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General Motivation

I Monte Carlo simulations are a great way to learn about the sampling
properties of estimators

I Using them in class presents some challenges, though. To do it,
students have to generate data, program, and analyze results.

I This paper guides a student through these steps. The examples can
be used as templates.

I MC is also very useful for prototyping and developing DGP for more
sophisticated simulations. It can serve as a quick reference for
researchers as well.
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Desirable Characteristics of Teaching Software

I For teaching purposes, I consider two pieces of software: Stata 12
and gretl

I Software should be self-contained. Add-ons can make it hard to use
in labs.

I Language should be simple to use and the syntax straightforward.
Many students have never programmed.

I Results should be relatively easy to get and to interpret.

I Output streams should be easy to analyze further.

I Numerical accuracy and quality RNG are essential.
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Gretl vs. Stata
Gretl advantages

Gretl and Stata both satisfy these. Gretl has several advantages, though.

I Easier to program – DGP syntax is particularly straightforward.
Gretl’s Gauss-like scripting language (HANSL) is much easier to use
than Stata’s MATA. Gretl’s --store option is easier to use than
Stata’s postfile.

I More portable – Windows, Mac, Linux (all freely available). Gretl
can be used from a thumb-drive.

I Cheaper – No charge! Can’t beat the price.

I More Accurate (in my opinion) and faster.
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Gretl vs. Stata
Stata advantages

I Stata has a large library of canned procedures that can easily be
studied using the automatic simulate command. simulate

executes code a given number of times and prints summary statistics
when done. For non-programmers, or prototyping this is a plus.

I As demonstrated in this paper, it is also easy to loop Stata over
several design parameters, though it requires (I believe) the more
complicated postfile commands and the programming of loops.

I Stata’s documentation is complete and clear; Stata ships with a
complete pdf version of all manuals.

I Stata is well-supported by a large user base.
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The Plan

I I’ll review the two methods used for simulation in Stata.

I I’ll demonstrate with some examples from the paper.

I I’ll compare speed of simulate, postfile, and gretl.
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Two Ways to Experiment

There are basically two ways to run simulations in Stata:

I postfile commands

I simulate command

I’ll demonstrate each with some examples from the paper.

Lee C. Adkins Monte Carlo Simulations in Stata
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postfile

I Create a place to store temporary results (tempname)

I Initiate the postfile. Tell it what to name results and where to put
them

I Make things quiet! quietly {
I create loops: foreach, forvalues, or while

I post desired results to the file identified by tempname

I close loops, quietly, and the postfile

Lee C. Adkins Monte Carlo Simulations in Stata
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postfile Example

1 set obs 100

2 gen b = .

3

4 tempname sim

5 postfile ‘sim’ mean using results, replace

6 quietly {

7 forvalues i = 1/1000 {

8 replace b = rnormal(0,1)

9 summarize

10 scalar mean = r(mean)

11 post ‘sim’ (mean)

12 }

13 }

14 postclose ‘sim’
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simulate

I Create a program (rclass) to compute and return the desired
computations

I use simulate, specifying number of replications, where to save
results, and the name of the program to simulate
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simulate

1 program means, rclass

2 replace b = rnormal(0,1)

3 qui summarize

4 return scalar mean = r(mean)

5 end

6

7 clear

8 set obs 100

9 gen b = .

10

11 simulate b=r(mean), reps(1000) ///

12 saving(results, replace): means
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Using the Results

1 use results, clear /* Open the dataset */

2 summarize mean /* Summary Stats */

3

4 /* Density plot with normal overlay */

5

6 kdensity mean, normal normopts(lwidth(medium) ///

7 lpattern(dash))
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Paper Examples

I Classical Normal linear regression – Coverage rates of confidence
intervals

I Antithetic variates

I Lagged dependent variable model with autocorrelation

I Performance of HAC standard errors

I Heteroskedastic model – variance a function of regressors

I Instrumental variables

I Binary choice

I Censored regression

I Nonlinear least squares

I Looping over several designs
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Example: Autocorrelated LDV Model

Consider the model

yt = βxt + δyt−1 + ut t = 1, 2, . . . ,N (1)

ut = ρut−1 + et xt = θxt−1 + vt (2)

where |ρ| < 1 and |θ| < 1 are parameters, et ∼ N(0, σ2
e ) and

vt ∼ N(0, 1). Various values of ρ, θ, and δ present possibilities.

I If δ = 0 is the usual AR(1) model.

I If ρ = 0 is a lagged dependent variable model.

I If both δ = 0 and ρ = 0 the model reduces to equation CNLRM.

I δ = 1 implies change (yt − yt−1) and |δ| < 1 implies partial
adjustment.
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ARDL(2,1) representation

If both δ 6= 0 and ρ 6= 0 is an ARDL(2,1). The others are nested within
this one.

yt = βxt + (δ + ρ)yt−1 − (ρβ)xt−1 − (ρδ)yt−2 + et (3)

I Recall that xt = θxt−1 + vt . So, when θ = 0 it is possible to
estimate β consistently using the simple regression yt = βxt + εt .

I εt includes yt−1, yt−2, and xt−1, but E [εt |xt ] = 0.
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DGP code

replace x = theta*L.x + rnormal() in 2/$nobs

replace u = rho*L.u + rnormal(0,sigma) in 2/$nobs

replace y = beta*x+delta*L.y + u in 2/$nobs
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Estimation code

reg y x /* b1 */

reg L(0/1).y x /* b2 */

prais L(0/1).y x /* b3 */

reg L(0/2).y L(0/1).x /* b4 */

Lee C. Adkins Monte Carlo Simulations in Stata
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Output LDV

Variable | Obs Mean Std. Dev.

-------------+------------------------------------

b1 | 1000 15.01713 9.167224

b2 | 1000 5.307263 1.72269

b3 | 1000 8.235005 1.635338

b4 | 1000 9.96528 1.445586
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Weak Instruments–Loop over different designs

program regIV, rclass

tempname sim

postfile ‘sim’ gam r2 b biv using results, replace

quietly {

foreach gam of numlist 0.025 0.0375 0.05 0.1 0.15 {

forvalues i = 1/$nmc {

replace u = rnormal()

replace x = ‘gam’*z+rho*u+rnormal(0,sige)

replace y = slope*x + u

....

}

}

}

postclose ‘sim’

end

Lee C. Adkins Monte Carlo Simulations in Stata
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Rule-of-Thumb: 1 endogenous variable

Stock et al. propose the rule-of-thumb: instruments are weak if F < 10.
It is based on:

E [β̂IV ]− β ≈ [plim(β̂OLS)− β]/(E (F )− 1) (4)

where we take F to be the average for a given design, F̄ . Hence,

E [β̂IV ]− β
[plim(β̂OLS)− β]

≈ 1

(E (F )− 1)
(5)
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Weak Instruments–egen to get group means

regIV

use results, clear

by gam, sort: summarize r2 F biv b

by gam, sort: summarize p_ls p_iv

by gam: egen Fbar = mean(F) /* Avg F by gamma */

by gam: egen tslsbar = mean(biv) /* Avg biv by gamma */

by gam: egen olsbar = mean(b) /* Avg b by gamma */

by gam: egen r2bar = mean(r2) /* Avg r2 by gamma */
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Weak Instruments–bias and a regression

gen tsls_bias = tslsbar-1 /* IV bias */

gen ols_bias = olsbar-1 /* OLS bias */

gen relb = tsls_bias/ols_bias /* relative bias */

gen rot = 1/(Fbar-1) /* rule of thumb */

gen t = _n /* observation numbers */

keep if mod(t,1000) == 0 /* keep 1 obs per design */

reg relb c.rot##c.rot, noconst /* rel. bias onto rot */

reg relb rot, noconst

test (rot=-1) /* directly proportional? */
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Weak Instruments–bias and a regression

F

Variable | 2.03 3.64 5.19 18.21

---------------------------------------------

rule-of-thumb| .97362 .37787 .23832 .05809

relative bias| -.76564 -.67957 .05188 -.07878

F | 39.52 70.02 432.9

------------------------------------

rule-of-thumb| .02595 .01449 .00232

relative bias| -.03569 -.01917 -.00224
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Weak Instruments–bias and a regression

. reg relb rot, noconst

Number of obs = 7

R-squared = 0.8131

---------------------------------------------------

relative bias: Coef. Std. Err. t P>|t|

----------+----------------------------------------

rule-o-tmb| -.864443 .1692116 -5.11 0.002

---------------------------------------------------
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Speed Kills

Elapsed time, in seconds

Program gretl Stata (postfile) Stata (simulate)
Confidence Interval 0.578 2.019 3.059

Nonlinear Least Squares 2.558 47.77 -

No contest!
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gretl code example

# Set the sample size and save it in n

nulldata 100

scalar n = $nobs

set seed 3213799

# Set the values of the parameters

scalar slope = 10

scalar sigma = 20

scalar delta = .7

scalar rho = .9

# initialize variables

series u = normal()

series y = normal()

series x = uniform()
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gretl code example

loop 400 --progressive --quiet

series e = normal(0,sigma)

series u=rho*u(-1)+e

series y = slope*x + delta*y(-1) + u

ols y const x y(-1)

ols y const x

ar 1; y const x y(-1)

ols y const x y(-1) x(-1) y(-2)

endloop
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