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ABSTRACT

Monte Carlo simulation is used to study the finite sample statistical properties of a
maximum entropy estimator of the binary choice model. The estimator is similar in
spirit to generalized maximum entropy estimators (GME) proposed by Golan et al.
(1996) and is nonparametric in the sense that no assumption is made about the
underlying density function generating the data. The GME is compared to the probit
and logit MLEs as well as the OLS estimator of the linear probability model. The
results indicate that the GME has squared error risk lower than that of the probit and
logit for all experimental designs. The GME has lower squared error risk than OLS
when the inherent variability of x'p is large and when the number of independent
variables is small. Increasing the number of support points improves performance.
Unfortunately, the in-sample and out-of-sample predictive abilities of the GME
estimator leaves something to be desired. Only when the signal-to-noise ratio is very

small is the GME a good choice.
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I. INTRODUCTION

In binary choice models the probability of observing an event is related to a set of
explanatory variables. Members of the class of binary choice models differ in the
particular way the probabilities are modeled. In the probit model they are modeled
using the normal cumulative distribution function (cdf), in the logit model the
logistic cdf, in the linear probability model they are simply linear functions of the
independent variables. The choice of model is often made based on common
practice within the researcher’s discipline and without regard to the actual data
generation process associated with the sample.

Maximum likelihood estimation of the probit and logit models require numerical
optimization since the first derivatives of the log-likelihood function cannot be
explicitly solved for the unknown parameters. The MLE is attractive since it is
known to have good asymptotic properties.

In this chapter, a2 maximum entropy estimator of the binary choice model is
proposed that requires a minimum number of assumptions about the stochastic
nature of the equation’s error. The estimator is similar in spirit to generalized
maximum entropy estimators proposed by Golan, Judge and Miller (1996a) and
Golan, Judge and Miller (1996b). The required assumptions that are:

1. theunderlying probability of an event must be positive, but not greater than 1
the underlying probability of an event is a function of the independent
variables

3. (optional) feasible support for the model’s errors is the interval [-1,1]

Probability measures require that probabilities meet the first assumption. The
second assumption is reasonable if data are being used to ascertain the underlying
probabilities. The third assumption is optional, but when used it enables one to
improve inference in the model. The proposed estimator is nonparametric in the
sense that no assumption is made about the underlying density function generating
the data. All that we need to know is that the process has a binary outcome and that
the independent variables contain information about the probabilities of observing
the event.

Il. MODEL AND ITS ESTIMATORS

In the binary choice model the dependent variable takes the value of one or zero,
indicating whether or not an event occurs. Let y, be a binary random variable taking
the value of 1 or 0 and x, a known K x 1 vector of explanatory variables associated
with the #* observation. The probability of observing the event for individual 7 is

p,=Pr(y,=11xB)=G(x) >0 )
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fort=1,2,..., T, Bis(K x 1) vector of unknown parameters and G(-) is a function
linking the probabilities to the linear index (x/B). The function G(-) maps the real
line into the [0,1] interval.

Following Golan et al. (1996a, 1996b), the model can be written

yl=G(x:B)+eI=pl+el 2)

where the p, are the unknown probabilities and the e, are unobservable errors
contained in the [—1,1] interval. In vector notation equation (2) can be written

y=p+e )

where y, p, and e are (T x 1) vectors.
Explanatory variables can be used in conjunction with (3) to form the following
moment condition

Xy=Xp+Xe 4

At this point, there are more unknown parameters than observations. As will be
discussed in the next section, Jaynes (1957a) has proposed a practical solution to
this problem using Shannon’s (1948) entropy measure.

The traditional maximum likelihood method maximizes

T

L(G, )= y,InGP) + (1 - y)In(1 - G(xB)) )

t=1

The logit MLE is obtained if G() is a logistic cdf and the probit MLE is obtained
if it is a standard normal (i.e., N(0,1)) cdf.

Another common choice for G(x/B) is the simple linear function (x)B). This
function is not a proper cdf since it does not map into the [0,1] interval. Neverthe-
less, it is often used because P can be estimated consistently using ordinary least
squares.

In this chapter a generalized maximum entropy estimator is presented and its
properties are compared to those of the MLE logit (LMLE), MLE probit (PMLE),
and the ordinary least squares estimator (OLSE) of the linear probability model in
a Monte Carlo study.

I1l. MAXIMUM ENTROPY ESTIMATORS

Jaynes (1957a), (1957b) proposed a way to estimate the unknown probabilities of
a discrete probability distribution when there are fewer observations than parame-
ters. Given a set of distributions that are consistent with the way the data are
generated, he proposed using the one that selects the most “uncertain” one. Jaynes
measured uncertainty using Shannon’s (1948) entropy measure
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T

H(p)=-) p,In(p). (6)

t=1

The entropy function (6) is maximized subject to any known restrictions on the
probabilities, p,.

The maximum entropy (ME) approach assumes that our prior knowledge is
limited and assumes that each outcome is equally likely a priori. Thus, according
to Jaynes (1985) the ME solution “agrees with what is known, but expresses
‘maximum uncertainty’ with respect to all other matters.”

The approach has been used to estimate the parameters of multinomial discrete
choice problems by Denzau, Gibbons and Greenburg (1989) and Soofi (1992)
where it is shown to be equivalent to MLE multinomial logit estimator. Golan,
Judge, and Perloff (1996¢) generalized this approach by introducing error terms
into the formulation of the unknown probabilities as in equation (2). The error terms
are modeled as the mean of a finite set of known points defined on that support; the
distribution of the errors is otherwise unspecified and the probabilities that the
errors take specified values on the support are treated as unknown parameters.

Following Judge (1991) and Judge, Golan, and Miller (1993) the errors are
reparameterized in the following way. The errors are assigned probabilities of
taking on various values on the interval [-1,1]. The hypothesized values for the

errors are denoted v,'= [v”, Vs -ves ,M] where M 22 and have corresponding
unknown probabilities (or weights), w,=[w,,, w,, ..., w,,]’. The transformed
errors become
K " )
7
V. w
e=Vw= 2 :2
4
vrl| wr

with w=(w, wy, ..., wy)’ which is MT x 1. In the binary choice model, the
generalized entropy function is

max —p'lnp—winw ®
pw

subject to the data consistency constraints
Xy=Xp+XVw ®

and a restriction that ensures the weights on the errors sum to one

M
Ywe=1 t=1,2,...,T (10)
i=1
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The corresponding Lagrangian is
M
L=—p'lnp-whw+N(Xy-Xp-XVw)+8 1= w, (11)
i=1

which is maximized with respect to p, w, A, and 8. In addition, the Lagrange
multiplier associated with the data consistency constraints, —A, is the GME estimate
of B.

The path taken in this paper is similar to that the multinomial approach suggested
by Golan, Judge, and Perloff (1996c¢) and is completely consistent with the entropy -
approach and analogous to that taken in binary choice models estimated based on
the maximum likelihood principle. In the multinomial case each choice is parame-
terized by a unique set of parameters gffer normalization and the maximum entropy
estimator (ME) yields a set of coefficients that correspond to those of the multi-
nomial logit model’s MLE.

In the setup considered in this paper a single set of probabilities are estimated for
the event which implicitly yields a single set of parameter estimates for the
underlying Bs; no separate normalization is required. The probability of the alter-
native choice, p,, is treated as it is in the usual binary choice model where it is
implicitly assumed to be 1 — p; a formal constraint is not imposed. One disadvan-
tage of formulating the GME estimator in this way is that the estimated probabilities
and coefficients are not invariant to how the choice is coded. The major advantages
of this approach is the dramatic improvement in terms of squared error loss over
the ME (MLE logit) specification.

IV. EXPERIMENTAL DESIGN

The goal is to examine how the probit maximum likelihood and OLS estimators
compare to the generalized maximum entropy estimator (GME) in terms of squared
error loss. Towards this end, three economic examples are chosen, each representing
a distinct experimental design. The models vary by sample size, number of
parameters to estimate, and in the inherent variability of x/B. In the probit model,
if the variability of xB is too small, then values of F(xB) will not show much
variation and the probabilities will be clustered around .5. On the other hand, if the
variability is too great, then probabilities are clustered around the extreme values
of 0 or 1 (see Griffiths, Hill and Pope 1987 for details).

Var(XB) is computed using (T — K)™'p'(X — X)'(X — X)B. In practice this quantity
is unknown since it depends on the unknown parameters, . Researchers are more
familiar with the likelihood based pseudo-R? which is also reported. Although the
correspondence is not perfect, higher values of R? tend to be associated with larger
values of Van(X). To achieve different amounts of variability, the data are generated
using 3 values of the parameter vector. One set is estimated from the data set using
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the probit MLE, another using the logit MLE, and the third using OLS. As Maddala
(1983) points out, the probit MLE, logit MLE and the OLS estimator can be made
comparable by simple linear transformations. In general, IB,,,;| 2 IB,,,5] 2 1By )-
The data generation procedure is as follows:

1. The probit MLE, the logit MLE, and the OLS estimates are obtained for B
using the original T observations on y, and the X explanatory variables.

2. Letting X be the T x K matrix of explanatory variables, 500 samples of the
latent vector y; = XB, + e, i = probit, logit, OLS, that are generated using
(e;) which is a T x 1 vector of random deviates from the standard normal
(J=1) or logistic (j = 2) distributions and y, =1 assigned if y; > 0. Hence
in one set of experiments, the probit model is the true DGP (i.e.,j=1) and
in the other the logit model is the appropriate one to use.

3. For each sample and each value of B the probit, logit, OLS, and GME
estimators are obtained.

4. For each estimator and each sample the squared error loss,
L(ﬂ -B, )'(,B - B,), is computed where B, = (B,, B3, . - . , B)’ is the vector
of coefficients excluding the constant. Empirical nsk is the arithmetic
average of the loss function. Of course, small estimation risk does not
necessarily imply that a specific parameter will be estimated with small mean
square error.

S. For each estimator and each sample the in-sample prediction loss is com-
puted based on L(p — p)'(P — p) where p is the T x 1 vector of in-sample
predicted probabilities associated with each model and p is vector containing
the actual probabilities. The true probabilities for the probit model (j=1)
are computed F(XB) with F() being the normal CDF; for the logit model
(j =2) they are computed using L,(Xp) with L,() being the logistic CDF.
F(GME) and L,(GME) are also computed by plugging in the GME estimates
of B into the normal and logistic cdfs, respectively. These are offered as
semi-parametric alternatives to the usual probabilities estimated directly by
the GME estimator. The rationale for F(GME) and L,(GME is that better
estimates of B provided by the GME should lead to improved in- and
out-of-sample predictions. The obvious problem with this in practice is that
FQ or L,() must be chosen without knowledge of the actual DGP. Again, the
arithmetic average loss and its Monte Carlo standard error are reported.’

6. For each estimator and each sample the out-of-sample prediction loss is
computed using IJ(;?O - po)'(ﬁo -p,) where 190 is the T x 1 vector containing
the out-of-sample predicted probabilities associated with each model and
p, contains the actual probabilities. The true probabilities for the probit
model are F (X B) with F () being the normal CDF and L (XB) with L,() being
the logistic CDFE. Out-of-sample predicted probabilities based on the GME
are computed using F(GME) and L,(GME) by plugging in the GME esti-
mates into the normal and logistic cdfs, respectively. The out-of-sample
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values X are generated by randomly drawing (with replacement) T observa-
tions from each of the independent variables. For example, suppose
X={x, X, ..., xg} where x, is the T x I vector of observations on the k™
independent variable. The elements of x, are sampled randomly with replace-
ment to obtain x,,, the T x 1 vector of out-of-sample values. The process is
repeated for each of the independent variables and becomes
{xlu’ xZo’ e xKo}
7. Several choices of the support for each of the GME errors are used. They are
=TA(-1,0, 1), v, =T%-1,-5,0,5,1), and v,;= T%(~1, .75, -5,
—25 0, .25, .5,.75, 1). Their respective startmg values are wl =(.33, .34,
33).w,=(2,.2,.2,2,2),andwy =(.1,.1,.1,.1, .2, .1, .1, .1, .1),

8. The starting values for the probabilities, p, in the GME are obtamed using
the relation p = exp(XBLag,.,)/(l + exp(XB,ﬁg,.,)) which initially satisfies the
data consistency constraint.

9. The empirical probability that the squared error risk of the GME is greater
than that of the probit, logit, and OLS estimator are computed. Each of the
data generation processes is described in detail below and the results from
the Monte Carlo experiments are summarized.

A. School Vote Data

The probit model has been used by Rubinfeld (1977) to study the voting decisions
of individuals in a local school milage referendum. The abridged data set consists
of 95 observations and can be found in Pindyck and Rubinfeld (1981). The binary
dependent variable takes the value 1 if an individual votes yes and 0 if no. Of the
eight independent variables, five are binary and three are continuous. A constant
term is added for a total of nine variables.

B. The Mortgage Data

Dhillion, Shilling, and Sirmans (1987) investigate the financial and personal
characteristics that influence home-buyers to select either a fixed rate or variable
(adjustable) rate mortgage. Their probit model and data is discussed in Lott and
Ray (1992). The binary dependent variable, y, takes the value 1 if a variable rate
mortgage is chosen and 0 if a fixed rate is chosen. There are K = 16 explanatory
variables, including a constant, that may be characterized as financial variables (5)
or personal characteristics (10). There are T=78 observations on household
choices and the explanatory variables.

C. Voting Data

The data for this example appear in Greene (1990). The purpose is to explore
factors which affect the probability that the Democratic candidate wins a state in
the 1976 presidential election. The dependent variable is 1 if the state was won by
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the Democrat, Jimmy Carter, and 0 if won by the Republican, Gerald Ford. The
independent variables are: 1975 median income by state, the percentage of the
population living in a Standard Metropolitan Statistical Area as defined by the
Census Bureau, average years schooling in the state, and aregional dummy variable
which takes the value of 1 for southern states and O otherwise.

V. RESULTS

The results under squared error loss for the simulation appear in Tables 1 and 2
below. For each data set, the true parameters were generated using
Berobiv BLogiv ad Boy s- The support is v, which resulted in slight risk improvements
over v, and v,. Empirical risk, the Monte Carlo estimate of risk’s standard error
(S.E.), and empirical probability of the GME having greater risk than OLS, logit,
and probit are given for each parameter vector and data set.

The GME has squared error risk lower than that of the probit and logit for all
samples. The GME has lower squared error risk than OLS for larger values of
Var(XB) and for smaller values of X.

The following regression models are used to further condense the results. The
risk difference between OLS and GME is regressed on Var(Xp) and K. The resuits
are:

Risky,  — Riskgyg= 1591 +5.32 Var(Xp) - 1.84K
(2.19) (4.39) (~2.56)

T-statistics appear in parentheses. Increasing Var(XP), holding K constant, in-
creases the riskiness of OLS relative to the GME. Increasing K, holding Var(XB)
constant, decreases the riskiness of OLS relative to the GME. Thus, equations with
large numbers of explanatory variables would require a large Var(XB) in order for
the GME to have lower risk than the OLS estimator. On the other hand, for small
models like that associated with the Voting data, the GME is more likely to produce
lower risk than OLS. Since Var(XP) is unknown in practice, caution is advised. The
clear result is that the GME will work better the smaller X, other things equal.

A similar approach is taken to describe the effect of K and R? on the probability
of GME having greater squared error risk than the PMLE and OLS estimators. In
this case Var(XP) is a less reliable guide than the population pseudo-R%. The
regression for the PMLE is:

Prob(Lgyg > Lpygi) = -0-231 + 1.09R2 +0.017K
(-099) (2120 (1.17)

Increasing K actually increases the probability that the loss of the GME is greater
than that of the PMLE. Although the risk of using PMLE is generally higher than
that of the GME, increasing the number of independent variables increases the
probability that GME loss is greater than that of PMLE. This suggests that when
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Table 1. Empirical Risks and Estimated Probabilities, Normal Errors

Estimator
Data Set Probit Logit oLs GME
B =Bovs
Var(XB) = .044 School Vote
K=9 Risk 217 6.52 .399 1.08
R? = .064 S.E. 073 235 009 044
Prob .03 0 942 —
Var(Xp) = .132 Mortgage
K=16 Risk 14.33 44,26 714 2.55
R?=.202 S.E. 1.91 5.99 .023 123
Prob .01 0 962 —
Var(Xp) = .136 Voting
K=5 Risk 6.09 20.29 1.89 2.40
R?=.223 S.E. 511 1.90 073 138
Prob 370 .198 410 —
B = BerosiT
Var(Xp) = .664 School Vote
K=9 Risk 3.46 16.46 4.03 2.00
R*=.311 S.E. .148 678 024 068
Prob RIF: 014 .100 —
Var(Xp) = 2.759 Mortgage
K=16 Risk 59.33 115.75 8.89 9.10
R*=.430 S.E. 12.34 5.40 .065 .521
Prob 102 .006 .296 —
Var(XB) = 2.14 Voting
K=5 Risk 14.21 84.09 21.31 9.96
R?=.498 S.E. 1.49 6.84 .183 716
Prob 630 .306 042 —
B =Brocir
Var(Xp) = 1.81 School Vote
K=9 Risk 5.60 23.74 12.84 3.49
R?=.270 S.E. 316 1.35 .033 104
Prob .408 .030 .008 —
Var(XB) = 8.04 Mortgage
K=16 Risk 103.84 140.93 33.49 13.55
R? =368 S.E. 12.19 5.06 .089 397
Prob 226 016 032 —
Var(Xp) = 6.12 Voting
K=5 Risk 48.68 266.40 76.92 22.40
R2=.419 S.E. 7.66 19.93 .235 1.29

Prob .608 .198 .022 —




192 LEE ADKINS

Table 2. Empirical Risks and Estimated Probabilities, Logistic Errors

Estimator
Data Set Probit Logit OLS CME
B=Bors
Var(Xp) = .044 School Vote
K=9 Risk 1.99 5.33 493 1.26
R? = 046 S.E. 062 .181 .010 042
Prob .08 0 964 —
Var(Xp) = .132 Mortgage
K=16 Risk 8.63 24.87 .907 3.42
R?=.136 S.E. 710 1.96 027 .242
Prob 024 0 .98 —
Var(XB) = .136 Voting
K=5 Risk 5.10 13.52 2.33 3
R?=.153 S.E. .282 .842 .083 161
Prob .320 .208 476 —
B = BrrosiT
Var(Xp) = .664 School Vote
K=9 Risk 2.97 6.34 4.81 2.65
R?= 311 S.E. 076 .253 .030 .065
Prob 294 144 034 —
Var(Xp) = 2.759 Mortgage
K=16 Risk 19.49 58.66 9.81 8.91
R =377 S.E. 1.57 4.19 078 .366
Prob .246 052 226 —
Var(XB) = 2.14 Voting
K=5 Risk 10.76 20.23 25.63 15.62
R2= 415 S.E. 512 1.64 .252 488
Prob .886 680 046 —
B=Procr
Var(XB) = 1.81 School Vote
K=9 Risk 5.25 9.70 13.96 5.48
R? =250 S.E. a2 44 .046 113
Prob .702 426 .002 —
Var(XB) = 8.04 Mortgage
K=16 Risk 960 95.41 34.56 18.14
R?=.420 S.E. 913 6.17 120 479
Prob 428 162 .040 —
Var(Xp) = 6.12 Voting
K=5 Risk 25.07 36.19 83.42 45.16
R2= 460 S.E. 1.7 4.79 .348 1.02

Prob 952 .768 .006 —
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the PMLE is bad, it is really bad. The GME is apparently less prone to large losses.
The large S.E. associated with PMLE is consistent with this. The probability
regression for OLS is:
Prob(Lgye > Lops) = 1.277 - 2.264R? - 0.026K
(4.40) (-3.51) (-1.45)
Increasing K and R? decreases the probability that the loss of the GME is greater
than that of the OLS.

Table 3. In-Sample Prediction Risks

Estimator
Var(Xp) Data Set Probit Logit oLS GME F(GME)
B =Bots

.044 School Vote

K=9 Risk 1.99 2.00 1.93 2.69 1.14
S.E. .044 .044 .042 .054 .032

132 Mortgage

K=16 Risk 3.49 3.50 2.98 3.89 1.98
S.E. .052 .052 .043 .062 .045

136 Voting

K=5 Risk 1.03 1.03 .960 1.52 670
S.E. .030 030 .028 .037 .022

B = BrrosiT

.664 School Vote

K=9 Risk 1.84 1.86 1.81 1.97 247
S.E. .038 .038 .033 .038 .033

2.759 Mortgage

K=16 Risk 2.96 2.94 2.66 3.02 2.72
S.E. .045 .040 .033 .041 .038

2.14 Voting

K=5 Risk 676 .695 669 723 .735
S.E. .022 .023 .016 .021 .01

B=Broar

1.81 School Vote

K=9 Risk 1.64 1.66 2.04 2.07 2.79
S.EE. .033 .034 .025 .037 .035

8.04 Mortgage

K=16 Risk 2.33 2.28 2.89 2.60 2.48
S.E. 034 .032 .023 .030 .029

6.12 Voting

K=5 Risk .706 716 .983 739 .689

S.E. .019 019 .010 .019 .019
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The squared error risks for the models with logistic errors are presented in Table
2. Some differences should be noted. First, the PMLE has lower risk than the GME
in several cases. It appears that as Var(XB) (or R?) increases the PMLE tends to
perform better both in terms of risk and in the probability of having lower risk than
the GME estimator. In addition, increasing K holding variability constant now
increases the risk difference between OLS and the GME estimators. This is apparent

in the following regression based on the results in Table 2.

Table 4. Out-of-Sample Prediction Risks

LEE ADKINS

Estimator
Var(XB) Data Set Probit Logit oLs F(GME)
B=Bors

.044 School Vote

K=9 Risk 292 293 3.05 1.57
S.E. .074 .074 .084 .044

132 Mortgage

K=16 Risk 7.03 7.05 6.97 3.70
S.E. 123 a21 an .096

136 Voting

K=5 Risk 1.81 1.80 1.85 117
S.E. .056 .055 .070 .045

B = BerosiT’

.664 School Vote

K=9 Risk 2.46 2.45 3.48 2.85
S.E 062 062 .083 .050

2.759 Mortgage

K=16 Risk 6.96 6.92 5.96 5.74
S.E. 139 135 120 .8

2.14 Voting

K=5 Risk 1.21 1.23 1.22 1.91
S.E. .050 .051 .042 .063

B=Bioc

1.81 School Vote

K=9 Risk 213 2.14 4.48 3.14
S.E. .054 .055 .068 .049

8.04 Mortgage

K=16 Risk 7.16 7.04 6.67 6.40
S.E. 138 133 .081 126

6.12 Voting

K=5 Risk 1.10 1.11 1.76 1.71
S.E. .042 .043 .033 .057
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Riskg; s = Riskgyg = =13.26 + 3.24Var(XB) + 1.34K
(-3.3) (5.35) (3.74)

The probability that the GME estimator has a higher loss than the LMLE the
results increases as the data become more variable.

The results for in-sample prediction for the models having standard normal errors
appear in Table 3. When Var(XB) is very small, F(GME) has lower prediction risk
than the other estimators. Interestingly enough, the usual GME never outperforms
probit, logit, or OLS estimators. In-sample predictions from logit and probit are
very similar to one another and perform fairly well even as Var(XP) increases. The
results for the models having logistic errors are very similar and are not reported.

The results for out-of-sample prediction appear in Table 4. When Var(XB) is very
small, F(GME) performs better than the other estimators. The predictions based on
the GME estimates of B has higher risk than probit or logit except for in the
Mortgage data with Var(XB) = 2.759. Again, it is difficult to come to any general
conclusions about the choice of estimator for out-of-sample prediction. The results
for the models having logistic errors are completely similar and are not reported.

As for choosing the number of support points, using more improves performance.
Support v, performs results in very modest risk improvements over v, which in turn
performs slightly better than v,. Even though the feasible support is [-1,1],
substantial gains occurred by making the endpoints equal to —/+T".

VI. CONCLUSION

If the goal is to obtain estimates of the underlying parameters of a binary choice
model, then the GME estimator is a good choice under certain circumstances. In
particular, if the number of independent variables is relatively small (e.g., less than
7 or 8) the likelihood of squared error risk improvements over the next best
alternative (OLS) is fairly high. This is especially true if the inherent variability of
the data are high. Unfortunately, this last feature cannot be known with certainty
since the variability depends on the unknown parameters.

Improved specification of the error’s support also improves inference using the
GME. The GME appears to be more precise than either the PMLE or the LMLE
under most circumstances and may yet be used to increase the power of hypothesis
tests about the parameters of the model.

Unfortunately, the in-sample and out-of-sample predictive abilities of the GME
estimator as specified in this paper leaves something to be desired. As the signal-
to-noise ratio gets small (i.e., when Var(XB) small), the GME is a good choice.
Unfortunately, as this value increases, its performance relative to the other estima-
tors diminishes. A clear cut recommendation is not possible, although the perform-
ance of the GME is better the larger the number of Bs.



196 LEE ADKINS

In addition, the computational burden of estimating the GME using the con-
strained optimization routine increases rapidly with sample size. One sample was
chosen that has 753 observations. The CO algorithm (Schoenberg 1995) used to
obtain the results under GAUSS 3.2.13 was unable to process this data set under
32 Megabytes of system RAM. The algorithm is fairly quick however when samples
are small (<100) and when there are relatively few explanatory variables. One
possible solution to the computational problems is to reformulate the entropy using
the multinomial approach followed by Golan et al. (1996a). They derive a dual
unconstrained generalized entropy function which is used to estimate the parame-
ters of interest.
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NOTE

1. The results were quite similar when prediction loss was computed based on the average number
of misses. A miss is measured whenever the ﬁ, >Sandy,=0o0r ﬁ, <S5andy,=1.
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