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Binary choice models that contain endogenous regressors can now be estimated routinely using
modern software. Two packages, Stata 10 [1] and Limdep 9 [2], each contain two estimators
that can be used to estimate such a model. Both contain maximum likelihood estimators,
though they differ slightly in their computations details and yield marginally different results.
Stata also includes a simple generalized least squares estimator suggested by Amemiya and
explored by Newey that is computationally simple, though not necessarily efficient. Limdep
also allows a user to use a plug-in estimator in conjunction with a ‘robust’ variance-covariance
estimator. This choice is available, though, when there is only one endogenous regressor.

This paper compares the performance of these and three other estimators in samples of size
200 and 1000 using simulation. Specifically, the paper focuses on tests of parameter significance
under various degrees of instrument strength and severity of endogeneity. Although the MLE
performs well in large samples, there is some evidence that the more computationally robust
AGLS estimator may perform better in smaller samples when instruments are weak. It also
appears that instruments in endogenous probit estimation need to be even stronger than when
used in linear IV estimation.
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1. Introduction

Yatchew and Griliches [3] analyze the effects of various kinds of misspecification
on the probit model. Among the problems explored was that of errors-in-variables.
In linear regression, a regressor measured with error causes least squares to be
inconsistent and similar results are found in binary choice models [3]. Rivers and
Vuong [4] and Smith and Blundell [5] suggest two-stage estimators for probit and
tobit, respectively. The strategy is to model a continuous endogenous regressor
as a linear function of the exogenous regressors and some instruments. Predicted
values from this regression are then used in the second stage probit or tobit. These
two-step methods are not efficient, but are consistent. Consistent estimation of the
standard errors is not specifically considered and these estimators are used mainly
to test for endogeneity of the regressors—not their statistical significance.

Newey [6] explores the more generic problem of endogeneity in limited dependent
variable models (which include probit and tobit). He proposes what is sometimes
called Amemiya’s Generalized Least Squares (AGLS) estimator as a way to effi-
ciently estimate the parameters of probit or tobit when they include a continuous
endogenous regressor. This has become a standard way to estimate these models
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and is an option in Stata 10.0 when the MLE is difficult to obtain. The main
benefit of using this estimator is that it produces a consistent estimator of the
standard errors and can easily be used to test the statistical significance of the
model’s parameters.

More recent papers have explored limited dependent variable models that have
discrete endogenous regressors. Nicoletti and Peracchi [7] look at binary response
models with sample selection, Kan and Kao [8] consider a simulation approach to
modeling discrete endogenous regressors, and Arendt and Holm [9] extends [7] to
include multiple endogenous discrete variables.

Iwata [10] uses a very simple approach to dealing with errors-in-variables for
probit and tobit. He shows that simple recentering and rescaling of the observed
dependent variable may restore consistency of the standard IV estimator if the true
dependent variable and the IVs are jointly normally distributed. His Monte Carlo
simulation shows evidence that the joint normality may not be necessary to obtain
improved results. However, the results for tobit were quite a bit better than those
for probit. The Iwata estimator is reconsidered below in the context of endogenous
probit model.

Blundell et al. [11] develop and implement what they refer to as “semiparametric
methods for estimating binary response (binary choice) models with continuous
endogenous regressors.” Their approach enables one to account for endogeneity in
triangular and fully simultaneous binary response models. [11, p. 655]

In this paper I compare the AGLS estimator to several alternatives. The AGLS
estimator is useful because it is simple to compute and yields consistent estimators
of standard error that can be used for significance tests of the model’s parameters.
The other plug-in estimators [for example, 2SCML considered in 4] are consis-
tent for the parameters but not the standard errors, making it unlikely that they
will perform satisfactorily in hypothesis testing. This was a preliminary finding of
Adkins [12].

The Monte Carlo design is based on that of Rivers and Vuong [4], which gives
us a way to calibrate results. Their purpose was different from ours, but the set
of estimators they examined is at least partially relevant. They compared three
different 2-step estimators and a limited information maximum likelihood estimator
(ML) based on computation ease, bias and MSE, asymptotic efficiency, and as the
basis for an exogeneity test. In these limited dimensions, the 2SCML actually
performs reasonably well compared to the ML estimator.

The instruments used in [4] were very highly correlated with the endogenous vari-
able; in effect the instruments they used would be classified as being very strong;
they did not assess the behavior of the estimators when instruments are weak. The
other major departure is that the emphasis here is on hypothesis testing, rather
than bias and mse. Given that the actual value of the location parameters in the
probit model have little inherent meaning (since, under the usual normalization,
the scale parameter is not identified) the magnitude of bias is not that meaningful—
it lacks a scale; what matters is whether the variable(s) in question affect(s) the
probability of observing the event and to a lesser extent a comparison of the mag-
nitudes of significant marginal effects. Consequently, this paper measures the size
distortions of the various t-ratios based on the asymptotic normality of distribu-
tions.

2. Statistical Model

Following the notation in [6], consider a linear statistical model in which the con-
tinuous dependent variable will be called y; but it is not directly observed. Instead,
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we observe 1; in only one of two possible states. So,
yy =Y+ Xuy+u =20 +u, t=1,....N (1)
where Z; = [Y;, Xy4], 67 = [BT,47T], Y; is the t'* observation on an endogenous

explanatory variable, X7; is a 1xs vector of exogenous explanatory variables, and
d is the gx1 vector of regression parameters. The endogenous variable is related to
a 1.X K vector of instrumental variables X; by the equation

Y = Xqillh + Xopllp + V; = X411 4V, (2)

where V; is a disturbance. The K — s variables in Xo; are additional exogenous ex-
planatory variables. Equation (2) is the reduced form equation for the endogenous
explanatory variable. Without loss of generality only one endogenous explanatory
variable is considered below. See [6] for notation extending this to additional en-
dogenous variables.

In some cases, ¥y} is not directly observed. Instead, we observe

1 yf>0
— 3
o {O otherwise 3)

Assuming the errors of the model (1), w, are normally distributed leads to the
probit model.

3. Estimators

One is certainly free to use simple linear estimators of this model to estimate §.
Collecting the n observations into matrices y, X, and Z of which the t" row is
yf, Xi, and Z;, respectively, least squares estimator is s = (Z7Z)71Z"y. The
least squares estimator is only consistent if Z is exogenous or predetermined. Still,
it is easy to compute and the degree of inconsistency may be small in certain
circumstances.

Iwata [10] suggests a means of rescaling and recentering (RR) y; that may im-
prove the performance of least squares. The transformation of y; is straightforward:

~ ~

g = (ye —¥)/9 (4)
and 6 = 7 1(3), ¢ = ¢(6), and ) = §j — $d; ¢ and ® are the standard normal pdf
and cdf, respectively. Collecting all observations into the vector ¢ and replace y in
the least squares estimator yields:

S’rrols = (ZTZ)_IZTg (5)

The dependent variable, v, is heteroskedastic so a sandwich covariance [13, p.
199] is often recommended to obtain consistent standard errors.

Suoo= (2T 2) 1 zT0z(z7 7)) (6)

where €2 is an nxn diagonal matrix with the #*" diagonal element equal to 42, the
squared RROLS residual. The endogeneity of elements of Z ruins the proposed
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consistency of HCO, but this estimator is compared to other consistent ones, both
by [10] and below.

The usual linear instrumental variable estimator is also inconsistent and het-
eroscedastic. Iwata [10] again suggests rescaling and recentering (RR) the data
that can bring about consistency in this case. Iwata’s rescaled and recentered gen-
eralized method of moments estimator (RRGMM) estimator is

Orrgmm = (ZEVXHXTZ) ' ZTXHX Ty (7)

where 3 is the rescaled and recentered binanry dependent variable, H=XT(OX and
Q) is an nxn diagonal matrix with the #¥” diagonal element equal to 47, the squared
IV residual. The variance-covariance is simply estimated using (Z7 X HXT 7)=11
The usual probit mle can be used. However, if the regressors are endogenous,
then this estimator is also inconsistent, [3].
To develop the notation a bit further, let the probability that y; is equal one be
denoted

pr(ys = 1) = ®(yr, V2B + X1ey) = (s, Z16) (8)

where once again ® is the normal cumulative density, y; is the observed binary
dependent variable, and Y;3 + X4y is the (unnormalized) index function. The
usual normalization sets o> = 1. Basically, this equation implies that Y;, and Xy,
be included as regressors in the probit model and the log likelihood function is
maximized with respect to 67 = [37,~y7]. Since the endogeneity of Y; is ignored,
the mle is inconsistent.

Another approach is to use predicted values of Y; from a first stage least squares

estimation of equation (2). Denote the first stage as Y; = X,1I; + Xo/1lo = X, 11
where X; = [X1;:Xy] and TI7 = [IT7I1%]. Then the conditional probability

pr(ye =1) = @(yt, Zt5) 9)

with Z; = [thX 1t]. The parameters are found by maximizing the conditional likeli-
hood. This is referred to here as IV probit (IVP) or simply the ‘plug-in’ estimator.

The major problem with the plug-in estimator is that the usual variance-
covariance estimator yielded from maximizing the conditional likelihood is incon-
sistent. Murphy and Topel [14] consider a relatively simple solution to this problem
that can be composed after estimation of the first and second stage regressions. The
MT computation is fairly simple when one has a single endogenous explanatory
variable, but not when there are more than one.

Using the result in [15, p. 507], the Murphy-Topel (MT) estimator of the variance-
covariance is

V = Vs + V;[CV,.CT — RV,CT — CV,RT|Vj (10)

where V; is the estimated covariance of the least squares estimated reduced form,
Vs is the estimated covariance from the second stage probit, C is the sum of the
product of the probit loglikelihood and the partial derivatives of the probit log-
likelihood with respect to the parameters of the reduced form, and R is the sum
of the product of the probit logliklihood equations and the partial derivatives of

IThis is verified using the ivregress gmm command in Stata 10. See section 8 below for example code.
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the probit loglikelihood and least squares normal equations from the first stage
regression. See [15] for details. It is not possible to use (10) when one has two or
more endogenous explanatory variables. Although this limits the usefulness of this
approach, as shown below it performs reasonably well in small samples.

Rivers and Vuong’s [4] two stage conditional ML estimator (2SCML) adds the
least squares residuals from equation (2), V; = Y; — X,II to (9). This brings

pr(ye = 1) = Oy, Vi3 + X1y + Vid) = ®(ye, Zi6 4 Vi) (11)

which is estimated by maximum likelihood, again conditional on II. This takes the
form

pr(ye = 1) = (ye, Zi0 + Vip) (12)

The parameter p is related to A in (11) by A = p + . This follows because Z;6 =
Zt5 + Vt/@ .

The 2SCML estimator is not used to estimate the model’s parameters but for
testing the exogeneity of Y;. A simple Wald test based on the regression in (12)
was shown by [4] to perform reasonably well and it will be used as the basis of a
pretest estimator that will also be considered. The pretest estimator is written

5pt = I(t)[O,cu)dmle + I<t)[cu,oo) div (13)

where I(t),5) is an indicator function that takes the value of 1 if ¢ falls within
the [a,b) interval and is zero otherwise. In our example, ¢ will be the test statistic
associated with the exogeneity null hypothesis, ¢, is the « level critical value from
the sampling distribution of ¢, §,,;. is the usual probit mle and d;, is an instrumental
variables probit estimator—specifically, AGLS.

An efficient alternative to (11) that also yields a consistent estimator of the
precision is Amemiya’s generalized least squares (AGLS) estimator as proposed by
Newey [6]. The AGLS estimator of the endogenous probit model is easy to compute,
though there are several steps. The basic algorithm from Adkins [12] is:

(1) Estimate the reduced form (2), saving the estimated residuals, V; and pre-
dicted values Yt

(2) Estimate the parameters of a reduced form equation for the probit model
using the mle. The exogenous variables are augmented by the residuals
obtained in step 1. Hence,

pr(ye =1) = (g, Xear + ‘A/}/\) (14)

Note that all exogenous variables, X1; and instruments Xo; are used in the
probit reduced form and the parameters on these variables is labeled a. Let
the mle be denoted &. Also, save the portion of the estimated covariance
matrix that corresponds to &, calling it joji

(3) Another probit model is estimated by maximum likelihood. In this case it is
the 2SIV estimator of equation (11). Save p = A — 3 which is the coefficient
of V; minus that of Y;.

(4) Multiply pY; and regress this on X; using least squares. Save the estimated
covariance matrix from this, calling it .

(5) Combine the last two steps into a matrix, Q = J;1 + 3.
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(6) Then, the AGLS estimator is
54 = [DADTQ DN DANTQ a4 (15)

The estimated variance covariance is [D(INTQ~1D(II)]~' and D(II) =
[ﬁf[l} where I is a Kxs selection matrix such that X, = X;1;.

Below is a summary of the estimators used in the simulation:

Estimator Variables Equation
RROLS Zy (5)
RRGMM Z (7)
Probit mle Zy (8)
Probit mle (plug-in) Z 9)
AGLS D), & (15)
PT Vi, Zi, DAD), & | (13)

One thing that complicates comparison of these estimators is that they do not all
use the same normalization. One alternative is to compare marginal effects. This
is the approach taken by [9]. This choice is appealing since this is the quantity
that interests many. In principle, the marginal effects shouldn’t be sensitive to nor-
malization, although the analytical computation does depend on the normalization
used.

Another alternative is to compare a pivotal statistic (asymptotically) like the
t-ratio. This is attractive because the model is commonly used to test parameter
significance. Testing whether a coefficient is zero should not be materially affected
by normalization and this is what I have chosen to investigate. This simplifies the
design of the Monte Carlo simulations without sacrificing generality.

Since none of the IV probit estimators perform very well when the regressor is
exogenous, one usually tests this proposition first to determine which estimator
to use. Below a pretest is conducted and IV or probit is estimated based on the
outcome of this test.

4. Simulation

The statistical properties of the various estimators of an endogenous probit model
is studied using simulation. The main simulations were conducted in Gauss 7.0
using code written by the author. These basic results were confirmed using Stata
10.0, based on an additional simulation that compares the AGLS and Maximum
Likelihood estimators. This latter simulation was necessarily more limited in scope
due to computational limitations of mle estimation caused by weak instruments.
Bias and the size of a test of a significance on the endogenous variable are com-
pared. There are various dimensions that can affect the performance of estimators
of this model. Sample size, proportion of observations where y; = 1, correlation
between instruments and the endogenous variable, the correlation between the
endogenous variable and the equation’s error, the relative variability of the en-
dogenous regressor and the equation’s error, and the effects of overidentification.

4.1. Design

A simple model is considered that has a single, possibly endogenous, regressor.
The Monte Carlo design shares some similarity to that of Hill et al. [16] which is
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based on Zuehlke and Zeman [17], and modified by Nawata and Nagase [18]. To
make comparisons with prior research easier to make, the design used in Rivers
and Vuong [4] is incorporated as well and their notation will be adopted with some
minor modifications.

The vector of endogenous explanatory variables contains a constant and one
continuous explanatory variable, yo;, and an exogenous regressor, xs;.

Y1 = YY2i + 1+ BaTai + u (16)
In the just identified case
Y2i = M1+ ToX2; + m3T3; + U (17)
and the over-identified case,
Y2i = M1 + MoXo; + M3X3; + Mata; + vy (18)

The exogenous variables (xg;, z3;, x4;) are drawn from multivariate normal distri-
bution with zero means, variances equal 1 and covariances of .5. The disturbances
are creates using

uj = A\V; + 1) (19)

where v; and 7; standard normals and the parameter A is varied on the interval
[—2,2] to generate correlation between the endogenous explanatory variable and
the regression’s error. The parameters of the reduced form are 67 where m =
m =0,m=1,m3=1,m14 = —1 and 6 is varied on the interval [.05, 1]. This
allows us to vary the strength of the instruments, an important design element not
considered by [4].

In the probit regression, B = —1. The intercept takes the value —2,0, 2, which
corresponds roughly to expected proportions of y1; = 1 of 25%, 50%, and 75%, re-
spectively. In terms of the notation developed in the preceding section é = =, 81, fs.
For the simulation, v = 0. This will make it possible to compare test sizes without
adopting different normalizations for the various models. Other simulations were
conducted with v = 1 and no substantive differences were noted. When ~ = 0,
the endogenous regressor is still correlated with the probit equation’s error even
though it has no direct effect on yy;. This allows us to compare the actual size of
a t-test on the endogenous variable to its nominal level without having to worry
about differences in scaling under different parameterizations of the model [4, p.
361].

Two sample sizes are considered, 200 and 1000. One thousand Monte Carlo
samples are generated for each combination of parameters. Several statistics are
computed at each round of the simulation. These include the estimator of § =
[v, 81, B2], an estimate of their standard errors, a t-ratio of the hypothesis that
v = 0 (for size). Power will be examined separately and only indirectly when a
comparison is made with the ML estimator. A direct comparison is difficult due to
the aforementioned differences in scaling.

Below you will find a summary of the design characteristics of the Monte Carlo
experiments. The first design element is variation of the parameter A. This parame-
ter controls the degree of correlation between the endogenous explanatory variable
and the probit’s error. When A = 0, the regressor is exogenous and the usual pro-
bit (or least squares/linear probability model) should perform satisfactorily. The
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correlations associated with each value of A\ are given below. Also, I have included
the parameter w, which measures the standard error of the probit’s reduced form
error'. Notice that higher values of correlation increase the standard error of the
reduced form. Also, these values differ a bit from [4] since I have let A = 0.

A
2 1 05 0 -0.5 -1 -2
corr(u,v) | 0.894 0.707 0.447 0 -0.447 -0.707 -0.894
w 2236 1414 1.118 1 1.118 1414 2.236

Instrument strength is varied in the experiments. Below you will find a table show-
ing the relationship between the design parameter § and more conventional mea-
sures of the fit provided by the reduced form equations. For each of the design
points, the R? and overall F-statistic of regression significance were computed.
The average values for each design are included in the table.

One thing is obvious. The ‘fit’ is not being held constant in the experiments. By
using the same value of  in each of the four sets of experiments, the R? and overall-
F statistic of regression significance vary. In general, adding observations reduces
R? and increases the overall F. Adding regressors (overidentification) reduces both.
As will be seen, the resulting biases are reasonably controlled when the overall F
statistic is above 10. This is consistent with the results of [19].

0
0.05 0.1 0.15 025 0.5 1
n=200; just identified
R? 022 .045 .079 .175 .446 .76
Overall-F | 1.8 4.2 8.0 205 79 313
n=1000; just identified
R? 011 .030 .061 .150 .410 .735
Overall-F | 44 14 .8 321 875 346 1383
n=200; over identified
R? 024 .038 .059 .122 .330 .658
Overall-F | 1.3 2.3 3.8 88 323 126
n=1000; over identified
R? 009 .024 .049 .120 .348 .680
Overall-F | 2.8 8.0 169 45 177 706

5. Results

Initial computations indicated that the proportion of 1’s in the sample have no
systematic effect on the magnitude of bias. This may be more important in other
uses, e.g., sample selectivity models (see [16]) and the results include below exclude
these cases.

Below you will find a series of tables. Table 1 includes bias for each design point
based on 1000 Monte Carlo samples. Tables 2 and 3 contain the sizes of 10%
nominal tests and the Monte Carlo standard errors, respectively. Tables 1 and 2
are broken into sub-tables a, b, ¢, and d, reflecting differences in sample size and
identification of the model. Tables 1a, 2a, and 3a are based on samples of size 200
for a just identified model. Tables 1b, 2b, and 3b are for just identified models
having 1000 observations. Tables labeled ¢ and d are for overidentified models with

L/A+(y+XN2)o2)and A=0and 02 =1
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200 and 1000 observations, respectively. The Monte Carlo standard errors for the
overidentified models are omitted, but are essentially the same as those for the just
identified models.

Tables 4a and 4b compare the AGLS estimator to the maximum likelihood es-
timator for a limited number of design. For computational reasons, the scope of
the comparison is limited; designs based on weak instruments and overidentified
models posed convergence problems for the mle. This illustrates the fragility of the
mle when parameters are poorly identified.

In all of the tables, the parameter labeled 6 controls the strength of the instru-
ments. As 6 increases, instruments become stronger. It should be noted that [4]
only considered 8 = 1, which implies very strong instruments. The parameter la-
beled A controls the strength of the endogeneity. When A = 0 the regressors are
exogenous. As |\| increases, the correlation between the errors of the model and
the endogenous regressor increase.

5.1. Bias

In tables 1la-1d the bias of each estimator is given for each of the design points
considered. For the results in table 1a the design included one endogenous variable
and one instrument; the model is just identified. When the instrument is weak (e.g.
6 = 0.05) and there is any correlation between the regressor and the regression
error (A # 0), then weak instruments create considerable ‘bias.” It is unlikely that
the instrumental variables estimators have a mean in this case since subsequent
simulations yielded quite different numerical results (though the performance is
always very poor). When 6 = .15 the corresponding F' — statistic is 8.0, indicating
that the instruments are nearing the usual threshold of 10 suggested for linear
models by Staiger and Stock [20]. Bias is substantial at this point and continues to
exceed .5 until instruments become quite strong (6 = .5 where the corresponding
F — statistic is 79).

The pretest estimator actually performs quite well. When the instruments are
very weak, the pretest picks the probit mle (exogenous regressors) often. As the
instruments gain strength the pretest picks the consistent estimators with high fre-
quency. On balance then, the pretest estimator is relatively effective in estimating
the parameter of interest (at least compared to the competitors). AGLS and IVP
have smaller biased than RRGMM when the instruments are strong. In table 1b
the sample size is increased to 1000. The main difference is that biases are smaller
and the results for § = .25 are now quite good; the average value of the F-statistic
is 87.5; this is large by conventional standards. RRGMM, IVP (plug-in), AGLS,
and pretest estimators are all erratic when instruments are weakest. When the in-
struments are very strong (6 >=.5), all of the IV estimators perform reasonably
well in terms of bias.

In table 1c you will find the results for samples of size 200 for a model that
has 2 instruments (overidentified). Overidentification appears to have reduced bias
somewhat. Certainly, bias figures for § = .25 in samples of 200 are quite good.
There is some small deviation between AGLS and the plug-in estimator now. Both
outperform RRGMM by a small amount.

Increasing the sample size to 1000 in the overidentified case (table 1d) improves
things further. Only under severe correlation among errors does the bias of AGLS
rise above .1 when instruments are very, very weak (6 = .05).

The bottom line is, if your sample is small and instruments weak, don’t expect
very reliable estimates of the IV probit model’s parameters. They are quite erratic
(see tables 3a and 3b for Monte Carlo standard errors) and the bias can be sub-
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stantial. If instruments are strong and correlation low, then the two-step AGLS
estimator performs about as well as can be expected and is a reasonable choice.
This justifies it’s inclusion as an option in Stata. RRGMM is not far behind in
terms of bias. Clearly, when the regressors are endogenous, RROLS and the usual
mle are not recommended, except when instruments are barely correlated with the
endogenous variable(s).

Since the scale parameter is not identified, the magnitude of the coefficients is
not very important in the probit model. More importantly, one is usually interested
in testing the statistical significance of one or more variables in the model. For this,
comparing the sizes of 10% nominal tests, which are asymptotically pivotal, can be
much more revealing about the performance of the various estimators considered.

5.2. Size

In table 2a the actual size of a nominal 10% significance test on v is measured.
Again, there is one endogenous variable and one instrument; the model is just
identified. The first thing to notice is that the actual size of the AGLS estimator
is very close to the nominal 0.1 level when the endogeneity problem is most severe
and instruments very weak. This is a somewhat of a surprise, given the large biases
recorded in table 1a.

As the instruments gain strength, RRGMM and the plug-in estimator begin
to dominate the AGLS. The AGLS estimator performs at the desired level when
endogeneity weak, but suffers from size distortions as A becomes large. Overall,
the RMSE of the AGLS estimator is significantly smaller (.015) than the others,
helped by its rather good performance with weak instruments.

In table 2b the sample is increased to 1000. Predictably, the results improve
for most cases and the gap between AGLS, RRGMM, and the plug-in estimators
narrows. AGLS still exhibits some size distortion when A = is large. for instance,
when A = 2 and # = .25 a nominal 10% test is rejecting a true null hypothesis 14%
of the time. This is not terrible, but there appears to be little improvement from
increasing the sample size in this case.

In table 2¢ we examine the overidentified case using 200 observations. Overiden-
tification is not improving things here at all. The plug-in and RRGMM estimators
are now experiencing larger size distortion when instruments are weak and the size
distortion of the AGLS estimator is becoming quite large (.19) at some points. In
table 2d the larger sample reduces the size distortion of AGLS, but it is still reject-
ing a true null hypothesis at higher rates than we’d like (;.14) when instruments
are weak and endogeneity severe. Overidentification does improve its performance
once instruments gain some strength.

In table 2d, which corresponds to overidentified models with samples of size 1000,
the size of distortions drop further. The overall RMSE for AGLS is now .019. That
of the RRGMM estimator is just slightly larger at .021. The plug-in estimator
actually wins this derby by a small amount. All of the estimators struggle the most
when instruments are weakest.

In tables 3a and 3b the Monte Carlo standard errors of the estimated coefficient
on the endogenous variable are given. In table 3a the estimator is based on a
sample of 200; in table 3b the sample size is 1000. When instruments are weak,
the variation in instrumental variables estimators is very large, especially when
correlation between errors is zero (or very large). The former result is expected.

When the instruments are relatively strong (0 > .5 for n=200 or § > .25 for
n=1000) the variation is small and in most cases the biases of the IV estimators
(tables la-1d) are not significantly different from zero. The erratic behavior of these
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estimators when instruments are weak should be apparent when instruments are
weak, though.

5.3. ML vs AGLS

The last comparison is between ML (maximum likelihood) and Newey’s AGLS
estimator. These are the two options available in Stata 10, which make them pop-
ular choices in applied work. Although a more thorough analysis of the maximum
likelihood estimator (mle) would be welcome, one could not be conducted because
of computational difficulties. When instruments are weak, the mle is prone to not
converge. In the designs considered within this paper, there were far too many
circumstances when the ML estimator failed to converge and this makes a proper
analysis of its properties in Stata impossible. One could reasonably draw the con-
clusion from this that if the mle fails to converge to anything reasonable with a
particular dataset, then perhaps the model itself needs to be rethought.

To get some idea of how these two estimators compare, I chose 4 designs for
which both AGLS and the mle would converge for each of the 1000 samples gen-
erated. I examined the summary statistics associated with the t-ratio and the 5%
and 10% p-values for the t-test. This was repeated for samples of 200 and 1000.
The four designs consist of combinations of strong/weak instruments and high /low
correlation among errors. Accordingly, the four combinations of A = —0.25, —2 and
0 = .15,1 were examined. The results for n=200 appear in table 4a.

Looking at table 4a, notice that the t-ratios for the AGLS estimator are actually
more precise than those for the mle; variance of the AGLS estimator is everywhere
less than one. The AGLS estimator consistently outperforms the mle by getting
closer to the 5% and 10% nominal test size (lower panel). The 5% and 95% pe-
centiles of the t-ratio should be close to -1.645 and 1.645 if the ratio is nearing its
asymptotic distribution. Both estimators are skewed and the critical values are not
symmetric. Overall, the AGLS estimator performs better, but note that for one
design (A = —2 and 0 = .15 the 95% percentile is 0.512, which is quite a distance
from its theoretical limit. In this case we would never find a positive coefficient
different from zero. The mle performs dreadfully, though with the t-ratios in the
rejection region of the test far more frequently than they should be. One thought
was to try using the outer product of the gradient to compute standard errors, but
this had no appreciable effect on the statistic. Normality of the t-ratio was tested
using a Shapiro-Wilk W statistic and normality was rejected in each instance. Still,
for a two-sided test, the AGLS estimator actually gets quite close to the desired
rejection rates, skewness notwithstanding.

For samples of 1000, the mle refused to converge for many designs when 6 = .15
so stronger instruments had to be used, in this case by letting § = .25; these
results appear in table 4b. The only designs where AGLS outperforms ML is when
instruments are relatively weak. Otherwise it is essentially a draw, at least in terms
of rejection rates for the test. On the other hand, the mle is approximately normal
when the instruments are very strong. In all cases, the mle now demonstrates less
skewness. For large samples with strong instruments, the near normality of the mle
makes it the one to use.

The absence of results for overidentified models deserves mention. Stata, despite
its top notch algorithms, fails to converge for many of the samples for the designs
considered and hence yielded no usable results.

These simulations were repeated using positive correlation between errors (A =
0.25,2 and the results were roughly similar.
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6. Example

In this section the differences between ML and AGLS estimators is demonstrated
using data and a model similar to one used by [21]. The main goal of that paper
was to determine whether managerial incentives affect the use of foreign exchange
derivatives by bank holding companies (BHC). There was some speculation that
several of the variables in the model were endogenous. The dependent variable of
interest is an indicator variable that takes the value 1 if the BHC uses foreign
exchange derivative. The independent variables are as follows:

Ouwnership by Insiders

When managers have a higher ownership position in the bank, their incentives
are more closely aligned with shareholders so they have an incentive to take risk to
increase the value of the call option associated with equity ownership. This suggests
that a higher ownership position by insiders (officers and directors) results in less
hedging. The natural logarithm of the percentage of the total shares outstanding
that are owned by officers and directors is used as the independent variable.

Ouwnership by Institutional Blockholders

Institutional blockholders have incentive to monitor the firm’s management due
to the large ownership stake they have in the firm [22]. Whidbee and Wohar [23]
argue that these investors will have imperfect information and will most likely be
concerned about the bottom line performance of the firm. The natural logarithm of
the percentage of the total shares outstanding that are owned by all institutional
investors is included as an independent variable and predict that the sign will be
positive, with respect to the likelihood of hedging.

CEO Compensation

CEO compensation also provides its own incentives with respect to risk man-
agement. In particular, compensation with more option-like features induces man-
agement to take on more risk to increase the value of the option ([5] [24]). Thus,
higher options compensation for managers results in less hedging. Two measures of
CEO compensation are used: 1) annual cash bonus and 2) value of option awards.

There is a possibility that CEO compensation is endogenous in that successful
hedging activity could in turn lead to higher executive compensation. The instru-
ments used for the compensation variables are based on the executive’s human
capital (age and experience), and the size and scope of the firm (number of em-
ployees, number of offices and subsidiaries). These are expected to be correlated
with the CEOs compensation and be predetermined with respect to the BHCs
foreign exchange hedging activities.

BHC' Size
The natural logarithm of total assets is used to control for the size of the BHC.
Capital

The ratio of equity capital to total assets is included as a control variable. The
variable for dividends paid measures the amount of earnings that are paid out to
shareholders. The higher the variable, the lower the capital position of the BHC.
The dividends paid variable is expected to have a sign opposite that of the leverage
ratio.

Like the compensation variables, leverage should be endogenously determined.
Firms that hedge can take on more debt and thus have higher leverage, other things
equal.



July 24, 2009

10:44 Journal of Statistical Computation & Simulation jscs

13

Foreign Exchange Risk

A bank’s use of currency derivatives should be related to its exposure to foreign
exchange rate fluctuations. The ratio of interest income from foreign sources to
total interest income measures foreign exchange exposure. Greater exposure, as
represented by a larger proportion of income being derived from foreign sources,
should be positively related to both the likelihood and extent of currency derivative
use.

Profitability

The return on equity is included to represent the profitability of the BHCs. It is
used as a control.

6.1. Results

In this section the results of estimation are reported. Table 5 contains some impor-
tant results from the reduced form equations. Due to the endogeneity of leverage
and the CEO compensation variables, instrumental variables estimation is used to
estimate the probability equations. Table 6 reports the coefficient estimates for the
instrumental variable estimation of the probability that a BHC will use foreign ex-
change derivatives for hedging. The first column of results correspond to the AGLS
estimator and the second column, ML.

In table 5 summary results from the reduced form are presented. The columns
contain p-values associated with the null hypothesis that the indicated instrument’s
coefficient is zero in each of the four reduced form equations. The instruments
include number of employees, number of subsidiaries, number of offices, CEO’s
age—which proxies for his or her experience, the 12 month maturity mismatch, and
the ratio of cash flows to total assets (CFA). The p-values associated with the other
variables have been suppressed to conserve space.

Each of the instruments appears to be relevant in that each is significantly dif-
ferent from zero at the 10% (p-value < 0.1) in at least one equation; the number
of employees, number of subsidiaries, and CEO age and CFA are significant in
one equation; the number of offices, employees, subsidiaries are significant in two
equations.

The overall strength of the instruments can be roughly gauged by looking at
the overall fit of the equations. The R? in the leverage equation is the smallest
(0.29), but is still high relative to the results of the Monte Carlo simulation. The
instruments, other than the 12 month maturity mismatch, appear to be strong and
we have no reason to expect poor performance from either estimator in terms of
bias.

The simulation results suggest there may be some small benefit to be had from
discarding extra instruments. Which to drop, other than the mismatch variable
is unclear. CFA, Age, and subsidiaries are all strongly correlated with leverage;
office and employees with options; and, employees, subsidiaries, and offices with
bonuses. The fit in the leverage equation is weakest, yet the p-values for each
individual variable is relatively high.
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Table 5. Summary Results from Reduced-form Equations. The table contains p-values for the instruments
and R? for each reduced form regression which is estimated using least squares. The data are taken from the
Federal Reserve System’s Consolidated Financial Statements for Bank Holding Companies (FR Y-9C), the SNL
Ezxecutive Compensation Review, and the SNL Quarterly Bank Digest, compiled by SNL Securities.

Reduced Form Equation

Leverage Options Bonus
Instruments Coefficient P-values
Number of Employees 0.182 0.000  0.000
Number of Subsidiaries 0.000 0.164  0.008
Number of Offices 0.248 0.000  0.000
CEO Age 0.026 0.764  0.572
12 Month Maturity Mismatch 0.353 0.280 0.575
CFA 0.000 0.826  0.368
R-Square 0.296 0.698  0.606

Table 6.: IV Probit Estimates of the Probability of
Foreign-Exchange Derivatives Use By Large U.S.
Bank Holding Companies (1996-2000). This table con-
tains estimates for the probability of foreign-exchange deriva-
tive use by U.S. bank holding companies over the period of
1996-2000. To control for endogeneity with respect to com-
pensation and leverage, we use an instrumental variable pro-
bit estimation procedure. The dependent variable in the pro-
bit estimations (i.e., probability of use) is coded as 1 if the
bank reports the use of foreign-exchange derivatives for pur-
poses other than trading. Approximate p-values based on
the asymptotic distribution of the estimators are reported
in parentheses beneath the parameter estimates. Significant
parameters are typeset in bold.

Instrumental Variables Probit

RRGMM AGLS ML

Leverage 11.108 21.775 12.490
(0.134) (0.104) (0.021)

Option Awards -5.23E-08 -8.79E-08 -5.11E-08
(0.113) (0.098) (0.002)

Bonus 8.44E-07 1.76E-06 1.02E-06
(0.155) (0.048) (<0.001)

Total Assets 0.361 0.365 0.190
(0.003) (0.032) (0.183)

Insider Ownership % 0.095 0.259 0.145
(0.156) (0.026) (0.016)

Institutional Ownership % 0.100 0.370 0.201
(0.069) (0.006) (0.041)

Return on Equity -0.015 -0.034 -0.020
(0.395) (0.230) (0.083)

Market-to-Book ratio -0.001 -0.002 -0.001
(0.306) (0.132) (0.098)

Foreign to Total Interest Income Ratio 0.135 -3.547 -2.177
(0.958) (0.356) (0.127)

Derivative Dealer Activity Dummy -0.057 -0.280 -0.154
(0.727) (0.257) (0.288)
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Instrumental Variables Probit

RRGMM AGLS ML

Dividends Paid -2.37TE-07  -8.43E-07 -4.84E-07
(0.519) (0.134) (0.044)

D=1 if 1997 -0.005 -0.024 -0.016
(0.979) (0.930) (0.914)

D=1 if 1998 -0.170 -0.244 -0.133
(0.283) (0.352) (0.383)

D=1 if 1999 -0.135 -0.242 -0.134
(0.446) (0.391) (0.395)

D=1 if 2000 -0.087 -0.128 -0.065
(0.634) (0.643) (0.685)

Constant -7.553 -9.673 -5.188
(<0.001) (<0.001) (4.40E-02)

Sample size 794 794 794

Only two variables are significantly different from zero at the 10% level in the
model estimated by RRGMM: Total assets and Institutional ownership percent-
age.! Leverage is significant in the ML estimation at the 10% level, but not with
AGLS. Similarly, return-on-equity, market-to-book, and dividends paid are all sig-
nificant in the ML regression but not AGLS. This divergence of results is a little
troubling, but as the simulations show, the ML estimator tends to find significance
when there isn’t any, especially if the sample size is not large and the instruments
on the weak side or in larger samples when endogeneity is not severe.

The results correspond the closest to those in tables 2d and 4b. The model
is overidentified, sample is relatively large (700+), and the instruments are very
strong (6 = .5 or § = 1). The degree of endogeneity is unknown. In these designs,
AGLS performs well and the actual size of the nominal 10% tests varies within
an acceptable range for all levels of endogeneity (though is exceeds 13% for severe
endogeneity).

Given the overall strength of the instruments, I see little reason not to use the
mle in this case. In the simulations it was more likely to be normally distributed
in large samples with strong instruments; furthermore, in this case the sizes of the
tests were close to the nominal level, although slightly prone to over-reject the zero
null hypothesis.

7. Conclusion

Based on the results from the simulations the following general conclusions can be
made.

(1) When there is no endogeneity, RROLS and Probit work well (as expected)
but RROLS and Probit should be avoided when you have an endogenous
regressor.

(2) When instruments are very weak, it is unlikely that the estimators converge
to the mean unless the sample is very large. As sample size increases and
instruments become stronger, the instrumental variables probit estimators
considered become essentially unbiased.

IThe RRGMM was estimated using gretl 1.8.2-Stata 10 could not estimate the model using RRGMM.
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(3)

The size of the significance tests based on the AGLS estimator is reasonable,
but the actual size is larger than the nominal size—a situation that gets
worse as severity of the endogeneity problem increases. When instruments
are very weak, the actual test rejects a true null hypothesis nearly twice as
often as it should. The RRGMM and plug-in estimators perform relatively
better when endogeneity is severe.

RRGMM estimator that use consistent estimators of standard errors can
be used for significance testing. It actually outperforms AGLS in smaller
samples when instruments are moderately strong. In larger samples the size
distortions are much more similar.

There is an improvement in bias and the size of the significance test when
samples are larger. Mainly, smaller samples require stronger instruments
in order for bias to be small and tests to work properly (other than the
plug-in estimator, which as mentioned above, works fairly well most of the
time). The AGLS estimator is prone to very high variance when samples
are small and instruments weak (comparing variance results in table 4a).
For point estimation pretesting for endogeneity is useful when the sample
is very small and the available instruments weak.

In small samples the AGLS estimator outperforms mle when it comes to
testing for the significance of a parameter in the model. When instruments
are weak, it also outperforms the mle in larger samples. As instruments get
stronger, the mle — at least in large sample — is faster to converge to its
asymptotic distribution and is in that case recommended.

For point estimation, there is no question that mle is more precise. Though
not reported in any of the tables, there is much smaller variation in the
parameter estimates themselves with the mle. It’s poor relative performance
is due to underestimation of standard error which in turn leads to landing
in the rejection region of a 10% test far too often.

The bottom line is this: if you are stuck with weak instruments, and your goal is
to test the significance of a variable in an endogenous probit model, be careful.
None of the estimators considered does this very well, but a small nod goes to
AGLS when endogeneity is not extreme. The ML estimator led to unacceptably
high levels of type one error in small samples with weak instruments. It performs
much better when sample size increases and as endogeneity worsens. RRGMM
actually performs well relative to AGLS as endogeneity worsens and instruments
are strong.

8.

Appendix: Stata and Gretl code to RRgmm

The following code examples show how simple the rrgmm estimator is to compute.
Note, gretl code to compute AGLS can be found in [25].

y = binary dependent variable

xi =

wi
vyl

8.1.

exogenous regressors (i=1,2,3)
exogenous instruments (i=1,2)
endogenous regressor

Stata 10

egen ybar = mean(y)
scalar delta = invnormal (ybar)
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scalar phi = normalden(delta)
scalar phi2=ybar-phixdelta
scalar phil=phi

gen

ytil = (y-phi2)/phil

ivregress gmm ytil x1 x2 x3 (yl = wl w2), wmatrix(robust) vce(robust)

8.2.

gretl 1.8.2

ybar=mean (y)
delta=invcdf (N, ybar)

phi

= pdf (N,delta)

phi2 = ybar-delta*phi
genr ytil = (y-phi2)/phi

tsls ytil const x1 y1 x2 x3 ; const x1 x2 x3 \
wl w2 --gmm --iterate
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Table 1a Bias of each estimator based on samples of size 200. Monte Carlo used 1000 samples.
The model is just identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.832 2.105 2.922 10.016 4273 2.126
0.05 1 0.590 1.036 1.847 4.837 3.235 1.598
0.05 0.5 0.343 0.517 -0.476 -1.355 -1.019 -0.026
0.05 0 0.001 0.001 -1.428 -2.709 -1.931 -0.519
0.05 -0.5 -0.342 -0.518 -0.437 -0.489 -1.039 -0.765
0.05 -1 -0.587 -1.027 -1.806 -2.335 -2.987 -0.493
0.05 -2 -0.826 -2.072 -0.412 -0.607 -0.885 -0.117
0.1 2 0.825 2.064 0.031 0.262 -0.995 -0.052
0.1 1 0.587 1.020 1.772 4.850 3.198 0.596
0.1 0.5 0.343 0.519 2.487 7.050 5.062 0.266
0.1 0 0.004 0.005 0.563 0.977 0.683 -0.024
0.1 -0.5 -0.339 -0.511 0.740 1.015 0.745 -0.859
0.1 -1 -0.583 -1.017 0.298 0.360 0.410 -0.207
0.1 -2 -0.820 -2.033 -0.811 -0.998 -5.072 -5.435
0.15 2 0.817 1.976 -0.207 -0.746 -0.341 0.672
0.15 1 0.581 1.010 -0.646 -1.730 -0.922 -0.255
0.15 0.5 0.337 0.507 -0.029 -0.117 -0.135 0.208
0.15 0 -0.002 -0.004 0.245 0.450 0.315 0.026
0.15 -0.5 -0.337 -0.507 -0.065 -0.114 -0.053 -0.349
0.15 -1 -0.581 -1.008 0.368 0.465 0.586 -1.026
0.15 -2 -0.817 -2.007 -0.388 -0.665 -0.649 -0.853
0.25 2 0.796 1.832 -0.081 -0.284 -0.272 -0.247
0.25 1 0.566 0.967 0.245 0.639 0.547 0.731
0.25 0.5 0.326 0.490 -0.022 -0.015 -0.025 0.119
0.25 0 0.002 0.002 -0.002 -0.002 0.001 -0.021
0.25 -0.5 -0.328 -0.494 0.049 0.075 0.074 -0.159
0.25 -1 -0.562 -0.962 0.124 0.148 0.206 0.021
0.25 -2 -0.795 -1.831 0.195 0.298 0.526 0.497
0.5 2 0.703 1.393 -0.019 -0.068 -0.045 -0.045
0.5 1 0.499 0.808 -0.017 -0.050 -0.030 -0.022
0.5 0.5 0.290 0.428 -0.005 -0.015 -0.009 0.088
0.5 0 0.001 0.000 -0.003 -0.009 -0.006 -0.001
0.5 -0.5 -0.291 -0.430 0.010 0.013 0.014 -0.068
0.5 -1 -0.500 -0.809 0.026 0.030 0.040 0.034
0.5 -2 -0.703 -1.381 0.033 0.051 0.077 0.077
1 2 0.484 0.733 -0.006 -0.020 -0.020 -0.020

1 1 0.345 0.505 -0.003 -0.009 -0.002 -0.002

1 0.5 0.203 0.290 0.000 -0.001 0.000 0.008

1 0 0.002 0.002 0.002 0.002 0.002 0.000

1 -0.5 -0.197 -0.279 0.007 0.010 0.009 0.003

1 -1 -0.343 -0.497 0.003 0.002 0.003 0.003

1 -2 -0.482 -0.723 0.008 0.012 0.019 0.019

RMSE 0.450 0.865 0.449 1.045 0.868 0.444



Table 1b Bias of each estimator based on samples of size 1000. Monte Carlo used 1000 samples.
The model is just identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.816 2.005 -2.383 -8.568 -7.694 -7.497
0.05 1 0.579 1.007 -0.368 -0.923 -0.430 0.320
0.05 0.5 0.332 0.499 0.037 0.251 0.108 0.443
0.05 0 0.000 0.001 1.270 2.631 1.868 0.184
0.05 -0.5 -0.333 -0.502 0.301 0.515 0.552 -0.052
0.05 -1 -0.576 -1.003 7.397 10.001 12.323 -0.486
0.05 -2 -0.815 -2.010 0.671 1.077 2.016 0.893
0.1 2 0.810 1.971 -0.181 -0.610 -0.426 -0.384
0.1 1 0.574 0.996 -0.138 -0.341 -0.219 -0.005
0.1 0.5 0.332 0.501 -0.176 -0.391 -0.240 -0.010
0.1 0 0.000 0.000 -0.023 0.001 0.001 0.007
0.1 -0.5 -0.332 -0.499 0.132 0.234 0.247 -0.167
0.1 -1 -0.573 -0.990 0.117 0.166 0.240 0.038
0.1 -2 -0.812 -1.976 0.156 0.256 0.385 0.354
0.15 2 0.803 1.913 -0.053 -0.173 -0.138 -0.138
0.15 1 0.568 0.983 -0.032 -0.062 -0.045 0.010
0.15 0.5 0.330 0.495 -0.030 -0.045 -0.027 0.139
0.15 0 -0.001 0.000 -0.012 0.005 0.004 0.011
0.15 -0.5 -0.328 -0.493 0.022 0.054 0.054 -0.110
0.15 -1 -0.568 -0.978 0.033 0.054 0.082 0.032
0.15 -2 -0.804 -1.921 0.062 0.104 0.164 0.163
0.25 2 0.778 1.762 -0.020 -0.062 -0.046 -0.046
0.25 1 0.550 0.936 -0.021 -0.047 -0.027 -0.025
0.25 0.5 0.318 0.477 -0.023 -0.042 -0.026 0.027
0.25 0 0.001 0.001 0.000 0.016 0.011 0.004
0.25 -0.5 -0.318 -0.476 0.007 0.021 0.022 -0.028
0.25 -1 -0.552 -0.940 0.021 0.032 0.043 0.043
0.25 -2 -0.778 -1.760 0.017 0.030 0.052 0.052
0.5 2 0.681 1.301 -0.009 -0.028 -0.017 -0.017
0.5 1 0.482 0.781 -0.001 0.005 0.003 0.003
0.5 0.5 0.277 0411 -0.004 -0.002 -0.001 0.000
0.5 0 0.000 0.001 -0.003 0.002 0.002 0.000
0.5 -0.5 -0.279 -0.412 -0.002 0.003 0.002 0.002
0.5 -1 -0.482 -0.779 -0.002 0.001 0.001 0.001
0.5 -2 -0.682 -1.308 0.005 0.010 0.014 0.014
1 2 0.456 0.674 -0.003 -0.009 -0.005 -0.005

1 1 0.323 0.470 -0.001 0.001 0.001 0.001

1 0.5 0.185 0.267 -0.003 -0.002 -0.001 -0.001

1 0 0.001 0.002 0.000 0.004 0.003 0.003

1 -0.5 -0.188 -0.269 -0.001 0.001 0.001 0.001

1 -1 -0.323 -0.471 -0.001 0.001 0.000 0.000

1 -2 -0.455 -0.677 0.003 0.005 0.007 0.007

RMSE 0.438 0.831 0.327 0.638 0.656 0.279



Table 1c Bias of each estimator based on samples of size 200. Monte Carlo used 1000 samples.
The model is over identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.830 2.072 0.602 2.051 1.537 1.845
0.05 1 0.596 1.029 0.480 1.215 0.783 0.989
0.05 0.5 0.346 0.511 0.326 0.674 0.450 0.489
0.05 0 0.002 0.002 0.054 -0.048 -0.030 -0.040
0.05 -0.5 -0.346 -0.511 -0.238 -0.401 -0.412 -0.434
0.05 -1 -0.592 -1.021 -0.437 -0.553 -0.792 -0.858
0.05 -2 -0.829 -2.084 -0.751 -1.171 -1.913 -2.043
0.1 2 0.827 2.047 0.453 1.520 1.030 1.368
0.1 1 0.595 1.026 0.247 0.565 0.388 0.672
0.1 0.5 0.346 0.508 0.194 0.334 0.208 0.408
0.1 0 -0.002 -0.004 -0.024 -0.167 -0.116 0.012
0.1 -0.5 -0.345 -0.512 -0.056 -0.159 -0.157 -0.357
0.1 -1 -0.595 -1.027 -0.273 -0.356 -0.554 -0.811
0.1 -2 -0.825 -2.039 -0.695 -1.070 -1.399 -1.691
0.15 2 0.818 1.965 0.185 0.596 0.456 0.716
0.15 1 0.588 1.009 0.208 0.468 0.290 0.588
0.15 0.5 0.347 0.509 0.179 0.291 0.172 0.347
0.15 0 -0.003 -0.007 0.068 0.026 0.018 0.039
0.15 -0.5 -0.341 -0.504 0.006 -0.070 -0.065 -0.219
0.15 -1 -0.587 -1.002 -0.071 -0.118 -0.166 -0.439
0.15 -2 -0.818 -2.000 -0.117 -0.200 -0.281 -0.518
0.25 2 0.795 1.818 0.025 0.054 0.017 0.046
0.25 1 0.570 0.961 0.034 0.021 0.019 0.187
0.25 0.5 0.334 0.487 0.034 -0.012 -0.009 0.193
0.25 0 -0.001 -0.005 0.027 -0.034 -0.026 -0.029
0.25 -0.5 -0.335 -0.493 0.036 -0.005 -0.010 -0.223
0.25 -1 -0.566 -0.959 0.016 -0.012 -0.023 -0.175
0.25 -2 -0.794 -1.820 0.015 0.010 0.035 0.005
0.5 2 0.697 1.348 0.014 0.033 0.023 0.023
0.5 1 0.499 0.786 -0.001 -0.036 -0.023 -0.017
0.5 0.5 0.292 0.413 0.018 -0.003 -0.001 0.077
0.5 0 0.004 0.000 0.022 -0.002 -0.002 0.005
0.5 -0.5 -0.291 -0.422 0.023 0.004 0.004 -0.064
0.5 -1 -0.501 -0.801 0.020 0.008 0.015 0.010
0.5 -2 -0.696 -1.334 0.010 0.008 0.015 0.015
1 2 0.467 0.684 0.002 -0.001 -0.002 -0.002

1 1 0.337 0.473 0.010 0.012 0.008 0.008

1 0.5 0.197 0.264 0.003 -0.017 -0.011 -0.006

1 0 0.005 0.001 0.012 0.001 0.000 0.001

1 -0.5 -0.190 -0.266 0.009 -0.001 -0.001 -0.008

1 -1 -0.333 -0.473 0.004 -0.003 -0.004 -0.004

1 -2 -0.467 -0.690 -0.002 -0.006 -0.007 -0.007

RMSE 0.451 0.854 0.143 0.294 0.273 0.381



Table 1d Bias of each estimator based on samples of size 1000. Monte Carlo used 1000 samples.
The model is over identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.817 2.003 0.260 0.907 0.676 0.928
0.05 1 0.576 1.004 0.079 0.227 0.159 0.434
0.05 0.5 0.333 0.500 0.148 0.382 0.234 0.387
0.05 0 0.000 0.000 -0.076 -0.144 -0.103 -0.006
0.05 -0.5 -0.332 -0.500 -0.033 -0.034 -0.026 -0.265
0.05 -1 -0.577 -1.005 -0.214 -0.265 -0.371 -0.635
0.05 -2 -0.816 -2.002 -0.225 -0.349 -0.608 -0.878
0.1 2 0.810 1.962 0.012 0.039 0.062 0.101
0.1 1 0.572 0.995 -0.010 -0.020 -0.007 0.169
0.1 0.5 0.332 0.501 0.014 0.042 0.026 0.239
0.1 0 -0.002 -0.003 0.015 0.031 0.021 0.004
0.1 -0.5 -0.330 -0.499 -0.013 -0.019 -0.024 -0.217
0.1 -1 -0.572 -0.992 -0.009 -0.009 -0.006 -0.194
0.1 -2 -0.809 -1.959 0.018 0.028 0.042 0.022
0.15 2 0.800 1.891 -0.018 -0.063 -0.043 -0.043
0.15 1 0.566 0.974 -0.014 -0.037 -0.027 0.000
0.15 0.5 0.328 0.493 0.001 0.008 0.004 0.135
0.15 0 -0.001 -0.002 -0.010 -0.017 -0.012 -0.011
0.15 -0.5 -0.328 -0.493 -0.008 -0.011 -0.012 -0.149
0.15 -1 -0.564 -0.974 0.006 0.009 0.010 -0.017
0.15 -2 -0.801 -1.897 -0.015 -0.022 -0.033 -0.033
0.25 2 0.770 1.711 -0.003 -0.010 -0.008 -0.008
0.25 1 0.545 0.924 0.005 0.016 0.012 0.012
0.25 0.5 0.314 0.470 -0.002 -0.003 -0.004 0.033
0.25 0 0.000 0.000 -0.002 -0.003 -0.002 -0.003
0.25 -0.5 -0.313 -0.470 0.000 0.001 0.001 -0.035
0.25 -1 -0.545 -0.922 0.000 0.000 0.002 0.002
0.25 -2 -0.769 -1.713 -0.004 -0.005 -0.012 -0.012
0.5 2 0.655 1.208 -0.001 -0.002 0.000 0.000
0.5 1 0.463 0.739 -0.003 -0.008 -0.004 -0.004
0.5 0.5 0.268 0.397 0.001 0.003 0.001 0.001
0.5 0 0.000 0.000 0.000 0.000 -0.001 -0.001
0.5 -0.5 -0.267 -0.395 0.000 0.000 -0.001 -0.001
0.5 -1 -0.464 -0.741 -0.002 -0.002 -0.002 -0.002
0.5 -2 -0.657 -1.213 0.000 -0.001 0.002 0.002
1 2 0.411 0.588 0.001 0.002 0.002 0.002

1 1 0.292 0.419 0.000 0.000 0.000 0.000

1 0.5 0.168 0.243 0.002 0.005 0.003 0.003

1 0 0.000 0.000 -0.001 -0.001 -0.001 -0.001

1 -0.5 -0.168 -0.242 0.000 0.000 0.000 0.000

1 -1 -0.290 -0.417 0.002 0.003 0.004 0.004

1 -2 -0.412 -0.590 0.000 0.000 -0.001 -0.001

RMSE 0.430 0.811 0.029 0.065 0.061 0.119



Table 2a Computed rejection rate for 10% nominal t-tests. Sample size is 200.
The model is just identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 1.000 1.000 0.104 0.104 0.138 0.797
0.05 1 1.000 1.000 0.044 0.030 0.101 0.898
0.05 0.5 0.999 0.999 0.019 0.015 0.088 0.951
0.05 0 0.107 0.113 0.002 0.002 0.087 0.187
0.05 -0.5 1.000 1.000 0.013 0.011 0.088 0.952
0.05 -1 1.000 1.000 0.041 0.043 0.111 0.904
0.05 -2 1.000 1.000 0.110 0.117 0.130 0.794
0.1 2 1.000 1.000 0.105 0.103 0.110 0.554
0.1 1 1.000 1.000 0.075 0.064 0.103 0.838
0.1 0.5 0.999 1.000 0.041 0.031 0.100 0.926
0.1 0 0.077 0.077 0.006 0.007 0.083 0.147
0.1 -0.5 0.999 0.999 0.023 0.022 0.104 0.914
0.1 -1 1.000 1.000 0.056 0.051 0.099 0.810
0.1 -2 1.000 1.000 0.116 0.120 0.152 0.595
0.15 2 1.000 1.000 0.103 0.101 0.122 0.371
0.15 1 1.000 1.000 0.077 0.071 0.109 0.736
0.15 0.5 0.998 0.999 0.049 0.042 0.110 0.874
0.15 0 0.116 0.110 0.022 0.018 0.093 0.176
0.15 -0.5 0.999 0.999 0.047 0.038 0.108 0.897
0.15 -1 1.000 1.000 0.090 0.083 0.132 0.719
0.15 -2 1.000 1.000 0.107 0.102 0.114 0.376
0.25 2 1.000 1.000 0.117 0.109 0.123 0.140
0.25 1 1.000 1.000 0.092 0.086 0.129 0.441
0.25 0.5 1.000 0.999 0.059 0.048 0.089 0.785
0.25 0 0.103 0.101 0.051 0.046 0.103 0.181
0.25 -0.5 0.999 0.999 0.054 0.049 0.094 0.802
0.25 -1 1.000 1.000 0.065 0.065 0.110 0.434
0.25 -2 1.000 1.000 0.105 0.102 0.135 0.155
0.5 2 1.000 1.000 0.092 0.081 0.124 0.124
0.5 1 1.000 1.000 0.084 0.064 0.114 0.127
0.5 0.5 0.997 0.998 0.093 0.080 0.114 0.490
0.5 0 0.098 0.097 0.089 0.080 0.099 0.155
0.5 -0.5 0.993 0.992 0.081 0.070 0.099 0.448
0.5 -1 1.000 1.000 0.098 0.083 0.129 0.132
0.5 -2 1.000 1.000 0.092 0.073 0.123 0.123
1 2 1.000 1.000 0.108 0.095 0.140 0.140

1 1 1.000 1.000 0.106 0.090 0.120 0.120

1 0.5 0.973 0.972 0.099 0.085 0.101 0.142

1 0 0.124 0.120 0.106 0.096 0.096 0.145

1 -0.5 0.966 0.968 0.103 0.090 0.103 0.132

1 -1 1.000 1.000 0.109 0.096 0.104 0.104

1 -2 1.000 1.000 0.108 0.094 0.132 0.132

RMSE 0.771 0.771 0.030 0.035 0.015 0.373



Table 2b Computed rejection rate for 10% nominal t-tests. Sample size is 1000.
The model is just identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 1.000 1.000 0.103 0.107 0.123 0.490
0.05 1 1.000 1.000 0.050 0.050 0.103 0.789
0.05 0.5 1.000 1.000 0.025 0.033 0.105 0.907
0.05 0 0.111 0.114 0.005 0.006 0.084 0.185
0.05 -0.5 1.000 1.000 0.035 0.032 0.109 0.913
0.05 -1 1.000 1.000 0.060 0.053 0.117 0.796
0.05 -2 1.000 1.000 0.126 0.116 0.144 0.537
0.1 2 1.000 1.000 0.083 0.082 0.126 0.158
0.1 1 1.000 1.000 0.069 0.069 0.105 0.462
0.1 0.5 1.000 1.000 0.038 0.040 0.096 0.798
0.1 0 0.107 0.111 0.029 0.038 0.107 0.204
0.1 -0.5 1.000 1.000 0.055 0.048 0.096 0.810
0.1 -1 1.000 1.000 0.083 0.077 0.121 0.456
0.1 -2 1.000 1.000 0.095 0.086 0.118 0.148
0.15 2 1.000 1.000 0.087 0.084 0.121 0.121
0.15 1 1.000 1.000 0.063 0.065 0.112 0.205
0.15 0.5 1.000 1.000 0.082 0.086 0.120 0.637
0.15 0 0.112 0.114 0.070 0.079 0.107 0.197
0.15 -0.5 1.000 1.000 0.068 0.066 0.101 0.616
0.15 -1 1.000 1.000 0.078 0.065 0.104 0.186
0.15 -2 1.000 1.000 0.092 0.089 0.134 0.134
0.25 2 1.000 1.000 0.090 0.081 0.132 0.132
0.25 1 1.000 1.000 0.088 0.080 0.115 0.115
0.25 0.5 1.000 1.000 0.074 0.073 0.097 0.294
0.25 0 0.093 0.103 0.074 0.088 0.095 0.168
0.25 -0.5 1.000 1.000 0.086 0.082 0.113 0.295
0.25 -1 1.000 1.000 0.075 0.065 0.104 0.104
0.25 -2 1.000 1.000 0.081 0.073 0.129 0.129
0.5 2 1.000 1.000 0.103 0.086 0.132 0.132
0.5 1 1.000 1.000 0.090 0.083 0.104 0.104
0.5 0.5 1.000 1.000 0.096 0.099 0.110 0.110
0.5 0 0.105 0.100 0.097 0.095 0.097 0.155
0.5 -0.5 1.000 1.000 0.121 0.120 0.130 0.130
0.5 -1 1.000 1.000 0.093 0.086 0.114 0.114
0.5 -2 1.000 1.000 0.104 0.086 0.120 0.120
1 2 1.000 1.000 0.089 0.082 0.122 0.122

1 1 1.000 1.000 0.104 0.084 0.120 0.120

1 0.5 1.000 1.000 0.087 0.093 0.101 0.101

1 0 0.119 0.117 0.113 0.118 0.119 0.152

1 -0.5 1.000 1.000 0.098 0.094 0.111 0.111

1 -1 1.000 1.000 0.103 0.097 0.122 0.122

1 -2 1.000 1.000 0.107 0.087 0.142 0.142

RMSE 0.773 0.773 0.024 0.026 0.016 0.203



Table 2c Computed rejection rate for 10% nominal t-tests. Sample size is 200.
The model is over identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 1.000 1.000 0.260 0.245 0.218 0.844
0.05 1 1.000 1.000 0.128 0.103 0.146 0.908
0.05 0.5 0.997 0.999 0.049 0.051 0.129 0.954
0.05 0 0.112 0.111 0.005 0.006 0.082 0.179
0.05 -0.5 1.000 1.000 0.027 0.022 0.106 0.953
0.05 -1 1.000 1.000 0.121 0.109 0.168 0.926
0.05 -2 1.000 1.000 0.247 0.244 0.219 0.849
0.1 2 1.000 1.000 0.227 0.220 0.163 0.666
0.1 1 1.000 1.000 0.137 0.111 0.133 0.841
0.1 0.5 0.999 1.000 0.059 0.045 0.096 0.933
0.1 0 0.111 0.107 0.015 0.015 0.102 0.194
0.1 -0.5 0.998 1.000 0.046 0.047 0.113 0.931
0.1 -1 1.000 1.000 0.120 0.125 0.145 0.869
0.1 -2 1.000 1.000 0.189 0.189 0.158 0.655
0.15 2 1.000 1.000 0.200 0.179 0.154 0.437
0.15 1 1.000 1.000 0.143 0.126 0.126 0.742
0.15 0.5 0.999 1.000 0.078 0.061 0.098 0.879
0.15 0 0.112 0.114 0.019 0.018 0.091 0.181
0.15 -0.5 1.000 1.000 0.055 0.054 0.109 0.880
0.15 -1 1.000 1.000 0.114 0.117 0.136 0.739
0.15 -2 1.000 1.000 0.167 0.166 0.153 0.407
0.25 2 1.000 1.000 0.142 0.130 0.138 0.164
0.25 1 1.000 1.000 0.105 0.096 0.100 0.416
0.25 0.5 0.998 0.999 0.086 0.071 0.096 0.748
0.25 0 0.110 0.114 0.059 0.057 0.101 0.184
0.25 -0.5 0.998 1.000 0.072 0.078 0.116 0.771
0.25 -1 1.000 1.000 0.096 0.109 0.118 0.423
0.25 -2 1.000 1.000 0.123 0.123 0.108 0.139
0.5 2 1.000 1.000 0.104 0.082 0.107 0.107
0.5 1 1.000 1.000 0.112 0.091 0.119 0.121
0.5 0.5 0.997 0.997 0.102 0.093 0.105 0.430
0.5 0 0.104 0.110 0.099 0.107 0.113 0.168
0.5 -0.5 0.999 0.999 0.079 0.090 0.107 0.408
0.5 -1 1.000 1.000 0.105 0.090 0.125 0.127
0.5 -2 1.000 1.000 0.120 0.108 0.135 0.135
1 2 1.000 1.000 0.109 0.096 0.119 0.119

1 1 1.000 1.000 0.094 0.076 0.108 0.108

1 0.5 0.968 0.968 0.112 0.102 0.104 0.134

1 0 0.110 0.111 0.105 0.104 0.105 0.143

1 -0.5 0.955 0.963 0.107 0.099 0.108 0.148

1 -1 1.000 1.000 0.090 0.094 0.105 0.105

1 -2 1.000 1.000 0.111 0.097 0.134 0.134

RMSE 0.771 0.771 0.04 0.038 0.026 0.381



Table 2d Computed rejection rate for 10% nominal t-tests. Sample size is 1000.
The model is over identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 1.000 1.000 0.201 0.193 0.165 0.541
0.05 1 1.000 1.000 0.112 0.106 0.134 0.793
0.05 0.5 1.000 1.000 0.044 0.043 0.093 0.925
0.05 0 0.091 0.092 0.007 0.007 0.096 0.174
0.05 -0.5 1.000 1.000 0.036 0.036 0.097 0.906
0.05 -1 1.000 1.000 0.118 0.110 0.124 0.782
0.05 -2 1.000 1.000 0.182 0.178 0.138 0.524
0.1 2 1.000 1.000 0.131 0.130 0.128 0.152
0.1 1 1.000 1.000 0.077 0.071 0.092 0.387
0.1 0.5 1.000 1.000 0.057 0.057 0.083 0.786
0.1 0 0.102 0.096 0.050 0.050 0.095 0.177
0.1 -0.5 1.000 1.000 0.069 0.065 0.104 0.795
0.1 -1 1.000 1.000 0.116 0.108 0.126 0.448
0.1 -2 1.000 1.000 0.143 0.141 0.141 0.154
0.15 2 1.000 1.000 0.091 0.086 0.119 0.119
0.15 1 1.000 1.000 0.084 0.079 0.114 0.150
0.15 0.5 1.000 1.000 0.089 0.082 0.111 0.584
0.15 0 0.111 0.110 0.072 0.074 0.094 0.186
0.15 -0.5 1.000 1.000 0.083 0.077 0.099 0.588
0.15 -1 1.000 1.000 0.089 0.083 0.111 0.149
0.15 -2 1.000 1.000 0.124 0.120 0.136 0.136
0.25 2 1.000 1.000 0.099 0.091 0.134 0.134
0.25 1 1.000 1.000 0.101 0.088 0.115 0.115
0.25 0.5 1.000 1.000 0.101 0.097 0.116 0.242
0.25 0 0.108 0.125 0.082 0.085 0.096 0.190
0.25 -0.5 1.000 1.000 0.078 0.073 0.090 0.221
0.25 -1 1.000 1.000 0.115 0.103 0.113 0.113
0.25 -2 1.000 1.000 0.128 0.114 0.147 0.147
0.5 2 1.000 1.000 0.101 0.092 0.121 0.121
0.5 1 1.000 1.000 0.100 0.084 0.114 0.114
0.5 0.5 1.000 1.000 0.096 0.093 0.097 0.097
0.5 0 0.107 0.109 0.093 0.095 0.093 0.155
0.5 -0.5 1.000 1.000 0.096 0.100 0.105 0.105
0.5 -1 1.000 1.000 0.103 0.095 0.126 0.126
0.5 -2 1.000 1.000 0.108 0.091 0.136 0.136
1 2 1.000 1.000 0.110 0.095 0.124 0.124

1 1 1.000 1.000 0.121 0.110 0.126 0.126

1 0.5 1.000 1.000 0.099 0.101 0.110 0.110

1 0 0.073 0.087 0.101 0.114 0.112 0.123

1 -0.5 1.000 1.000 0.107 0.102 0.116 0.116

1 -1 1.000 1.000 0.102 0.089 0.126 0.126

1 -2 1.000 1.000 0.110 0.099 0.138 0.138

RMSE 0.773 0.773 0.022 0.023 0.019 0.194



Table 3a Monte Carlo Standard Errors of each estimator based on samples of size 200.
The model is just identified. The approximate proportion of 1's in each sample is .5.
Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.002 0.010 2.059 7.049 1.875 0.514
0.05 1 0.002 0.005 0.738 1.910 1.203 0.590
0.05 0.5 0.002 0.004 0.848 2.048 1.223 0.349
0.05 0 0.002 0.003 1.127 2.290 1.624 0.371
0.05 -0.5 0.002 0.004 0.705 1.000 1.551 0.233
0.05 -1 0.002 0.005 0.847 1.115 1.365 0.367
0.05 -2 0.002 0.010 0.927 1.404 1.680 1.273
0.1 2 0.002 0.010 0.537 1.918 1.156 1.104
0.1 1 0.002 0.005 1.326 3.614 2.379 0.195
0.1 0.5 0.002 0.004 2.522 7.166 5.143 0.153
0.1 0 0.002 0.003 0.675 1.189 0.838 0.128
0.1 -0.5 0.002 0.004 0.679 0.952 0.828 0.273
0.1 -1 0.002 0.005 0.183 0.221 0.282 0.191
0.1 -2 0.002 0.009 4.999 8.118 13.309 13.304
0.15 2 0.002 0.009 0.478 1.654 1.176 1.015
0.15 1 0.002 0.005 0.331 0.865 0.514 0.476
0.15 0.5 0.002 0.004 0.269 0.638 0.434 0.202
0.15 0 0.002 0.003 0.261 0.477 0.338 0.088
0.15 -0.5 0.002 0.004 0.147 0.250 0.218 0.187
0.15 -1 0.002 0.005 0.730 0.880 1.339 0.755
0.15 -2 0.002 0.010 0.562 0.914 1.258 1.257
0.25 2 0.002 0.008 0.051 0.177 0.127 0.128
0.25 1 0.002 0.005 0.318 0.841 0.663 0.663
0.25 0.5 0.002 0.004 0.043 0.132 0.066 0.034
0.25 0 0.002 0.003 0.015 0.029 0.021 0.014
0.25 -0.5 0.002 0.004 0.042 0.061 0.063 0.028
0.25 -1 0.002 0.005 0.022 0.027 0.037 0.040
0.25 -2 0.002 0.008 0.032 0.049 0.078 0.079
0.5 2 0.001 0.006 0.007 0.023 0.017 0.017
0.5 1 0.002 0.004 0.006 0.017 0.011 0.011
0.5 0.5 0.002 0.003 0.006 0.014 0.009 0.011
0.5 0 0.002 0.003 0.006 0.012 0.008 0.006
0.5 -0.5 0.002 0.003 0.006 0.009 0.009 0.011
0.5 -1 0.002 0.004 0.007 0.008 0.011 0.012
0.5 -2 0.001 0.006 0.007 0.011 0.017 0.017
1 2 0.001 0.003 0.003 0.011 0.008 0.008

1 1 0.002 0.003 0.003 0.008 0.005 0.005

1 0.5 0.002 0.003 0.003 0.007 0.004 0.005

1 0 0.002 0.003 0.003 0.006 0.004 0.003

1 -0.5 0.002 0.003 0.003 0.004 0.004 0.005

1 -1 0.002 0.003 0.003 0.004 0.005 0.005

1 -2 0.001 0.003 0.003 0.005 0.008 0.008




Table 3b

Monte Carlo Standard Errors of each estimator based on samples of size 1000.
The model is just identified. The approximate proportion of 1's in each sample is .5.

Design Estimator

0 A ols probit Linear IV Plug In/MT AGLS Pretest
0.05 2 0.001 0.004 2.364 8.511 7.736 7.735
0.05 1 0.001 0.002 0.286 0.780 0.316 0.136
0.05 0.5 0.001 0.002 0.175 0.431 0.282 0.229
0.05 0 0.001 0.002 1.000 2.031 1.436 0.139
0.05 -0.5 0.001 0.002 0.272 0.407 0.440 0.169
0.05 -1 0.001 0.002 7.747 10.398 12.543 1.125
0.05 -2 0.001 0.004 0.350 0.542 0.877 0.816
0.1 2 0.001 0.004 0.033 0.115 0.079 0.080
0.1 1 0.001 0.002 0.029 0.079 0.049 0.052
0.1 0.5 0.001 0.002 0.094 0.248 0.148 0.145
0.1 0 0.001 0.001 0.016 0.032 0.023 0.014
0.1 -0.5 0.001 0.002 0.109 0.170 0.178 0.025
0.1 -1 0.001 0.002 0.033 0.041 0.055 0.054
0.1 -2 0.001 0.004 0.022 0.035 0.050 0.051
0.15 2 0.001 0.004 0.010 0.036 0.024 0.024
0.15 1 0.001 0.002 0.009 0.025 0.015 0.018
0.15 0.5 0.001 0.002 0.009 0.021 0.013 0.015
0.15 0 0.001 0.001 0.009 0.018 0.013 0.009
0.15 -0.5 0.001 0.002 0.009 0.014 0.013 0.016
0.15 -1 0.001 0.002 0.012 0.015 0.021 0.023
0.15 -2 0.001 0.004 0.011 0.018 0.027 0.027
0.25 2 0.001 0.003 0.006 0.020 0.013 0.013
0.25 1 0.001 0.002 0.005 0.015 0.009 0.009
0.25 0.5 0.001 0.002 0.005 0.012 0.007 0.010
0.25 0 0.001 0.001 0.005 0.010 0.007 0.005
0.25 -0.5 0.001 0.002 0.005 0.008 0.008 0.010
0.25 -1 0.001 0.002 0.005 0.007 0.009 0.009
0.25 -2 0.001 0.003 0.006 0.009 0.013 0.013
0.5 2 0.001 0.002 0.003 0.010 0.007 0.007
0.5 1 0.001 0.002 0.002 0.007 0.004 0.004
0.5 0.5 0.001 0.001 0.002 0.006 0.004 0.004
0.5 0 0.001 0.001 0.002 0.005 0.003 0.002
0.5 -0.5 0.001 0.002 0.003 0.004 0.004 0.004
0.5 -1 0.001 0.002 0.002 0.003 0.004 0.004
0.5 -2 0.001 0.002 0.003 0.004 0.006 0.006
1 2 0.001 0.001 0.001 0.005 0.003 0.003

1 1 0.001 0.001 0.001 0.003 0.002 0.002

1 0.5 0.001 0.001 0.001 0.003 0.002 0.002

1 0 0.001 0.001 0.001 0.002 0.002 0.001

1 -0.5 0.001 0.001 0.001 0.002 0.002 0.002

1 -1 0.001 0.001 0.001 0.002 0.002 0.002

1 -2 0.001 0.001 0.001 0.002 0.003 0.003




Table 4a: Comparison of AGLS and ML. Sample size = 200, model just identified.
Upper panel compares the percentiles of the computed t-ratio and its summary statistics.
Lower panel compares the percentiles to the p-value of the corresponding t-ratio.

A -0.25 -2 -0.25 -2
0 0.15 0.15 1 1
AGLS ML AGLS ML AGLS ML AGLS ML
1% -2.327 -3.40E+00 -2.984 -7.583 -2.233 -2.666 -2.489 -2.217
5% -1.666 -1.955 -2.189 -3.227 -1.566 -1.677 -1.686 -1.441
10% -1.326 -1.469 -1.724 -2.203 -1.244 -1.284 -1.265 -1.108
25% -0.631 -0.624 -0.873 -0.920 -0.599 -0.601 -0.543 -0.509
50% 0.013 0.013 -0.130 -0.157 0.098 0.099 0.163 0.168
75% 0.716 0.798 0.233 0.516 0.810 0.877 0.708 0.800
90% 1.216 1.564 0.429 1.267 1.279 1.500 1.199 1.535
95% 1.438 2.079 0.512 1.769 1.603 1.958 1.432 1.918
99% 1.941 3.199 0.688 2.583 2.166 3.173 1.792 2.801
Summary Statistics for the t-ratio and p-value for a test for normality
Variance 0.926 1.608 0.736 3.057 0.964 1.325 0.910 1.092
Skewness -0.237 -0.012 -1.202 -1.801 -0.123 0.204 -0.584 0.200
Kurtosis 2.732 4.708 4.013 12.317 2.606 3.755 3.326 3.584
W (p-value) <.0001 <.0001 <.0001 <.0001| 0.00432 0.00012 0.0001 0.0029
5% and 10% percentiles of the p-value for the two-sided t-test
5% 0.071 0.009 0.029 3.74E-04 0.058 0.019 0.064 0.034
10% 0.116 0.043 0.085 1.42E-02 0.114 0.067 0.119 0.084
Table 4b: Comparison of AGLS and ML. Sample size = 1000, model just identified.
Upper panel compares the percentiles of the computed t-ratio and its summary statistics.
Lower panel compares the percentiles to the p-value of the corresponding t-ratio.
A -0.25 -2 -0.25 -2
0 0.25 0.25 1 1
AGLS ML AGLS ML AGLS ML AGLS ML
1% -2.327 -3.40E+00 -3.055 -2.105 -2.367 -2.413 -2.507 -2.233
5% -1.666 -1.955 -1.922 -1.401 -1.670 -1.679 -1.619 -1.495
10% -1.326 -1.469 -1.536 -1.190 -1.321 -1.319 -1.263 -1.183
25% -0.631 -0.624 -0.672 -0.587 -0.599 -0.596 -0.628 -0.606
50% 0.013 0.013 0.018 0.019 0.024 0.024 0.104 0.104
75% 0.716 0.798 0.598 0.719 0.754 0.769 0.702 0.734
90% 1.216 1.564 0.979 1.423 1.317 1.380 1.227 1.337
95% 1.438 2.079 1.183 1.923 1.635 1.739 1.602 1.802
99% 1.941 3.199 1.387 2.741 2.242 2.467 2.145 2.541
Summary Statistics for the t-ratio and p-value for a test for normality
Variance 0.926 1.608 0.968 1.032 1.041 1.107 0.963 0.996
Skewness -0.237 -0.012 -0.910 0.381 -0.104 0.009 -0.316 0.062
Kurtosis 2.732 4.708 3.956 3.386 2.957 3.160 3.202 3.139
W (p-value) <.0001 <.0001 <.0001 <.0001 0.5446 0.8239 0.0001 0.3145
5% and 10% percentiles of the p-value for the two-sided t-test
5% 0.071 0.009 0.055 0.037 0.046 0.040 0.058 0.048
10% 0.116 0.043 0.123 0.090 0.098 0.088 0.107 0.094
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