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ABSTRACT

The finite sample moments of the bootstrap estimator of the
James-Stein rule are derived and shown to be biased. Analytical
results shed some light upon the source of bias and suggest that
the bootstrap will be biased in other settings where the moments
of the statistic of interest depends on nonlinear functions of the

parameters of its distribution.

INTRODUCTION

The bootstrap is used in many settings where the exact
sampling distributions of estimators are either unknown or
intractable. Freedman and Peters (1984) use the bootstrap to
improve upon the usual asymptotic results in a feasible
generalized least squares setting. Runkle (1987) estimates
standard errors for variance decompositions and impulse response
functions associated with estimation of vector autoregressive
models. In the literature on improved estimation of the

parameters of the linear regression model Chi and Judge (1985) and



Brownstone (1990) use the bootstrap nonparametrically to estimate
standard errors for the Stein-rule estimators.

One of the benefits of the bootstrap for these and other
problems is that it can be used more or less automatically to
approximate the sampling distribution of a statistic whenever
exact results are unavailable. Under fairly general circumstances
it is well-known that the bootstrap yields consistent estimates of
an estimator's sampling moments as sample size and the number of
bootstrap replications gets large [see Bickel and Freedman (1981),
Beran (1982)], but few have examined its behavior in finite
samples. One exception is Sim (1989) who derives small sample
results for estimators of the regression model. Also, based on
Monte Carlo evidence Adkins (1990) and Adkins and Hill (1990)
report that near the origin, percentile bootstrap confidence
intervals and ellipsoids for the James-Stein estimator [see James
and Stein (1961)], tend to be larger than necessary to cover at
nominal levels. Their results suggest that the bootstrap
estimators of the James-Stein’s covariance and standard error are
biased upward near the origin. The source of the problem is
demonstrated analytically below as the finite sample moments of
parametric bootstrap estimators of the JS mean and covariance are
derived.

The basic finding is that bootstrap estimators of the mean
and standard errors of the James-Stein rule are biased in finite
samples because the moments of the Stein-rule contain nonlinear
functions of the parameters associated with its distribution. 1In
addition, the results suggest that the bootstrap is least accurate
in Stein estimation when the location parameters lie at or near
the origin. In most cases the researcher will have more specific
nonsample information than that embodied by the James-Stein rule
and shrinkage will be directed toward points other than the
origin. In any event, the bootstrap estimator of standard error
is superior to that derived from estimates of the asymptotic
covariance matrix (which coincides with that of least squares).

The results obtained here should be useful to those involved in



Stein estimation and shed some light on the properties of the
bootstrap in similar settings (e.g., ridge regression).

Before proceeding it is worth mentioning that there are
alternatives to bootstrapping for estimating the moments of the
Stein-rule estimators [e.g., empirical Bayes approach described in
Judge and Yancy (1986), unbiased estimates of the MSE matrix,
Carter et al. (1990), and asymptotic approximation, Ullah et al.
(1984)], but these are not considered here.

THE MODEL AND ITS ESTIMATORS
The classical normal linear regression model (CNLRM) is

represented by

y =X8 + e e~N(O,UZIT) (1)
where y is a Txl vector of observable random variables, X is a
nonstochastic TxK matrix of rank K, B8 is a Kxl vector of unknown
parameters, and e is a Txl vector of unobservable normally and
independently distributed random variables having zero mean and
finite variance. The ordinary least squares (LS) and maximum
likelihood estimator of B is b=(X'X) 'X'y~N(8,0°(X'X) ") and the
minimum variance unbigfed estimator of o’ is
o"=(y-Xb) ' (y-¥b)/(T-K),
with ('I‘-K)cl;z/crzﬂ(:__K and independent of b.
The James-Stein estimator (JS) dominates the MLE of B in the
CNLRM under weighted quadratic loss with weight matrix W. The JS

estimator is

§(b) = (l-as/b’'Sb)b (2)
where S=X'X, and s=(y-Xb)’'(y-Xb). The estimator is minimax if the
scalar 'a’ is chosen to lie within the interval (O,am x), where

a
a =[2/(T-K+2)](x7' tr[WX'X]-2),
max L
and AL is the largest characteristic root of (WX'X) [Judge and
Bock (1978) p. 235]. The value of the constant 'a’ which

minimizes quadratic risk is the interval’s midpoint.

The James-Stein estimator has mean

E[6(b)] = # - a(T-K)E(L/x;,, \18 (3)

and covariance matrix



E[(§-E[8])(6-E[6])'] = o° S -

0% [2a(T-K) E(1) - a?(T-K) (T-K+2) E(ll)z] s7t o+

BB’ (2a(T-K)[E(1)-E(1)] +
a®(T-K) [(T-K+2)E(L)* - (T-K) (E[1,1)*]) (%)

where lx-xix/xim,A’ 12-X;«/X;H,A’ A-ﬂ'Sﬂ/Zaz and xj,A is a
chi-square random variable with n degrees of freedom and
noncentrality parameter A [Judge and Bock (1978)]. The estimator
is biased in small samples when S»0 and its covariance matrix
depends on the unknown location and scale parameters. The
James-Stein estimator is not an MLE and is neither linear nor
normally distributed; consequently, exact hypothesis tests and
confidence intervals of a given size cannot be formed in the usual
way, i.e., based on Wald or likelihood ratio principles [see Engle
(1984)]. Asymptotically, the mean and covariance of the
James-Stein rule converge to those of the least squares and any
risk advantage associated with its use vanishes.

The James-Stein rule has not met with widespread acceptance
among appliéd researchers. One reason is that in many econometric
applications it gives results which coincide with least squares
[see for example Aigner and Judge (1977)]. This may occur because
the implicit nonsample information contained in the James-Stein
estimator (i.e., that f=0) is not supported by the data. General
versions of the Stein-rules which shrink the MLE toward points
other than the origin are available and often yield more
interesting results [e.g., see Hill, Ziemer, and White (1981)].

In fact, the quadratic risk performance of the Stein-rule improves
as the nonsample information it embodies becomes more accurate.
Numerous other improvements have been made to the original
James-Stein estimator and the reader is referred to Judge and Bock
(1978), Brownstone (1990), Judge, Hill, and Bock (1990) and the
references contained therein for details.

Even though the James-Stein estimator and its various
"improved"” versions offer significant quadratic risk gains over

the MLE in certain regions of the parameter space in small



samples, it is difficult to derive and use their exact sampling
distributions [see Phillips (1984)]. Consequently, exact
confidence sets and hypothesis tests are not readily available at
this time.

Approximate confidence intervals and ellipsoids of given size
centered at the James-Stein rule have been constructed using the
bootstrap by Chi and Judge (1985), and Adkins and Hill (1990).
Both studies indicate that bootstrap confidence intervals and
ellipsoids centered at the James-Stein rule tend to be larger than
necessary to cover at nominal rates near the origin; coverage
frequency improves as |B| increases. Evidence in Brownstone's
(1990) nonparametric application is consistent with these
findings. This suggests that bootstrap standard errors for the JS
estimator may be more accurate estimators of the actual standard
errors in some parts of the parameter space than in others. This

conjecture is verified below.

BOOTSTRAP ESTIMATORS OF MEAN AND COVARIANCE

The bootstrap can be used in a variety of ways [see Efron
(1982)]. 1In ofder to avoid confusion over the way the technique
is used, each method employed below is discussed briefly.

The most common form of the bootstrap is nonparametric and
uses the least squares estimates b to obtain the set of residuals
;-y-Xb; these serve as the estimates of the true disturbances of
the model and are thought to capture its underlying structure.
After rescaling the least squares residuals using
;:-(T/(T-K))”z;t, t=1,...,T, [see Wu (1986) or Sim (1989) for
discussion] a bootstrap sample of size T is drawn randomly and
with replacement from ;*-[;:,...,;;]' and denoted e . Then the
bootstrap sample y =Xb+e is obtained and the bootstrap estimate
b*-(X'X)-1X’y* is computed. A large number, N, of size T random
samples are drawn from the empirical distribution ;*and the
sequences (y*): and (b*): are computed,

Using the assumption that the errors in this model are
independently, identically distributed normal random variables the

sequences (y'): and (b*): can also be generated using a parametric



bootstrap. Parametric bootstrapping of the James-Stein estimator
consists of obtaining the least squares estimates of ﬁ and o and
drawing a bootstrap sample y of size T from the N(Xb,o 21 )
distribution. Drawing N random samples of size T, (y )1

compute the sequence of bootstrap estimates, (b*}:. Given (b*)g

the bootstrap estimator of the LS covariance is

Cov(b™) = (B"-B")’ (B"-B)/N-1 (5)
where B = [b; b;, cee b;]' is the NxK matrix of bootstrap
estimates with columns {b:}z , i=1,...,K, B*-jEE E*', jN is an Nxl

N

vector of ones, b is the Kxl vector whose elements are ngﬁin/N,
and N is the number of bootstrap samples.1 Efron (1982) and Wu
(1986) show that E(b")=b and E[Cov(b")]=o” (X'X)". If b’ is
obtained using the parametric bootstrap, then

(b -b)~N(0,0 (X X) ) and Cov(b )~W (N-1,0 (X X) ) where W is
the Wishart distribution with N-1 degrees of freedom and
covariance ;Z(x'X)°1 [see Anderson (1984)].

The nonparametric bootstrap is essentially biased for the
standard errors of b in finite samples while the parametric
bootstrap is not. Intuitively, the relationship between parametric
and nonparametric bootstrapping for LS depends on the sample size,
T, as well as the number of bootstrap samples taken, N. 1In
general, as No« the bootstrap approximation to the empirical
distribution function (d.f.), which is obtained by random
resampling the least squares residuals, converges to the exact
d.f. of the LS residuals, ;. The exact d.f. of ; converges to

that of e as T>» [see Beran (1982)]; hence, convergence of the

'For notational simplicity, the symbols (y*): and (b*)j are used
to denote the sequences of bootstrap samples and LS estimates for
both the parametric and nonparametric bootstraps. Unless
otherwise noted these symbols will henceforth refer to sequences
obtained using the parametric

bootstrap.



nonparametric bootstrap to the parametric bootstrap estimator
requires T as well as N to be large. When T is small we know only
that increasing the number of pseudo-samples, N, inprousea the
approximation of the empirical d.f. to that of ;; it will not
eliminate the bias associated with the nonparametric bootstrap
which arises because the exact empirical distribution of the least
squares residuals differs from that of the model’s errors (for
finite T).

Having obtained b a bootstrap estimate of the James-Stein

estimator
a'®") = [1l-as"/b 'S Ib" (6)
can be computed using s*-(y*-Xb*)'(y*-Xb*) and the sequence (d*)z

formed. The bootstrap covariance matrix is

cov(d) = (D°-D')’ (D'-D)/N-1 (7)
where D' = [d:, d;, e d;]' is the NxK matrix of bootstrap
estimates with columns (d:): , i=1,...,K, B*-jgs E*', and d" is

N
L3
the Kxl vector whose elements are Eldi/N.
nm=- n

'Using theorems given in Judge and Bock (1978), the mean and

covariance of a* (taken over the distribution of y*) are

E,[d (")) = b - a(T-KE[L/x,, } Ib (8)
and

2

E ((d"-E [d"(@"-E [d" '] = o s -

o2 [2a(T-K)E(L) - a?(T-K) (T-K+2) E(11)2] s7! 4
bb’ (2a(T-K) [E(1)-E(1)] +
&*(T-K) [(T-K+2)E(L)? - (T-K) (E[1,])"]) (9)

where 11-X;x/xiw,k and 12-X§x/xiu,;' and ;‘-b'Sb/Z;2 (proofs
in Appendix A). This amounts to replacing g and ¢ in (3) and (4)
with b and ;, respectively. Comparing (8) and (9) with (3) and
(4), respectively, gives us some idea of why the bootstrap
estimates moments of the James-Stein rule with bias. Intuitively,
the problem occurs because in general E[¢(bb’) )¢ (BB8’') and

E[¢(b'b)]=4(B'B), where ¢ is any Borel measurable function.



Now, using the fact that E(g(b*))-Ey(E*[g(btlb)]) we take the
expectations with respect to the distribution of y and obtain the

following results

* w 2
E(E,[a°®D]) = p - aTREL/x, , 18 (10)

and
E (E,[(d"-E[a"]) (@ -E[d" D' ]) =

az{l-Za(T-K)E*(122)+a2(T-K)(T-K+2)E*[(122)2]} sl

o { 2a(T-K)(E, (1, ) - E(1, ) +

a*(T-K) ((T-R+)E [(1, )*] - (T-K) E,[(1, )°]) }s“ +

{ 2a(T-K)(E, (1, ) - E,(1, ) +

a®(T-K) ((T-K+2)E [(1, )*] - (T-K) E, (1, )] }ﬂﬂ' (11)

(T-X) 2 1 (T-X) 1
———— - e —ee— (K4 -
(T-X-2) E[xx+z,A] 2 (T-K—Z)(K 2+22), "1 2

(T-K) 2 1 (T-K) 1 2 1
(T-X-2) [XK%.X] 2 (T-K-2) (K+4421), (P EE[XK,A] T2 (R+22),

2 2
E*(lzz)-E*[l/xmu'n 1, E (A, )=E [1/x 1,

1
where n = -
0 2

) K+4,f]2
2 2
E*(lzo)-E*[l/xK+2,fI0] ] E*(l“o)-E*[l/XK+h,n°].

2 2
E*(121)-E*[1/x*ﬂ.ﬂ1]' and E*(lal)-E*[l/XKM,nI]' Proofs of

(8)-(11) are given in Appendix A.
The results demonstrate that in general, the sampling moments

*
of the bootstrap estimator d are not equal to the moments of the

James-Stein rule. Since A<n° for all 8, E[l/xiu n ] >
"o
E[l/x;+2 A] and E[d ]>E[§]. Determining the relationship between

Cov(d*) and Cov(é) is more complicated but the same general story
applies. Rather than seek an analytical solution to this problem,
the results of a small simulation documenting the behavior of
Cov(d*) and Cov(é) for various values of )\ are given below. Once
again the bootstrap estimator of the James-Stein’s covariance (11)
is biased for (4) and in general, Ey[Cov(d*)]>Cov(6).

Consequently, standard errors obtained using (11) with the



parametric bootstrap will be larger on average than the actual
standard error of the James-Stein estimator.

The results also suggest ways to reduce the bias associated
with bootstrap estimation of the JS standard errors. Comparing
equation (4) to equation (9) it can be seen that the parametric
bootstrap estimator of Cov(d) essentially replaces 'S and g’
with b’b and bb’, respectively. Near the origin these are poor
estimates; when § lies farther from the origin the bias is
reduced. Replacing b by the JS estimator, §, should reduce bias
near the origin and § will converge to b as |ﬁ| increases. Hence,
in the nonparametrlc setting we could resample randomly from the
JS residuals e Y- -X§ and generate bootstrap samples using y -X6+e6
where es represents a random resample from the JS residuals es-
This approach is similar in spirit to that taken by Brownstone
(1990). Smaller standard errors can also be attained from Cov(d*)
by simply resampling randomly from the scaled least squares
residuals e” and using y*-X6+e'. Either of these modifications
can be justified on theoretical grounds since § is consistent for
B.

More formal procedures which can be used to reduce bias
include smoothing the empirical distribution of the residuals
before resampling (Efron 1982) or, in the case of confidence
intervals and sets, prepivoting (Beran 1988) and double
bootstrapping (Beran 1990).

SIMULATION RESULTS

In this section the results from a small simulation are
reported in order to document the relationship between bootstrap
estimates of standard error and the actual values associated with
the JS estimator. Results from both parametric and nonparametric
bootstraps are given in an attempt to measure the magnitude of the
bias associated with each.

For the Monte Carlo each of 8 regressors in the X matrix has
been standardized to have zero mean, variance 1, and to be
mutually orthogonal. This design is referred to as the

orthonormal regression model (i.e., X'X=I) and corresponds to the



model of the mean of a multivariate population which is widely
studied in statistics. The orthonormal model is computationally
convenient and the results generalize to nonorthogonal models for
which it is a canonical form. The weight matrix W which appears
in the scalar 'a’ is chosen to be W’-IK while 'a’ is the midpoint
of the interval (O,amax).

A total of 500 pseudo-random samples of size T=30 was drawn
from the N(0,1) density. The same set of deviates were used for

each of the ten parameter points generated using

t=(&? T 0%/ [(1-RD3 3N

where g=£j, j is 8xl vector of ones, az-l, and population
goodness-of-fit Rz-[.OOOOI, 0.01, 0.025, 0.05, 0.075 0.10, 0.25,
0.50, 0.75, 0.90]. Thus, the bias of bootstrap moments for the
James-Stein estimator is studied for several points in the
parameter space which lie along a ray extending from the origin.
As R? increases, the degree of noncentrality )\ increases as well.

The parametric bootstrap results from the simulation are
reported in Table I along with the expected values of Stein-rule
means and standard deviations obtained using equations (3), (4),
(10) and (11). Let dkmn be the k(th) element of d computed from
the n(th) bootstrap sample from the m(th) Monte Carlo iteration.

The elements of tables I and II are computed as follows: 31 - % §

5./, &=z Exd /OMN), - T % (6,-8 )%/(n)]"* where
Sk.- § Skm/M,and 5;— % § a;m/KM where*a';m is the square root of

the k(th) diagonal element of Cov(d ) from the m(th) Monte Carlo
iteration. In the first column the values of the noncentrality
parameter and the corresponding R? are given. Each value of X (or
Rz) represents a different point in the parameter space. In the
next two columns the average value of the elements of § and its
standard error are reported for the 500 Monte Carlo samples. The
corresponding theoretical values, E(Si) and E(OS)’ were obtained
using equations (3) and (4) and appear in columns 4 and 5.

Similar statistics and their theoretical values for the parametric

bootstrap appear in the remaining columns. Because the elements



ol

TABLE
Bots:  y-N(X8,0°1) Petaii:  y ~N(Xb,o’I)
2 - - . - - : - *
R | 8, o, i E(5) E(a5)| d e, i E(d) E(o,)
.00001 .0018  .572 .0019  .559 .0041  .730 .0041  .727
[.00015] | (.009) (.041) (.010) (.002)
.0100 .061 .578 .064 .566 .131 .734 .132 .731
[.1515] | (.009) (.032) (.010) (.002)
.0250 .106 .586 .112 .578 211 .740 .213 .738
[.3846] | (.009) (.024) (.011) (.002)
.0500 .173 .603 .181 .596 .307 751 L3110 .749
[.7894] | (.010) (.019) (.011) (.002)
.0750 .239 .621 .248 .622 .388 .760 .393 759
[1.216] | ¢.010) (.020) (.011) (.002)
.1000 .306 .641 .316 645 460 J771 .468 770
[1.667] | (.012) (.020) (.011) (.002)
.2500 .737 .762 .753 .766 .869 .826 .886  .828
[5.000] | (.012) (.023) (.014) (.002)
.5000 1.63 .890 1.64 .890 1.68 .909 1.71  .906
[15.00] | (.014) (.025) (.015) (.002)
.7500 3.15 .958 3.17 .959 3.17 .969 3.18  .961
[45.00] | (.015) (.029) (.015) (.002)
.9000 5.69 .983 5.81 1.00 5.69 .996 5.81 1.00
[135.0] | (.015) (.045) (.016) (.002)
Least Squares (bi)
Bias 0.000 0.000
S.E. 0.997 ' 1.010

ok
T=30, K=8, X’X—I‘, W-Ix’ a-an‘x/Z. Monte Carlo standard errors
appear in parentheses. Noncentrality parameter appears in
brackets, [A].



of B were chosen to be equal to one another and X'X-IK, we can
average over the additional dimension K. Monte Carlo standard
errors appear in parentheses.

Near the origin, R%=.00001 and the average value of 6i over
the Monte Carlo samples is .0018 and has standard error in the
experiment of .572. This compares to expected values of .0019 and
.559, which are derived from equations (3) and (4), respectively.
Using the parametric bootstrap the average values of the i(th)
element of the James-Stein estimator is .0041, while its average
estimated standard error is .730. At the 5% level, these are not
significantly different than the theoretical values E(d:) and

»

E(ad) which are derived from equations (10) and (1l1),

"
respectively. Comparing E(ad) to E(as) indicates that the
parametric bootstrap estimate of standard error is expected to be
nearly 30% larger than its theoretical value at the origin.
Notice that the degree of bias falls as )\ increases in size. As
the sample size, T, increases the James-Stein estimator converges
toward least squares and the bias associated with parametric
bootstrapping will diminish. Increasing the number of bootstrap
samples, N, cannot be expected to eliminate the bias; this is seen
in equations (10) and (11l) where the expectations have been taken
over y*and y and depend on T, not N.

In Table II the results from nonparametric bootstrapping are
given. The Monte Carlo averages are repeated from Table I for
convenience. In columns 4 and 5 nonparametric bootstrap samples
were generated from randomly resampled and rescaled LS residuals
from mean Xb. The next two columns use the LS residuals from mean
X§. The final two columns contain results generated using
unscaled and centered James-Stein residuals from mean X§.

Near the origin, finite sample standard errors are estimated
most accurately using nonparametric bootstrap samples generated
5
errors of the James-Stein estimator occurs when R*>.05 using

using y'-X6+e Underestimation of the finite sample standard

y*-X6+e; and when R%z.1 using y*-X6+e'. 0f the nonparametric

bootstraps considered, that based on the LS residuals and mean



TABLE
el .. nogmsmae ..
y~N(X8,0°1) y =Xbte y =Xé+e y -X6+es
R 5 o a’ a d’ o a o
i é 1 d i d i d
.00001 .0018 .572 .0040 .701 .001 .605 .0012 .590
[.00015] (.009) (.041) |[(.010) (.002)| (.006) (.002) |(.005) (.002)
.0100 .061 .578 .128 .706 .035 .607 .004 .589
[.1515]) (.009) (.032) |(.010) (.002)| (.006) (.002) |(.006) (.002)
.0250 .106 .586 .206 711 .061 .610 .068 590
[.3846] (.009) (.024) [(.010) (.002)| (.006) (.002) |(.006) (.002)
.0500 .173 .603 .300 .721 .101 .617 .112 592
[.7894] (.010) (.019) |(.011l) (.002)| (.006) (.002) |[(.006) (.002)
.0750 .239 .621 .379 .731 .143 .624 .157 .595
[1.216] (.010) (.020) |(.011l) (.002)| (.006) (.002) |(.006) (.002)
.1000 . 306 .641 .451 .740 .186 .632 .203 .600
[1.667] (.012) (.020) |(.011) (.002)| (.007) (.002) |(.006) (.002)
.2500 .737 .762 .858 .797 .500 .858 .539 652
[5.000] (.012) (.023) {(.012) (.002)| (.009) (.002) |(.007) (.002)
.5000 1.63 .890 1.68 .879 1.34 .873 1.41 .759
[15.00] (.014) (.025) |(.014) (.002)| (.014) (.002) |(.01l4) (.002)
.7500 3.15 .958 3.16 .939 2.95 .933 3.00 814
[45.00] (.015) (.028) [(.015) (.002)| (.014) (.002) |(.01l4) (.002)
.9000 5.69 .983 5.69 .967 5.57 .966 5.60 .833
[135.0] (.015) (.028) |(.015) (.002)| (.015) (.002) |(.015) (.002)
Least Squares (bs)
Bias .000 0.000
S.E. .997 0.998
**T-30, K=8, X'X—IK, W-Ix, a=~a /2. Monte Carlo standard errors

max

appear in parentheses. Noncentrality parameter appears in

brackets,

[A].



(i.e., using y*-Xb+e‘) is generally a more conservative estimator
of Cov($§) since it underestimates the true standard error over a
smaller portion of the parameter space than its competitors.
Increasing the number of bootstrap samples to 1000 and 2000
had virtually no effect on the estimates obtained. In fact,
estimated standard errors reported in Tables I and II changed by
less than .002 at the origin when setting N=2000. The similarity
between the parametric and nonparametric approaches for given N is
expected to increase as T increases, i.e., as the empirical
distribution of ; converges to that of e. However, as T increases
the Stein estimator itself converges to LS and its use in large

samples offers little if any risk advantage over least squares.

CONCLUSION

The parametric and nonparametric bootstrapping are reasonably
accurate ways to estimate finite sample standard errors for the
James-Stein rule. The bootstrap provides a closer approximation
of the actual standard error than estimates based on the
asymptotic covariance matrix which for the JS rule coincides with
that of least squares. The parametric bootstrap estimator of the
‘James-Stein’s standard error tends to be the most conservative of
the versions considered here, but is the least accurate when 8
lies close to the origin. At this point the percentage bias is
nearly 30%. The farther B lies from 0, the more accurate the
bootstrap becomes. The degree of bias near the origin can be

reduced in a number of practical ways which include creating

*

§
these methods tend to cause underestimation of standard error over

pseudo-samples generated using yf-X8+e or y*-X8+e*. However,
much of the parameter space. The parametric bootstrap for which
finite sample results are obtained is less prone to this problem.
In fact the theoretical results reported in this paper indicate
that it is biased upward no matter where g lies.

A general implication of these results is that the finite
sample accuracy of the bootstrap approximation depends on the
values of the model’s parameters. That is, its accuracy depends

on the very quantity that we are trying to estimate. This



suggests that it may be important to study the bootstrap’'s
properties before conclusions are drawn based on its use in a
given application. For the James-Stein rule the situation is
simpler than it will usually be because we know its finite sample
moments and are able to derive straightforward results for the
bootstrap moments using normal distribution theory. For other
estimators these results are often unavailable (e.g., impulse
response functions in the VAR application) and our best recourse
is to compare moments obtained from a Monte Carlo study with the
average value of the bootstrap moments obtained over the same
simulation. Such computer intensive exercise tends to be
expensive and the results often are difficult to generalize.
Nevertheless, the finite sample bias of the bootstrap even for a
fairly simple estimator like the James-Stein rule can be
significant and depends on the way the unknown parameters enter
the actual moments of the estimator. In a similar way we would
also expect bootstrapping to be biased for the covariance of
certain ridge estimators where the unknown parameters appear as

nonlinear functions in the moments of the estimator.
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APPENDIX A
In this appendix, theorems used to prove the results in the
paper are given and a sketch of how the results were derived are

presented. The symbol ¢(.) denotes a Borel measurable function.

Theorem 1: (Judge and Bock, p. 321)
If the Jxl vector w~N(w,I ), then
E[¢(w’ w)W]-wE[¢(x 1. (Al)

J+2,w'w/2

Theorem 2: (Judge and Bock, p.323)
If the Jxl vector w-N(w,IJ), then

E[¢(w'w)ww’ |=E[$(x )T E[4(x’ Ywo! . (A2)

J+2,w'Ww/2 J J+6,0'W/[2
Using theorems 1 and 2 we will derive E(d) and Cov(d*) for

the orthonormal model. Let

y=20 +e e~N(0, o 1 ), Z-I (A3)

The least squares estlmator of 0 is 0-2 y~N(8,0 I) and the

l\

bootstrap estlmator 8 |0-Z y ~N(0 o I) where

o -(y Z28)' (y- ZB)/(T -K) with (T-K)o /a ~x and independent of 0
Theorem 3: If 9 |0~N(0 o’1), 0-Z'y~N(0 0’1), and

A 'A

-(1 as /0 g )0 where s-(y 20 ) (y 20 ), then

B [d'] = (1 - a(T-K)E (1/x,, 2 )10 (a4)
1 (T-K) 2 1 (T-X) 2
where M, T 5 rkn E[Xx+z,)\] = O 2)(K+2+2)\) and A=§'6/20" .
A* A n
Proof: Let w = —g— ~ N¢( i , IK) and note s“/ar2~x:_K which is
o o

statistically independent of w.
E, (@) - E[E, (dlﬁ)]

B, (d'|0) - B [0[1 a(s"/a/ (878" /) 87/ ]

-E[;[l-axi_x/w'w]w] (AS)

Apply theorem 1 to (A5). This yields

E (d|6) = [ l-a (T-K) 1~:(1/XK+2 D ] 8 (A6)



A
A A A ~

where A= (9' 0)/ (20 ). Redefine w = g . N( —, IK) and note X =
_(T-K) w'w g
(0 0/0 )/ (20 / —

2 XT-K

Rewrite E (d [§) = o [ l-a (T-K) E(l/x“2 A

) ]w and take the

expectation with respect to y by applying theorem 1, noting that w

A

and 02/02 - x:-x/(T-K) are independent.
Ey(d) - Ey[E*(d [8)] = [1 a (T-K) E(l/xmz n, ) ] ] . (A7)
Theorem 4. ‘
E (E,[(d"-E[d"])(d -E[d"])']) -

0% (1-2a(T-K)E, (1 )+a’(T-K) (T-K+2)E, [(1,)°] T,
2
+ 0 { 2a(T~K)(E*(120) - E*(lbo)) +

2 2 2
a(T-K) ((T-K+2)E_[(1, )°] - (T-K) E 11, )°]) }IK

+ {Za(T-K)(E*(lzl) - E(1,)) +

2 2

a”(T-K) ((T-K+2)E_[(1, )°] - (T-K) E [(1, )] } 69’

where n, = i (—;f_:-%)' E[X12<+2,A] - i (;TKK;)(K+2+2'\)’ Ty : (—;T_K%)_
E[X;a,x] - : (;T:;) (K+4+2)) , 0 = ! E[xK'A] -5 (K+2))

E, (1,078, (U 1 BB/ T,
E*<120>-E,[1/x&n,n01, E (L)1, , )

2 , 2
E*(lu)-E*[l/xyz'ﬂl], E*(lu)-E*[l/xKM'nl] and A=0'0/20% .
Proof:
E_((d"-E[d"])(d"-E[d" ") =
[(1 as’/8" 92 678" - (L-as"/6" 67)8%6" -

(1-as'/6" 8988 + [1-a (T-K) E(L/xS,, 31 e ] -

[(1 as’ /6" 6")% %6 - [l-a (T-K) E(L/xC, s 12 64" ] (A8)

* A

* "2 2
Let w = ~ N( , IK) and note s /o ~Xpx

Q> >



A 'l\ A
Consider the term E_ [(1 as /0 6 ) ’] from (A8).
8"

-] - E, [;2 (1 - a X:-x / ww)? ww! ] (A9)

[(1 _as*/8" 92 ¢

Apply theorem 2 to the r.h.s. of (A9).

E (1as/;';) A']_

*

A

o’ [1 - 2a(T-K) E(1/;<Kz D+ a? (T-K) (T-K+2) E((l/xK+2 ;) ) ] I

+ [1 - 2a(T-K) E(l/x e V)

(T K) (T-K+2) E((l/xK " :\) } ] 66’ (Al10)

Now, take the expectation of (Al0) with respect to y. To do this,

redefine w = % ~ N¢( %, I ) and note A = (§' 0/0 )Y/ (20 /a ) =

A

. 2 2 2
with "= 0 x

T-K

K
E { [(l as/ﬁlﬂ) ']}_
y

E {"er [I-Za(TK) E(1/x’
v (T K) +2A

(T-K) w'w /(T-K). Then

2 Xy

a® (T-K) (T-K+2) E((l/xKz :\) ) ] L

[l - 2a(T-K) E(l/xKM A

2 (10 (1-k2) B/, DY) } (a11)

Note that E[¢(xi)x:]-n1a[¢(x:+2)] [see Judge and Bock (1978) p.

320], hence the expectation of the first term in (All) is

E {"er [1-2&('[‘1() E(1/x
y (T K) +2A

a® (T-K) (T-K+2) E((l/xKz :\) ) ] L }

- [1 - 2a(T-K) E(l/xx+zn )y +

a? (T-K) (T-K+2) 1*:((1/;{“2’7 32y ] I (A12)
"2



Consider the second term of (All):
E do® | 1 - 2a(T-K) E(L/x° =) +
¥ g /XK-H,A

a® (T-K) (T-K+2) E((1/x,,, 3)0) ] ww'} :

Using Theorem 2 yields

o [ 1 - 2a(T-K) E(l/xfm IR
"o

a® (T-K)(T-K+2) E( (1/x,, ) ] I+
"o

[1 - 2a(T-K) E(1/xg,, . ) *
!

2 2 2 s
a” (T-K)(T-K+2) E{(l/xmw,ql) } ] 68 (Al13)
Now, taking the expectation of the second term in (A8) with

respect to y using Theorem 2 yields

2 A 12 aas
Ey [ [1-a (T-K) E<1/XK+2,A Y]1© 64 ]-

o’ [ 1 - 2a(T-K) E(l/x;z , )t
"o

&’ (1-0* (E(l/x,, ))2] 1o+
"o

2 2 2 2 2 ,
[ 1 - 2a(T-K) E(l/xma,nl) + a~ (T-K) {E(l/ka‘"l)}] 6é
(Al4)
Combining (Al4), (Al2), and (Al3) yields

- az[ 1 - 2a(T-K) E(l/x;zn Y +
"2

a2 (T-K) (T-K+2) E{ (l/xlz&2 n )2) ] IK } +
"2

o [1-2a(1:-1<) E(l/xfm g, ) a®(T-K) (T-K+2) E{ (1/x %) ] 1
. "o

K+é4, ) S
,70

+ [1 - 2a(T-K) E(l/xfw g )t a® (T-K) (T-K+2) E( (1/xfM " )2)]09'
" "

- ot [1 - 2a(T-K) E(l/x;+2ﬂ y + a’ (T-K)? u~:(1/x;‘;+2 " ))2] I
"o "o



. [1 - 2a(T-K) E(l/x;Z p )t a® (T-K)? (1-:(1/x;‘;+2 " ))2] 'YK
1 et

Rearranging yields the desired result.®
To prove the results in the text of the paper for the

nonorthonormal model we introduce the canonical form.

y=XB+e=XV' VB+e=120+e
where Z-XV-I, 0=vg, Z'Z-IK. Replacing 4§ with V8, and noting that
Vb=§, Vb =", V'V=X'X, and b’'X’Xb/20°= §'8/25° enables the above

Theorems to be used for the nonorthonormal model.



