-F' statistic is not significant at 10%. None of the individual ¢-ratios are significant.
Finally, a 95% confidence interval is obtained using t_interval. We find:

The 95% confidence interval centered at 0.466 is (0.4170, 0.5160)

which includes 0.5, suggesting that assigning children to a small or large class is as fair as a fair
coin flip. I think it is safe to omit these other regressors from the model.

7.5 Differences-in-Differences Estimation

If you want to learn about how a change in policy affects outcomes, nothing beats a randomized
controlled experiment. Unfortunately, these are rare in economics because they are either very
expensive of morally unacceptable. No one want to determines what the return to schooling is by
randomly assigning people to a prescribed number of schooling years. That choice should be yours
and not someone else’s.

But, the evaluation of policy is not hopeless when randomized controlled experiments are im-
possible. Life provides us with situations that happen to different groups of individuals at different
points in time. Such events are not really random, but from a statistical point of view the treatment
may appear to be randomly assigned. That is what so-called natural experiments are about.

250

You have two groups of similar people. For whatever reason, one group gets treated to the policy
and the other does not. Comparative differences are attributed to the policy.

Examples 7.12 and 7.13 in POES5

In the example, we will look at the effects of a change in the minimum wage. It is made possible
because the minimum wage is raised in one state and not another. The similarity of states is
important because the non-treated state is going to be used for comparison.

The data come from Card and Krueger and are found in the file njmin3.gdt. We will open it
and look at the summary statistics by state.

1 open "@workdir\data\njmin3.gdt"
2 smpl d = 0 —-restrict

3 summary fte —--by=nj —--simple

4 smpl full

5 smpl d = 1 —--restrict

6 summary fte —--by=nj --simple

7 smpl full

Since we want to get a picture of what happened in NJ and PA before and after NJ raised the
minimum wage we restrict the sample to before the increase. Then get the summary statistics for
fte by state in line 3. Restore the full sample and then restrict it to after the policy d=1. Repeat
the summary statistics for fte. The results suggest not much difference at this point.

nj =0 (n ="79) d=0:

Mean Minimum Maximum Std. Dev.
fte 23.331 7.5000 70.500 11.856

nj =1 (n = 331) d=0:

Mean Minimum Maximum Std. Dev.
fte 20.439 5.0000 85.000 9.1062
nj =0 (n="79) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.166 0.00000 43.500 8.2767
nj =1 (n = 331) d=1:

Mean Minimum Maximum Std. Dev.
fte 21.027 0.00000 60.500 9.2930

Now, make some variable list and run a few regressions

251

list x1 const nj d d_nj
list x2 = x1 kfc roys wendys co_owned
list x3 x2 southj centralj pal

ols fte x1
modeltab add
ols fte x2
modeltab add
ols fte x3
modeltab add
modeltab show

© 0 9 A W N

=
=)

The first set of variables include the indicator variables nj, d and their interaction. The second
set adds more indicators for whether the jobs are at kfc, roys, or wendys and if the store is
companied owned. The final set add more indicators for location.

The results from the three regressions appear below:

OLS estimates
Dependent variable: fte

(1) (2) (3)
const 23.33** 25.95** 25.32**
(1.072) (1.038) (1.211)
nj —2.892** —2.377** —0.9080
(1.194) (1.079) (1.272)
d —2.166 —2.224 —2.212
(1.516) (1.368) (1.349)
d_nj 2.754 2.845* 2.815*
(1.688) (1.523) (1.502)
kfc —10.45** —10.06**
(0.8490) (0.8447)
roys —1.625* —1.693**
(0.8598) (0.8592)
wendys —1.064 —1.065
(0.9292) (0.9206)
co_owned —1.169 —0.7163
(0.7162) (0.7190)
southj —3.702**
(0.7800)
centralj 0.007883
(0.8975)

252

pal 0.9239

(1.385)
n 794 794 794
R? 0.0036 0.1893 0.2115
¢ —2904 —2820 —2808

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

The coefficient on d_n7j is the difference-in-differences estimator of the change in employment due
to a change in the minimum wage. It is not significantly different from zero in this case and we can
conclude that raising the minimum wage in New Jersey did not adversely affect employment.

In the previous analysis we did not exploit an important feature of Card and Krueger’s data.
The same restaurants were observed before and after in both states—in 384 of the 410 observations.
It seems reasonable to limit the before and after comparison to the same units.

This requires adding an individual fixed effect to the model and dropping observations that
have no before or after with which to compare. Also, you will need to limit the sample to the
unique observations (in the original, each is duplicated).

1 smpl missing(demp) != 1 --restrict
2 smpl d = 1 —-restrict
3 ols demp const nj

Fortunately, the data set includes the A FTE where it is called demp. Dropping the observations for
demp that are missing and using least squares to estimate the parameters of the simple regression
yield:

demp = —2.28333 + 2.75000 nj
(1.0355) (1.1543)

T =768 R?>=0.0134 F(1,766) = 11.380 & = 8.9560

(standard errors in parentheses)

The coefficient on nj is not significantly less than zero at the 5% level and we conclude that the
increase in minimum wage did not reduce employment.

7.6 Script

253

© 0w N O s W N

e e
w N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

set messages off
function estimates confidence intervals based on the t-distribution
function void t_interval (scalar b, scalar se, scalar df, scalar p)
scalar alpha = (1-p)
scalar 1b = b - critical (t,df,alpha/2) *xse
scalar ub = b + critical (t,df,alpha/2) *«se
printf "\nThe %2g%% confidence interval centered at %.3f is\
($.4f, %.4f)\n", px100, b, 1lb, ub
end function

Example 7.1
Indicator Variables in Real Estate Example
open "@workdir\datalutown.gdt"

summarize and examine
summary ——-simple

smpl 1 6

print —--byobs

smpl full

smpl $nobs-4 $nobs
print —--byobs

* estimate dummy variable regression

smpl full

series utown_sqgft = utownxsqgft

list xvars = const sgft utown age pool fplace utown_sqgft
ols price xvars

omit utown utown_sqgft —--test-only

generate some marginal effects

scalar premium = S$coeff (utown) 1000

scalar sg u = 10x ($Scoeff (sqgft)+Scoeff (utown_sqgft))
scalar sg_other = 10*S$Scoeff (sgft)

scalar depr = 1000+Scoeff (age)

scalar sp = 1000«S$coeff (pool)

scalar firep = 1000*Scoeff (fplace)

printf "\n University Premium = $%8.7g\n\

Marginal effect of sgft near University = $%.2f\n\
Marginal effect of sgft elsewhere = $%.2f\n\

Depreciation Rate = $%7.2f per year\n\

Pool = $%7.2f\n\

Fireplace = $%7.2f\n",premium, sq_u, sq_other,depr, sp, firep
omit utown_sqgft —--test-only

examples creating indicator variables
open "@workdir\datalutown.gdt"

series 1d = (sqgft>25)

discrete 1d

series large = (sqft > 25) 2 1 : O
series midprice = (215 < price) && (price < 275) 2?2 1 : 0

254

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

smpl 1 5
print price sqgft large midprice --byobs

smpl full

list house = sqgft age pool
list loc = utown

list inter = utown ~ house

print inter -o

/*———POE5 Example 7.2-——%/
Applying indicator variables in a wage equation

open "@workdir\datalcps5_small.gdt"
summary —--simple

series black_female = black » female

list demographic = black female black_female
ml <- ols wage const educ demographic

omit demographic —--test-only

/*———POE5 Example 7.3-——x/

Add regional indicators to wage equation
list regions = south midwest west

m2 <- ols wage const educ demographic regions
omit regions —--test-only

/*———POE5 Example 7.4-——%/
Testing the equivalence of two regressions
list xvars = const educ demographic
list inter = south ~ xvars
m <- ols wage inter
restrict
bl-b2=0
b3-b4=0
b5-b6=0
b7-b8=0
b9-b10=0
end restrict

Estimate separate regressions

smpl (south==1) --restrict_south <- ols wage xvars
smpl full
smpl (south==0) --restrict

M_other <- ols wage xvars

smpl full
M_pooled <- ols wage xvars
chow south —-—dummy

/*———POE5 Example 7.5-——x/

255

103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

* Log-linear models

open "@workdir\datalcps5_small.gdt"
logs wage

m <— ols 1_wage const educ female

/*x———-POE5 Example 7.6———%/

scalar wd = exp (Scoeff (female))-1

printf "\nThe estimated male/female wage differential is\
= %.3f percent.\n", wdx100

scalar variance = exp(Scoeff (female)) "2x$SvcvI[3, 3]
scalar se = sqrt (variance)

printf "\nThe estimated standard error is\

= %$.3f%%.\n", sex100

/*———POE5 Example 7.7-——%/
Linear Probability Model

open "@workdir\datal\coke.gdt"
summary

ols coke const pratio disp_coke disp_pepsi
series p_hat = S$yhat

series lt_zero = (p_hat<0)

matrix count = sum(lt_zero)

[)

printf "\nThere are %.2g predictions that are less than zero.\n", count

/*———POE5 Example 7.8-——x/

open "@workdir\datalstar.gdt"

list v = totalscore small tchexper boy freelunch white_asian \
tchwhite tchmasters schurban schrural

summary v —-by=small --simple
summary v —-by=regular —--simple
summary v

smpl (aide == 0) --restrict
summary —--simple

create lists

list x1 = const small

list x2 = x1 tchexper

list x3 = x2 boy freelunch white_asian

list x4 = x3 tchwhite tchmasters schurban schrural
summary totalscore x4 —--by=small —--simple

corr x3

/*———POE5 Example 7.9 and 7.10-—-%/
regressions

open "@workdir\datalstar.gdt"
discrete schid

256

154

156
157
158
159
160
161
162

164
165
166
167

169
170
171
172

174
175
176
177

179
180
181
182

184
185
186
187

189
190
191
192

194
195
196
197

199
200
201
202
203
204

list fe = dummify (schid)

list x1 = const small
list x2 = x1 tchexper
smpl aide != 1 —--restrict

modeltab free

ml <- ols totalscore x1 —-—-quiet
modeltab add

m2 <- ols totalscore x2 —-—-quiet
modeltab add

m3 <- ols totalscore x1 fe
omit fe —--test-only
modeltab add

m4 <- ols totalscore x2 fe —--quiet

t_interval (Scoeff (small), $stderr(small), $df, .95)
omit fe —--test-only

modeltab add

modeltab show

/*——-POE5 Example 7.11--—x/

checking using linear probability models

ols small const boy white_asian tchexper freelunch —--robust
t_interval ($Scoeff (const), $stderr(const), $df, .95)

checking randomness using probit: see Chapter 16
probit small const boy white_asian tchexper freelunch

probit small const boy white_asian tchexper freelunch d

/*———POE5 Example 7.12-——x/
Differences in Differences Estimators

open "@workdir\datal\njmin3.gdt"

smpl d == 0 --restrict
summary fte --by=nj --simple
smpl full

smpl == 1 —--restrict
summary fte --by=nj --simple
smpl full

list x1 = const nj d d_nj
list x2 x1 kfc roys wendys co_owned
list x3 = x2 southj centralj pal

summary x1 fte

ols fte x1
modeltab add

257

205
206
207
208
209
210
211
212
213
214

ols fte x2
modeltab add
ols fte x3
modeltab add
modeltab show
modeltab free

Example 7.13
smpl missing (demp)
ols demp const nj

1

——restrict

258

Chapter 8

Heteroskedasticity

The simple linear regression models of Chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the y; or the e;) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This describes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

Vi =P1+ Poxio+ -+ Braxir +e; 1=1,2,...,N (8.1)

where y; is the dependent variable, x;; is the ith observation on the j* independent variable, j =
2,3,...,k, e; israndom error, and B, fa, ..., B are the parameters you want to estimate. Just as in
the simple linear regression model, e;, have an average value of zero for each value of the independent
variables and are uncorrelated with one another. The difference in this model is that the variance
of e; now depends on i, i.e., the observation to which it belongs. Indexing the variance with the
1 subscript is just a way of indicating that observations may have different amounts of variability
associated with them. The error assumptions can be summarized as e;|x;2, T3, . . . X tid N(0, a?).

The intercept and slopes, 1, B2, ..., Bk, are consistently estimated by least squares even if
the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1
and testing hypotheses about the 8s when the data are heteroskedastic are explored.

8.1 Food Expenditure Example

259

Example 8.1 in POES5

First, the simple linear regression model of food expenditures is estimated using least squares.
The model is
food_exp; = B1 + Baincome; +e; i=1,2,....n (8.2)

where food_exp; is food expenditure and income; is income of the ith individual. When the errors
of the model are heteroskedastic, then the least squares estimator of the coefficients is consistent.
That means that the least squares point estimates of the intercept and slope are useful. However,
when the errors are heteroskedastic the usual least squares standard errors are inconsistent and
therefore should not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, you should use a
consistent estimator of their standard errors to construct valid tests and intervals. A simple com-
putation proposed by White accomplishes this. Standard errors computed using White’s technique
are loosely referred to as robust, though one has to be careful when using this term; the standard
errors are robust to the presence of heteroskedasticity in the errors of model (but not necessarily
other forms of model misspecification).

Open the food.gdt data in gretl and estimate the model using least squares.

1 open "Qworkdir\data\food.gdt"
2 ols food_exp const income
3 gnuplot food_exp income —--fit=linear —--output=display

This yields the usual least squares estimates of the parameters, but produces the wrong standard
errors when the data are heteroskedastic. To get an initial idea of whether this might be the case a
plot of the data is generated and the least squares line is graphed. If the data are heteroskedastic
with respect to income then there will be more variation around the regression line for some levels
of income. The graph is shown in Figure 8.3 and this appears to be the case. There is significantly
more variation in the data for high incomes than for low.

8.1.1 The plot block command

Before continuing with the examples from POES, the plot command will be discussed and
added to our repertoire of gretl tools. The plot block provides an alternative to the gnuplot
command which may be more convenient when you are producing an elaborate plot (with several
options and/or gnuplot commands to be inserted into the plot file).

A plot block starts with the command-word plot followed by the required argument that

specifies the data to be plotted: this should be the name of a list, a matrix, or a single time
series.

260

Weekly Food Expenditures vs Income

T T T T
¥ =83.4 + 10.2X

Food Expenditures per Week

5 10 15 20 25 30

Weekly Income

Figure 8.1: Food expenditure regression.

Least squares residuals vs Income

250 T T T T
L]
200 - g
150 | g
. L]
100 ¢ H E
L]
. . .
s0 | o hd 4
L]
E] ¢ .
b= . hd
] . . .« "
o " . L
L]
50 . o .
L]
100 | —_— . g
L]
150 | . E
200 - g
L]
_250 L L L 1 L L
5 10 15 20 5 30

Weekly Income

Figure 8.2: Food expenditure residuals

Absolute value of OLS residuals vs Income
250 T T T T T T

150 | -

lel

100 |

o 5 10 15 20 25 30 35

Weekly Income

Figure 8.3: Absolute value of least squares residuals against income using with loess fit

261

If a list or matrix is given, the last element (list) or column (matrix) is assumed to be the
x-axis variable and the other(s) the y-axis variable(s), unless the ——time-series option is given
in which case all the specified data go on the y axis.

The starting line may be prefixed with the savename <- to save a plot as an icon in the GUI
program. The block ends with end plot.

The preceding plot is reconfigured using the plot block to present a more uniform appearance
for this section. The code is listed below and then explained.

list plotlist = food_exp income

string title = "Weekly Food Expenditures vs Income"
string xname = "Weekly Income"

string yname = "Food Expenditures per Week"

gl <- plot plotlist
options fit=linear
literal set linetype 1 lc rgb "dark-orange" pt 7
literal set linetype 2 1lc rgb "black" 1w 3
printf "set title \"%s\"", title
printf "set xlabel \"%s\"", xname
printf "set ylabel \"%s\"", yname

end plot —--output=display

© 00 9 O s W N =

== e
N o= O

The data to be plotted can be a matrix or a list of series. In this example we plot two series,
food_exp and income. These are placed into the 1ist called plotlist. Three strings are
created in lines 2-4, one for the title, one for the label on the x-axis and one for the label on y.

In gnuplot the series (or matrix columns) are given numbers starting at 1. In this example,
food_exp is series 1. Within the body of the plot block the 1iteral command is used to pass
commands directly to gnuplot . Lines 7 and 8 do this. In line 7 the 1inetype for series 1 is set.
1c stands for line color. Line color is expressed in rgb colors (red, green, blue) and is set to the
color dark—orange. The default line markers is changed to points using pt, and the number 7
indicates the type of point to use. 7 corresponds to filled in dots.

The second thing plotted in this graph is the linear fit that was delivered by the gretl option
in line 6. To change the line color to black and to make it wider than the default using 1w

(linewidth).

For help in selecting linewidths, colors, or point types you can launch a gnuplot session and
type test at the prompt. This will yield the following (Figure 8.4) graph of available choices.

To determine the available colors in gretl type the following in the console:

eval readfile("Qgretldir/data/gnuplot/gpcolors.txt")

262

2]
& | 5 Options ~
windows terminal test show ticscale | 14—
nuplot version 5.2.2
gnup F——
filled polygons 22—
— 0
7—e
8 —a
9 ——aA
10 —9|
left justified
centre+d text 14 —a
= © right justified 15—
2 'Y 16—+
., & true vs. estimated text dimensions —
£ & 8 —*
3 by [[2345678901234567890]
5
I &, »
<
Enhanced text: x§*1 23 —4)
24 —a
Bold Itslic 25 — V|
% —v
\\\\\ dth
Iw 6 30 —e
31—+
— S 2 —x
[——Y pattern fill 33 —%
. a 1 2 3 4 5 6 7 8 34 —0o
—— § 7
= ! 1 %] § E \ %
—_—— w1 —_ dt1 \ / 38 A
896847+ 307, 8.98847e+307

Figure 8.4: Type test at the gnuplot command prompt to reveal this handy cheat sheet docu-
menting gnuplot options.

You can use the name of the color or its hex equivalent (preceded by a #). The contents of this
file provide the translation to gnuplot, so it is easiest to use those.

The plot will be saved to a session as an icon labeled g1. The plot command block begins
with plot plotlist. This is followed by some options (gretl options) and some commands
that will be taken in for use in gnuplot. literal that the following command will be passed
to gnuplot as is (i.e., literally). The printf commands are also passed literally to gnuplot as
gnuplot printf commands.

There are two literal commands. The first sets the line type, changes the color of the dots, and
changes the default pointtypoe markers to filled in dots (pt 7). The second literal suppresses the
variable key label.

The printf commands print the previously defined strings to the title, x-axis and y-axis. The
graph appears in Figure 8.5.

8.1.2 Robust Covariance Estimation

Example 8.2 in POES5

To obtain the heteroskedasticity robust standard errors, simply add the ——robust option to
the regression as shown in the following gretl script. After issuing the ——robust option, the
standard errors stored in the accessor $Sstderr (income) are the robust ones.

263

Weelly Food Expenditures vs Income
500

T
Y = 83.4 + 10.2X

550 q

500 ~ B

Food Expenditures per week

5 10 15 20 25 30

Weelkly Income

Figure 8.5: Plot of food expenditures against income with least squares fit.

1 ols food_exp const income —--robust
2 t_interval (Scoeff (income), $Sstderr (income), Sdf, .95)

In the script, we have used the t_interval function to produce the interval. Remember, the
degrees of freedom from the preceding regression are stored in $df. The first argument in the
function indicates the desired distribution, and the last is the coverage probability of the confidence
interval.

The script produces

The 95% confidence interval centered at 10.210 is (6.5474, 13.8719)

This can also be done from the pull-down menus. Select Model>Ordinary Least Squares
(see Figure 2.6) to generate the dialog to specify the model shown in Figure 8.6 below. Note,
the check box to generate ‘robust standard errors’ is circled. You will also notice that there is
a button labeled HC1 just to the right of the ‘Robust standard errors’ check box. Clicking this
button reveals a dialog from which two options can be selected. One can choose to select from the
available heteroskedasticity option or by cluster. The cluster option will be discussed later int this
book. Select the first choice to reveal a preferences dialog box shown in Figure 8.7.

To reproduce the results in Hill et al. (2018), select HC1 (gretl’s default) from the pull-down
list. As you can see, other gretl options can be selected here that affect the default behavior of

264

B greth specify model - O bt

|| oLs
const Dependent variable

| [fond_exp

[Set as default

food_exp

Regressors
const
‘ l;> ‘ income
Robust standard errors
;_; Help ‘ | [!Ei Clear | | %Qancel ‘ ‘ G:EIQK ‘

Figure 8.6: Check the box for (heteroskedasticity) robust standard errors.

the program. The particular variant it uses depends on which dataset structure you have defined
for your data. If none is defined, gretl assumes you have cross-sectional data.

The model results for the food expenditure example appear in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
based on the variant of White’s standard errors chosen using the ‘configure’ button. In this case, I
chose HC3, which some suggest performs slightly better in small samples. The result is:

VARIABLE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 25.4153 141.417
income 10.2096 6.39125 14.0280

8.2 Detecting Heteroskedasticity using Residual Plots

In the discussion above we used a graph of the data and the regression function to give us an
initial reading of whether the data are heteroskedastic. Residual plots are equally useful, but some
care must be taken in generating and interpreting them. By their very nature, plots allow you to
‘see’ relationships one variable at a time. If the heteroskedasticity involves more than one variable
they may not be very revealing.

In Figure 8.8 is a plot of the least squares residuals against income. It appears that for larger

265

B4 aretl: preferences *

General | Programs | Editor | Metwork |HCCME|‘ P |

For cross-sectional data | HC1 <

For time-zeries data | HAC o

I

For panel data | Arellanc “

>

For GARCH estimation | QML

[[] Use robust covariance matrix by default

[] Usethe normal distribution for robust p-values

(&

[JEFFW H xgancel

Figure 8.7: Set the method for computing robust standard errors. These are located under the
HCCME tab. From the pull-down list for cross-sectional data choose an appropriate option-HC1

in this case.

levels of income there is much higher variance in the residuals.

The graph was generated from the model window by selecting Graphs>Residual plot>Against
income. I also right-clicked on the graph, chose Edit and altered its appearance a bit. Summoning

the dialog looks like

I

“ gretl: model 4 ENC X |
E__|

File Edit Tests Save @ Analysis LaTeX
Model 4: OLS, usir EResiduaI plot)

Dependent variable Fitted, actual plot L4 Against food exp
Heteroskedasticity
Residual Q-0 plot

| coefficient std. error t-ratio p-value

-

By observation number

Of course, you can also generate graphs from a script, which in this case is:

266

OLS, using observations 1-40
Dependent variable: food_exp
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t¢-ratio p-value

const 83.4160 28.6509 2.9115 0.0060
income 10.2096 1.88619 5.4128 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 29.29889 P-value(F) 3.63e—06

Table 8.1: Least squares estimates with the usual and robust standard errors.

1 ols food_exp const income —--robust

2 series res = S$uhat

3 setinfo res -d "Least Squares Residuals" -n "Residual"
4

5 list plotmat = res income

6 string title = "Least squares residuals vs Income"

7 string xname = "Weekly Income"

8 string yname = "Residual"

9 g2 <- plot plotmat

options fit=linear
literal set linetype 1 1lc rgb "black" pt 7
literal set nokey
printf "set title \"%s\"", title
printf "set xlabel \"%s\"", xname
printf "set ylabel \"%$s\"", yname
end plot —--output=display

e S e i
s W N = O

In this script we continue to expand the use of gretl functions. The residuals are saved in line 2.
Then in line 3 the setinfo command is used to change the description and the graph label using
the —d and —n switches, respectively. Then gnuplot is called to plot res against income. This
time the output is directed to a specific file. Notice that no suffix was necessary. To view the file
in MS Windows, simply 1launch wgnuplot and load ’'olsres.plt’.

Another graphical method that shows the relationship between the magnitude of the residuals
and the independent variable is shown below:

1 series abs_e = abs(res)

2 setinfo abs_e —-d "Absolute value of the LS\
3 Residuals" -n "Absolute Value of Residual"
4

267

Least squares residuals vs Income

2SD T T T T T T
»
200 4
150 | 4
. L]
100 $. 4
L]
. []
. []
50 |- . . E
[]
= L]
3 . L
= W] L] []
@ LI » .
= - . oo L4
[]
50 o o » |
[]
-100 | o . ® 4
. .
-150 | . i
200 4
L]
-250 1 1 1 1 1 1
5 10 15 20 25 30

Weelkly Income

Figure 8.8: Plot of least squares residuals in the food expenditures model against income.

5 list plotmat = abs_e income

6 string title = "Absolute value of OLS residuals vs Income"
7 string xname = "Weekly Income"

8 string yname = "|e|"

9 g3 <- plot plotmat

10 options fit=loess

11 literal set linetype 1 1lc rgb "black" pt 7
12 literal set nokey

13 printf "set title \"%s\"", title

14 printf "set xlabel \"%s\"", xname

15 printf "set ylabel \"%s\"", yname

16 end plot —--output=display

The graph appears in Figure 8.9. To generate this graph two things have been done. First, the
absolute value of the least squares residuals have been saved to a new variable called abs_e. Then
these are plotted against income as a scatter plot and as a locally weighted, smoothed scatterplot
estimated by process called loess.

The basic idea behind loess is to create a new variable that, for each value of the dependent
variable, y;, contains the corresponding smoothed value, y7. The smoothed values are obtained
by running a regression of y on z by using only the data (z;,y;) and a few of the data points
near this one. In loess, the regression is weighted so that the central point (z;,y;) gets the highest
weight and points that are farther away (based on the distance | z; — x; |) receive less weight.
The estimated regression line is then used to predict the smoothed value y; for y;s only. The

268

Absclute value of OLS residuals vs Income
250 T T T T T T

200 ~ B

|e|

0 5 10 15 20 25 30 35

Weelkly Income

Figure 8.9: Plot of the absolute value of the food expenditures model residuals against income with
loess fit.

procedure is repeated to obtain the remaining smoothed values, which means that a separate
weighted regression is performed for every point in the data. Obviously, if your data set is large,
this can take a while. Loess is said to be a desirable smoother because of it tends to follow the data.
Polynomial smoothing methods, for instance, are global in that what happens on the extreme left
of a scatterplot can affect the fitted values on the extreme right.

One can see from the graph in Figure 8.9 that the residuals tend to get larger as income rises,
reaching a maximum at 28. The residual for an observation having the largest income is relatively
small and the locally smoothed prediction causes the line to start trending downward.

8.3 Weighted Least Squares

Example 8.3 in POES5

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of the
regression line as those observations having low variance. The idea of generalized least squares in
this context is to reweigh the data so that all the observations contain the same level of information
(i.e., same variance) about the location of the regression line. So, observations that contain more

269

noise are given less weight and those containing more signal a higher weight. Reweighing the data
in this way is known is referred to as weighted least squares (WLS). This descriptive term is
the one used by gretl as well.

Suppose that the errors vary proportionally with x; according to
var(e;) = o*x; (8.3)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of z;. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

1
Vi
So, multiply equation (8.1) by 1/,/x; to complete the transformation. The transformed model is

homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

var(e;) = o2 (8.4)

Gretl makes this easy since it contains a function to reweigh all the observations according to a
weight you specify. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/,/x; you need to use its square
1/x; as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, =, and the constant and
running the regression. The script shown below does this.

Create the weight (line 4), then call the function wls as in line 5. In the second part of the
script, the data are transformed manually and the weighted data are used with OLS to produce
the same result.

open "@workdir\datal\food.gdt"

#GLS using built in function

series w = 1/income

wls w food_exp const income

t_interval ($Scoeff (income), $stderror (income), Sdf, .95)

#GLS using OLS on transformed data

series wi = 1/sqrt (income)
series ys = wixfood_exp
series xs = wi*x

series cs = wi

ols ys cs xs

The first argument after wls is the name of the weight variable. This is followed by the regression
to which it is applied. Gretl multiplies each variable (including the constant) by the square root
of the given weight and estimates the regression using least squares.

270

In the next block of the program, w; = 1/,/x; is created and used to transform the dependent
variable, and the constant. Least squares regression using this manually weighted data yields the
same results as you get with gretl’s wls command. In either case, the output of weighted least
squares is interpreted in the usual way.

The weighted least squares estimation yields:

Model 6: WLS, using observations 1-40
Dependent variable: food_exp
Variable used as weight: w

Coefficient Std. Error t-ratio p-value

const 78.6841 23.7887 3.3076 0.0021
income 10.4510 1.38589 7.5410 0.0000

Statistics based on the weighted data:

Sum squared resid 13359.45 S.E. of regression 18.75006

R? 0.599438 Adjusted R? 0.588897
F(1,38) 56.86672 P-value(F) 4.61e-09
Log-likelihood —172.9795 Akaike criterion 349.9591

Schwarz criterion 353.3368 Hannan—Quinn 351.1804

Statistics based on the original data:

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304611.7 S.E. of regression 89.53266

and the 95% confidence interval for the slope 35 is (7.645, 13.257).

To gain some insight into the effect on the model’s errors, plot the OLS residuals and the GLS
residuals shown in Figure 8.10.

1 ols food_exp const income

2 series ehat = S$uhat

3 wls w food_exp const income

4 series ehat_gls=Suhat/sqrt (income)

5

6 list plotmat = ehat_gls ehat income

7 string title = "GLS vs OLS residuals"
8 string xname = "Weekly Income"

271

9
10
11
12
13
14
15
16
17

Notice that the GLS residuals are divided by the v/income to reweigh them.

string yname = "Residual"
g3 <- plot plotmat
option single-yaxis

literal set
literal set
printf "set
printf "set
printf "set

linetype 1 lc rgb "black" pt 7

key on
title \"%s\"", title
xlabel \"%s\"", xname

ylabel \"%s\"", yname

end plot —--output=display

appear to be homoskedatic relative to OLS.

GLS vs OLS residuals

The GLS residuals

250

Ehalt_gls [] I ' I I I
ehat x .
200 ~ B
150 B
x W *
x
100 . i B
x X "
S0 R * 4
_ w » 3 .
3 s o °* . ‘ .Q x .t
° a -
5 * . . " s % .
o - X % Wl e & & » []
50 | X x g *
x
-100 y o X 4
x x
-150 | x .
-200 -
X
-250 1 1 1 1 1 1
3 10 15 20 25 30
Weekly Income
Figure 8.10: OLS and GLS residuals.

8.3.1 Heteroskedastic Model

A commonly used model for the error variance is the multipicative heteroskedasticity
model. It appears below in equation 8.5.

2

o; = exp (a1 + agz;)

(8.5)

The variable z; is an independent explanatory variable that determines how the error variance
changes with each observation. You can add additional zs if you believe that the variance is related

272

to them (e.g., 012 = exp (a1 + 222 + a3z;3)). It’s best to keep the number of zs relatively small.
The idea is to estimate the parameters of (8.5) using least squares and then use predictions as
weights to transform the data.

In terms of the food expenditure model, let z; = In(income;). Then, taking the natural loga-
rithms of both sides of (8.5) and adding a random error term, v;, yields

In (0?) = a1 + agz; + v; (8.6)
To estimate the as, first estimate the linear regression (8.2) (or more generally, 8.1) using least
squares and save the residuals. Square the residuals, then take the natural log; this forms an
estimate of In (02) to use as the dependent variable in a regression. Now, add a constant and the
zs to the right-hand side of the model and estimate the as using least squares.

The regression model to estimate is

In (é?) = 1 + anz + v; (8.7)
where é2 are the least squares residuals from the estimation of equation (8.1). The predictions

from this regression can then be transformed using the exponential function to provide weights for
weighted least squares.

For the food expenditure example, the gretl code appears below.

open "@workdir\datalfood.gdt"
logs income

list x = const income

list =z const 1_income

ml <- ols food_exp x

FGLS inconsistent for alpha

series lnsighat = log(Suhatx$uhat)

ols lnsighat z

matrix alpha = S$coeff

series predsighat = exp ($Syhat)

series w = l/predsighat

m2 <- wls w food_exp const income

series ehat_fgls = S$Suhat/sqgrt (predsighat)

© 0 N9 s W N

e e e e e e
D s W N = O

#FGLS consistent for alpha

matrix alpha[l]l=alphal[l]+1.2704
series wt = 1/exp(lincomb(z, alpha))
m3 <- wls wt food_exp x

Moo= R e
o © o 3

The first four lines get the data set up for use; the data are loaded, natural log of income is added
to the data, and two lists needed for the regression and the heteroskedasticity function are created.

273

Line 6 estimates the linear regression using least squares and saved to the session as an icon labelled
ml.

Next, a new variable is generated (1nsighat) that is the natural log of the squared residuals
from the preceding regression. Estimate the skedastic function using least squares and put the
estimates from this regression into a matrix called, alpha. We do this because the least squares
estimator of the intercept is biased and 1.2704 must be added to it to remove the bias (line 18). This
isn’t strictly necessary to get the correct parameter estimates and standard errors in the weighted
regression. The weights are easily obtained using the 1incomb function, which as seen elsewhere
multiplies za = a1 + ag * In(income);. Remember, gretl automatically takes the square roots of
wt for you in the wls function.

The output is:

Dependent variable: food_exp

(1) (2) (3)
OLS WLS WLS

const 83.42* 76.05** 76.05**
(43.41) (9.713) (9.713)

income 10.21** 10.63** 10.63**
(2.093) (0.9715) (0.9715)

n 40 40 40
l —2355 —=73.18 4777

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Comparing columns (2) and (3) one can see that having a biased estimator of o does not affect the
estimates or standard errors. It does have a very small impact on the log-likelihood, however.

The model was estimated by least squares with the HCCME standard errors in section 8.1. The
parameter estimates from FGLS are not much different than those. However, the standard errors
are much smaller now. The HC3 standard error for the slope was 1.88 and is now only 0.97. The
constant is being estimated more precisely as well. So, there are some potential benefits from using
a more precise estimator of the parameters.

8.3.2 Grouped Data

274

Example 8.5 in POES5

This example, which uses the midwest subset of the cpsd_small. gdt dataset, consists of estimat-
ing wages as a function of education and experience. In addition, an indicator variable is included
that is equal to one if a person lives in a metropolitan area. This is an “intercept” dummy, which
means that folks living in the metro areas are expected to respond similarly to changes in educa-
tion and experience (same slopes), but earn a premium relative to those in rural areas (different
intercept).

The sample is restricted to persons living in the midwest U.S. and summary statistics are
computed for metro and rural areas.

open "@workdir\datalcps5_small.gdt"

Use only metro observations

discrete metro

smpl midwest —--restrict

summary wage educ exper —--by=metro --simple

Ul W N =

The discrete function is not strictly necessary here since the metro variable already carries
this attribute. This is required because the summary statistics use the ——by=metro option that
requires the variable metro to be discrete.

The summary statistics are:

metro = 0 (n = 84):

Mean Median S.D. Min Max
wage 18.86 17.84 8.520 5.780 53.84
educ 13.99 13.00 2.263 8.000 20.00
exper 24 .30 25.00 14.32 1.000 56.00
metro = 1 (n = 213):

Mean Median S.D. Min Max
wage 24 .25 21.63 14.00 6.170 80.77
educ 14.25 14.00 2.771 3.000 21.00
exper 23.15 23.00 13.17 0.0000 52.00

Average wages in the metro areas are $24.25/hour and only $18.86 in rural areas.

Two regressions are estimated. The first is by OLS using robust standard errors. The second
uses FGLS with the multiplicative model where In(é?) = oy + apmetro. Since metro is an indicator
variable, heteroskedasticity will only take one of two values. Metro areas will have a different
variance than rural ones.

275

OLS w/robust std errors
ml <- ols wage const educ exper metro —--robust

Multiplicative Heteroskedasticity FGLS
series lnsighat = log(Suhatx$uhat)
series z = const metro

scalar alpha = $coeff (metro)

ols lnsighat z

series predsighat = exp ($Syhat)

series w = 1/predsighat

m2 <- wls w wage const educ exper metro

© 0 N A W N

=
=)

The session icons were added to a model table and the results are found below:

Dependent variable: wage

(1)

(2)

OLS WLS
const —18.45* —16.97**
(4.023) (3.788)
educ 2.339** 2.258**
(0.2606) (0.2391)
exper 0.1890** 0.1747**
(0.04783) (0.04472)
metro 4.991** 4.996**
(1.159) (1.214)
n 297 297
R? 0.2749 0.2815
Y4 —1133 —617.5

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

One feature of these results is counterintuitive. Notice that the reported R? for WLS is larger
than that of OLS. This is a consequence of using the generalized version discussed in section 4.2.
Otherwise, the WLS estimates are fairly similar to OLS (as expected) and the estimated standard
errors are a bit smaller, at least for slopes on education and experience.

276

8.4 Maximum Likelihood Estimation

The two-step estimation of the multiplicative heteroskedasticity model can be improved upon
slightly by estimating the model via maximum likelihood. Maximum likelihood estimation of the
model requires a set of starting values for the parameters that are easily obtained via the two-step
estimator. The log-likelihood is:

n 1 — 1 = u?
lnL:—§ln2ﬁ—§Zan?—§Za—; (8.8)
i=1 =1 "t
where 07 = exp{aj + a2 * In(income;)} and u; are the residuals from the regression.
1 # Assemble lists for x and z
2 list z = const 1_income
3 list x = const income
4 series y = food_exp
5
6 # Starting values
7 ols y x
8 series lnsighat = 1ln(Suhat”2)
9 ols lnsighat =z
10 matrix alpha = S$coeff
11
12 # MLE
13 mle loglik = -0.5 % 1In(2xpi) - 0.5%zg — 0.5xe”2xexp(-zQg)
14 series zg = lincomb(z, alpha)
15 series e = y — lincomb(x, beta)
16 params beta alpha

17 end mle

The first part of the script is basically the same as the one in the preceding section. The only
change is that I placed the food_exp into a new series called y. This cosmetic change makes the
mle block appear to be more general. It should work with any x, z, and y that has previously been
properly populated.

The mle function operates on an observation by observation basis, hence there was no need to
use n and the summations from equation (8.8). The first series in line 14 is for the skedasticity
function and the second, in line 15, gets the residuals. These are the only inputs we need for 1oglik
defined in line 13 (provided you have defined the series x and z and provided starting values for the
parameter vectors alpha and beta). As written, the routine uses numerical derivatives to search
for the values that maximize the log-likelihood function. Analytical ones may be specified, which
is sometimes useful. Here, the numerical ones work just fine as seen below.

The results are:

277

Using numerical derivatives
Tolerance = 1.81899e-012

Function evaluations: 68
Evaluations of gradient: 39

Model 11: ML, using observations 1-40
loglik = -0.5 * 1In(2%pi) - 0.5xzg - 0.5%e"2xexp(-zg)
Standard errors based on Outer Products matrix

estimate std. error z p-value
betall] 76.0728 8.39834 9.058 1.33e-019 **%*
betal2] 10.6345 0.975438 10.90 1.12e-027 **%*
alphall] 0.468398 1.80525 0.2595 0.7953
alphal2] 2.76976 0.611046 4.533 5.82e-06 %%
Log-likelihood -225.7152 Akaike criterion 459.4304
Schwarz criterion 466.1859 Hannan-Quinn 461.8730

You can see that these are very similar to the ones from weighted least squares.

One of the advantages of using this approach is that it yields a t-ratio for the hypothesis:

The alternative is specific as to the form of the heteroskedasticity (multiplicative) as well as the
cause (In(income). Because the model is estimated by maximum likelihood, the asymptotic distri-
bution of the t-ratio is N(0,1). Gretl produces a p-value from this distribution in the output, which
in this case is less than 0.05 and hence you can reject the null in favor of this specific alternative
at that level of significance.

8.5 Detecting Heteroskedasticity using Hypothesis Tests

8.5.1 Goldfeld Quandt Test

Using examples from Hill et al. (2018) a model of grouped heteroskedasticity is estimated and
a Goldfeld-Quandt test is performed to determine whether the two sample subsets have the same
error variance. The error variance associated with the first subset is 02 and that for the other

subset is o3.

278

The null and alternative hypotheses are

L2 2
Hy: o0y =05

H, : 0} # o3

Estimating both subsets separately and obtaining the estimated error variances allow us to

construct the following ratio:
A2/ 2
61/0%
~ F 8.9
&%/U% dfy,dfy (8.9)
where df; = n1 — k1 from the first subset and df, = ng — ko is from the second subset. Under the

null hypothesis that the two variances are equal, 0} = o3,

F:

&1
GQ=—3 ~ Fu, ap, (8.10)
2

This is just the ratio of the estimated variances from the two subset regressions.

Grouped Data: Example 8.6 in POES5

In this example we return to the wage equations estimated using the cpsd_small.gdt data. The
Goldfeld-Quandt test compares variances of the metro and rural areas. Again, the sample is limited
to observations from the midwest region of the U.S.

The data are loaded and the sample restricted to the midwest. The ——permanent option is
used, which substitute the restricted dataset for the original. Once the restricted sample is flagged
as permanent, the smpl full command restores only the midwest subsample.

1 open "@workdir\datalcps5_small.gdt"
2 smpl midwest —--restrict —--permanent

Next, the metro subsample is estimated and its & and degrees of freedom are saved. The midwest
subsample is restored using smpl full and the rural subsample estimated. The GQ statistic is
computed and the result returned.

3 smpl metro=1 —--restrict # Use only metro sample

4 o0ls wage const educ exper

5 scalar stdm = $sigma # sighat metro

6 scalar df_m = S$df # metro df

7

g smpl full # Restore the full sample

9 smpl metro=0 —--restrict # Use only rural observations

279

10 ols wage const educ exper

11 scalar stdr = $sigma # sighat rural
12 scalar df_r = $df # rural df

13

14 scalar gg = stdm”2/stdr"2 # GQ statistic
15

16 scalar critl = critical(F, df_m, df_r, .025)

17 scalar crit?2 1/critical (F, df_r, df_m, .025)
18

19 printf "\nThe F(%d, %d) statistic = %.3f.\n\
20 The left 0.025 critical value is %.4g\n\

21 The right 0.025 critical value is %.3f\n",df_m,df_r,gqg,crit2,critl

This results in:

The F (210, 81) statistic = 2.603.
The left 0.025 critical value is 0.7049
The right 0.025 critical value is 1.461

The GQ statistic is in the right-hand rejection region of this test and we conclude that the data
are heteroskedastic at the 5% level.

Food Expenditures: Example 8.7 in POES5

In this example the data are sorted by income (low to high) and the subsets are created using
observation numbers. This is accomplished using the GUI. Click Data>Sort data from the main
menu bar to reveal the dialog box shown on the right side of Figure 8.11. The large income group
is expected to have larger variance so its estimate will be placed in the numerator of the GQ ratio.
The script is:

—

open "@workdir\datalfood.gdt"

2 dataset sortby income

3 list x = const income

4

5 smpl 21 40 # large variance observations
6 ols food_exp x

7 scalar stdL = $sigma # sighat large variance

8 scalar df_L = s$df # df large variance subset

9

10 smpl 1 20 # small variance observations
11 ols food_exp x

12 scalar stdS = $sigma # sighat small variance

scalar df_S = $df
ggq = stdL"2/stdS"2

=+

df small variance subset
GQ statistic

-
w

=+

=
IS

280

Ed ore - O *

File Tools Wiew Add Sample Nariable Medel Help =
food.gdt ™ Select all Cirl+A | C:\Users\leead\Documents\gretl\poe3
Dz | vari T4 Find variable... Ctrl+F

0 cong

Define or edit list...

- Set selection from list...
2 inco

Display values ﬁ

Edit values Select sort key
Add chservations...
income | 2

Dataset info @ Ascending

Observation markers...) Descending

Variable labels...

R
Diataset structure... 4 Help | | %Qancel | | dQK |

Transpose data...
Sort data...
Set missing value code...

@ i Count missing values

Il range 1- 40

Figure 8.11: Select Data>Sort data from the main menu bar to reveal the dialog box shown on
the right side of of this figure. Choose the desired sort key and indicate whether you want to sort
in ascending or descending order.

15
16 printf "\nThe F (%d, %d) statistic = %.3f. The right\
17 side p-value is %.4g.\n",df_L,df_S,gq,pvalue(F, df_L, df_S, gq)

This yields:

The F (18, 18) statistic = 3.615. The right side p-value is 0.004596.

The dataset sortby command is used in line 2 to sort the data without using the GUL! This
allows us to use the smpl 21 40 command to limit the sample to observations 21-40 for the first
subset. The other minor improvement is to use the 1ist command in line 3 to specify the list of
independent variables. This is useful since the same regression is estimated twice using different
subsamples. The homoskedasticity null hypothesis is rejected at the 5% level since the p-value is
smaller than 0.05. Each subset (metro and rural) is estimated separately using least squares and
the standard error of the regression is saved for each ($sigma). Generally, you should put the
group with the larger variance in the numerator. This allows a one-sided test and also allows you
to use the standard p-value calculations as done below.

'Replace sortby income with dsortby income to sort the sample by income in descending order.

281

8.5.2 Lagrange Multiplier Tests

There are many tests of the null hypothesis of homoskedasticity that have been proposed else-
where. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. The
first is sometimes referred to as the Breusch-Pagan (BP) test. The second test is credited to White.
The null and alternative hypotheses for the Breusch-Pagan test are

:0’2

HO : 012
H, 2 _ h(oq + a9zio + ... OésZiS)

: 1

The null hypothesis is that the data are homoskedastic. The alternative is that the data are
heteroskedastic in a way that depends upon the variables z;5, s = 2,3,...,5. These variables are
exogenous and correlated with the model’s variances. The function h(-), is not specified. It could
be anything that depends on its argument, i.e., the linear function of the variables in z. Here are
the steps:

1. Estimate the regression model

2. Save the residuals

3. Square the residuals

4. Regress the squared residuals on z;5, s =2,3,...,5.

5. Compute nR? from this regression and compare it to the « level critical value from the X?S‘—l
distribution.

The gretl script to perform the test manually is

ols food_exp const income
series sg_ehat = $uhat=*Suhat
ols sqg_ehat const income
scalar NR2 = S$trsg

pvalue X 1 NR2

Ul W N =

The only new item in this script is the use of the accessor, $trsq. This is the saved value of nR?
from the previously estimated model. The output from the script is

1 Replaced scalar NR2 = 7.38442
2 Chi-square(l): area to the right of 7.38442 = 0.00657911
3 (to the left: 0.993421)

282

The p-value is less than 5% and we would reject the homoskedasticity null at that level. The
heteroskedasticity seen in the residual plots appears to be confirmed.

Gretl has a built-in function that will compute a special case of the BP test that yields the
same result in this example. The

1 ols food_exp const income
2 modtest —--breusch-pagan

Produces

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-40
Dependent variable: scaled uhat”2

coefficient std. error t-ratio p-value
const -0.756949 0.633618 -1.195 0.2396
income 0.0896185 0.0305534 2.933 0.0057 *xxx

Explained sum of squares = 14.6879

Test statistic: LM = 7.343935,
with p-value = P (Chi-square(l) > 7.343935) = 0.006729

The functionality of modtest —--breusch-pagan is limited in that it will include every
regressor in the model as a z. It matches the result we derived manually because the model only
includes income as the regressor. The modtest —--breusch-pagan uses it as z. This means
that you can’t test a subset of the regressors with this function, nor can you use it to test for
heteroskedasticity of exogenous variables that are not included in the regression function.

To facilitate this more restrictive formulation of a BP test a short program is given to make
computing it quite simple.

1 function void BP_test (series y, list xvars, list zvars)
2 ols y xvars —--quiet

3 series ehat_2 = S$Suhat”2

4 ols ehat_2 zvars —--quiet

5 scalar pval = pvalue (X,nelem(zvars)-1,S$trsq)

6 printf "Z-Variables: %s", varname (zvars)

7 printf "\nBreusch-Pagan test: nR2 = %.3f\

8 p-value = %.3f \n", S$trsqg, pval

9 end function

283

The function is called BP_test and it takes three inputs. The first is a series for the dependent
variable of the model. The second is a 1ist of the regression’s independent variables, including
a constant. The third is a 1ist of variables that cause heteroskedasticity in the tests alternative
hypothesis.

The operation of the function should be obvious. The model is estimated and the squared
residuals put into a series. Line 4 estimates the auxiliary regression for the BP test using the
variables in zvars. The p-value is computed and everything is printed to the screen, including the
variables in z.

Usage is simple.

1 list xvars = const income
2 list zvars = const income
3 BP_test (food_exp, xvars, yvars)

This produces:

Z—-Variables: const, income
Breusch-Pagan test: nR2 = 7.384 p-value = 0.007

This confirms both of the computations above.

8.5.3 The White Test

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and alternative
hypotheses are

2

Hy:0? =0¢* foralli

Hl:aiz;éajz« for at least 14 # j

This is a composite alternative that captures every possibility other than the one covered by the
null. If you know nothing about the nature of heteroskedasticity in your data, then this is a
good place to start. The test is very similar to the BP test. In this test, the heteroskedasticity
related variables (z;s, s = 2,3,...,5) include each non-redundant regressor, its square, and all cross
products between regressors. See POFES for details. In the food expenditure model there is only
one continuous regressor and an intercept. So, the constant squared and the cross product between
the constant and income are redundant. This leaves only one unique variable to add to the model,
income squared.

In gretl generate the squared value of income and regress the squared residuals from the model
on income and its square. Compute nR? from this regression and compare it to a level critical

284

value from the x2(S — 1) distribution. As is the case in all the LM tests considered in this book,
n is the number of observations in the second or auxiliary regression.

As with the BP test there is a built-in function that computes White’s test. It generates all
of the squares and unique cross-products to add to the model. The script to do both manual and
built-in tests is found below:

ols food_exp const income

series sg_ehat = S$uhat=*Suhat
series sqg_income = income”2

ols sg_ehat const income sg_income
scalar NR2 = $trsg

pvalue X 2 NR2

ols food_exp const income -—-quiet
modtest --white --quiet

© 0w N O s W N

The results from the two match perfectly and only that from the built-in procedure is produced
below:

White’s test for heteroskedasticity

Test statistic: nR"2 = 7.555079,
with p-value = P (Chi-square(2) > 7.555079) = 0.022879

The homoskedasticity null hypothesis is rejected at the 5% level.

Note, our BP_test function can be used as well, although there is no need to do so. In fact,
if the regressor list is long, it would be tedious to assemble the variable list for zvars.

1 list xvars = const income
2 list zvars = const income sg_income # all vars, squares, and cross-prods
3 BP_test (food_exp, xvars, zvars)

Breusch-Pagan test: nR2 = 7.555 p-value = 0.023

It matches. The key is to include each variable, its square (if unique), and cross-products in the
list of variables for the heteroskedasticity function. With only a constant and a continuous variable
in the model that amounts to a constant, income, and income squared.

285

8.5.4 Variance Stabilizing Transformation

Example 8.8 in POES5

In this example a simple model of household entertainment expenditures is estimated and tested
for heteroskedasticity using the Breusch-Pagan test. In this section, we propose a simple function
that will compute the test and report the outcome to the display.

The model to be estimated is:
entert; = 1 + Baincome; + PBzcollege; + Byadvanced; + e;

The sample is censored to include only those with positive entertainment expenditures. The inde-
pendent variables are monthly income in $100, and indicator for highest degree is Bachelor’s, and
an indicator equal to 1 if the highest degree is masters/professional/PhD.

Frequency plots of the data in levels and natural logs appear below in Figures 8.12 and 8.13. It
is clear that entertainment levels is highly skewed and that taking the logarithms produces a more
even distribution. Breusch-Pagan tests are conduced with z; = 1, income;.

1 open "@workdir\datalcex5_small.gdt"

2 smpl entert>0 —--restrict

3 logs entert

4 gl <- freqg entert --plot=display --silent

5 g2 <— freq l_entert --plot=display --silent
6

7 list xvars = const income college advanced
8 list zvars = const income

9

BP_test (entert, xvars, zvars)
BP_test (1_entert, xvars, zvars)

-
(=]

The results of the BP test show:

Z-Variables: const,income
Breusch-Pagan test: nR2 = 31.337 p-value = 0.000
Z—-Variables: const, income
Breusch-Pagan test: nR2 = 0.355 p-value = 0.551

The null hypothesis of no heteroskedasticity due to income in the levels model is rejected and not
rejected in the log-linear model.

8.6 Heteroskedasticity in the Linear Probabilty Model

286

Relative frequency

I, L L -
1] 100 200 300 400 500 600 700 800
entert

Figure 8.12: Levels of household entertainment expenditures.

Relative frequency

|_entert

Figure 8.13: Natural Log of household entertainment expenditures.

Example 8.9 in POE5

The linear probability model was introduced in Chapter 7. It was shown that the indicator
variable, y; is heteroskedastic. That is,

var(y;) = mi(1 —m;) (8.11)

where 7; is the probability that the dependent variable is equal to 1 (the choice is made). The
estimated variance is -

var(y;) = Ti(1 — ;) (8.12)
This can be used to perform feasible GLS. The cola marketing data coke.gdt is the basis for this
example. The independent variable, coke, takes the value of 1 if the individual purchases Coca-
Cola and is 0 if not. The decision to purchase Coca-Cola depends on the ratio of the price relative
to Pepsi, and whether displays for Coca-Cola or Pepsi were present. The variables disp_coke=1
if a Coca-Cola display was present, otherwise 0; disp_pepsi=1 if a Pepsi display was present,
otherwise it is zero.

287

1 First, the data are loaded and the summary statistics are provided.
2 open "@workdir\datalcoke.gdt"

3 summary —--simple

4 list x = const pratio disp_coke disp_pepsi

The ——simple option is used for the summary command. Then a 1ist is created that contains
the names of the independent variables to be used in the estimated models. The basic summary
statistics are:

Mean Median S.D. Min Max
coke 0.4474 0.0000 0.4974 0.0000 1.000
pr_pepsi 1.203 1.190 0.3007 0.6800 1.790
pr_coke 1.190 1.190 0.2999 0.6800 1.790
disp_pepsi 0.3640 0.0000 0.4814 0.0000 1.000
disp_coke 0.3789 0.0000 0.4853 0.0000 1.000
pratio 1.027 1.000 0.2866 0.4972 2.325

Everything looks good. There are no negative prices, and the indicator variables are all contained
between 0 and 1. The magnitudes of the means are reasonable.

Next, least squares is used to estimate the model twice: once with usual standard errors and
again with the HCCME standard errors produced by the ——robust option. Each is added to a
model table using modeltab add.

OLS

ols coke x
modeltab add

OLS w/robust

ols coke x ——-robust
modeltab add

o o - W [-

Feasible GLS will be estimated in two ways. In the first regression, we will omit any observation
that has a negative estimated variance. Remember that one of the problems with linear probability
is that predictions are not constrained to lie between 0 and 1. If §; < 0 or g; > 1, then variance
estimates will be negative. In the first line below a new series is created to check this condition.
If the variance, varp, is greater than zero, pos will be equal to 1 and if not, then it is zero. The
second line creates a weight for wls that is formed by multiplying the indicator variable pos times
the reciprocal of the variance. In this way, any nonnegative weights become zeros.

Remove observations with negative variance
1 series p = $yhat

2 series varp = px* (1l-p)
3 series pos = (varp > 0)

288

series w = pos * 1/varp
omit regression

wls w coke x

modeltab add

N O O s

The first line uses the accessor for the predicted values from a linear regression, $yhat, and
therefore it must follow least squares estimation of the linear probability model; in this model, they
are interpreted as probabilities. Once again, a trick is being used to eliminate observations from
the model. Basically, any observation that has a zero weight in w is dropped from the computation.
There are equivalent ways to do this in gretl as shown below

Two other ways to drop observations
smpl varp>0 —--restrict

setmiss 0 w

The restricting the sample is probably the most straightforward method. The second uses the
setmiss command that changes the missing value code to 0 for elements of w; any observation
where w=0 is now considered missing and won’t be used to estimate the model.

Finally, another feasible GLS estimation is done. This time, p; is truncated at 0.01 if g; < 0.01
and to 0.99 if g; > 0.99. The code to do this is

WLS with truncated variances for observations out of bounds
series b = (p<.01l) || (p>.99)

series pt = bx0.01 + px(l-b)
series varp_t = ptx(l-pt)
series w_t = 1/varp_t

wls w_t coke x

modeltab add

modeltab show

N g s W N =

The first line creates another indicator variable that takes the value of 1 if the predicted probability
falls outside of the boundary. The || is a logical operator that takes the union of the two condi-
tions (=“OR”). The second line creates the truncated value of the probability using the indicator
variable.

b(0.01) +p(1 —b) =0.01 whendb=1

b(0.01) +p(1 —b) =p when b =0
There is another, less transparent, way to generate the truncated probabilities: use the ternary

conditional assignment operator first discussed in section 2.8.3. This operates like an if statement
and can be used to save a line of script. This syntax would create the series as

289

series pt = ((p<.01l) || (p>.929)) 2 0.01 : p

The bound condition in parentheses (p < .01)||/(p > .99) is checked: that is what the question
mark represents. If the condition is true, pt is set to the first value that appears in front of the
colon. If false, it is set to the value specified to the right of the colon. It operates very much like a
traditional if statement in a spreadsheet program. This method is more efficient computationally
as well, which could save some time if used in a loop to perform simulations.

Once the truncated probabilities are created, then the usual weighted least squares estimation
can proceed. The model table appears below:

Dependent variable: coke

(1) (2) (3) (4)

OLS OLS WLS WLS
const 0.8902** 0.8902** 0.8795** 0.6505**
(0.06548) (0.06563) (0.05897) (0.05685)
pratio —0.4009** —0.4009** —0.3859** —0.1652**
(0.06135) (0.06073) (0.05233) (0.04437)
disp_coke 0.07717** 0.07717** 0.07599** 0.09399**
(0.03439) (0.03402) (0.03506) (0.03987)
disp_pepsi —0.1657** —0.1657** —0.1587** —0.1314**
(0.03560) (0.03447) (0.03578) (0.03540)
n 1140 1140 1124 1140
R? 0.1177 0.1177 0.2073 0.0865
¢ —748.1 —748.1 —1617 —1858

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Columns (1) and (2) are the OLS estimates with usual and robust standard errors, respectively.
Column (3) uses WLS with the negative variance observations omitted from the sample. Column
(4) is WLS with the negative predictions truncated. These results are quite a bit different from
the others. This no doubt occurs because of the large weight being placed on the 16 observations
whose weights were constructed by truncation. The var(e;) = 0.01(1 — 0.01) = 0.0099. The square
root of the reciprocal is approximately 10, a large weight to be placed on these 16 observations
via WLS. Since these extreme observations carry a large weight relative to the others, they exert a
considerable influence on the estimated regression.

290

8.7 Heteroskedastic-Consistent Standard Errors

The least squares estimator can be used to estimate the linear model even when the errors are
heteroskedastic with good results. As mentioned in the first part of this chapter, the problem with
using least squares in a heteroskedastic model is that the usual estimator of precision (estimated
variance-covariance matrix) is not consistent. The simplest way to tackle this problem is to use
least squares to estimate the intercept and slopes and use an estimator of least squares covariance
that is consistent whether errors are heteroskedastic or not. This is the so-called heteroskcedasticity
robust estimator of covariance that gretl uses.

In this example, the food expenditure data is used to estimate the model using least squares
with both the usual and several variations of the robust sets of standard errors. Based on these,
95% confidence intervals are computed.

Start by estimating the food expenditure model using least squares and add the estimates, which
are saved as icons to the session, to a model table. Reestimate the model using the ——robust
option and store the results as icons. Open the session icon view, drag the models to the model
table and open it for viewing.?

open "@workdir\datalfood.gdt"
list xvars = const income
Incorrect <- ols food_exp xvars —-—-quiet

t_interval ($Scoeff (income), $stderr (income), $df, 0.95)
set hc_version 1

HC1l <- ols food_exp xvars —--robust —--quiet
t_interval (Scoeff (income), $stderr (income), $df, 0.95)
set hc_version 2

HC2 <- ols food_exp xvars —-robust ——quiet
t_interval (Scoeff (income), $stderr (income), $df, 0.95)
set hc_version 3

HC3 <- ols food_exp xvars —--robust --quiet
t_interval (Scoeff (income), $stderr (income), $df, 0.95)

© 0 N 3 ks W N

o
N o= O

-
w

The model table,

OLS estimates
Dependent variable: food_exp

(Incorrect) (HC1) (HC2) (HC3)

const 83.42* 83.42** 83.42** R83.42**
(43.41) (27.46) (27.69) (28.65)

income 10.21** 10.21** 10.21** 10.21**

20r, you could use the modeltab commands in the script.

291

(2.093) (1.809) (1.823) (1.886)

n 40 40 40 40
R? 0.3850 0.3850 0.3850 0.3850
4 —235.5 —235.5 —2355 —235.5

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the coeflicient estimates are the same across the columns, but that the estimated
standard errors are different. The robust standard error for the slope is actually smaller than the
usual one.

A number of commands behave differently when used after a model that employs the ——robust
option. Using this option forces subsequent Wald tests based on least squares estimates to use the
HCCME for computation. This ensures that results from omit or restrict will be statistically valid
under heteroscedasticity when the preceding regression is estimated with the ——robust flag.

The confidence intervals are computed using the t_interval program supplied with this
manual. The results:

The 95% confidence interval centered at 10.210 is
The 95% confidence interval centered at 10.210 is
The 95% confidence interval centered at 10.210 is
The 95% confidence interval centered at 10.210 is

5.9721, 14.4472
6.5474, 13.8719
6.5183, 13.9010

(
(
(
(6.3913, 14.0280

—_— — — —

which refer to models ‘Incorrect’, ‘HC1’, ‘HC2’ and ‘HC3,’ respectively.

8.8 Monte Carlo simulation of OLS, GLS and FGLS

There are five different designs in this simulation. All are based on a linear model
Yy=5+x2+0xx3+¢€
The heteroskedasticity function is
h(z2) = 3exp(1 + axz)/h

The heteroskedasticity is controllec_l via a, which can be 0, 0.3, and 0.5. Sample sizes are either 100
or 5000. In the simulation below, h has been computed and is