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1.  Introduction 
 
Many researchers use Heckman’s (1979) two-step estimation procedure (Heckit) to deal with selectivity in the linear 

regression model. Selection bias results when the regression dependent variable is observed only when a ‘latent’ 

selection variable is positive.  While the two-step estimation procedure is easy to implement, i.e., a probit estimation 

of the selection equation followed by least squares estimation of an augmented regression, the applied literature 

reveals that researchers (and econometric software vendors) take a variety of approaches when computing standard 

errors.  This is important since the standard errors are the basis for t-statistics that are used in significance tests.   

The literature on sample selection bias is huge, and we will not attempt a survey.  Two articles of note are by 

Vella (1998) and Puhani (2000).  In this paper we focus on two issues.   

• First, how do the alternative versions of asymptotic variance-covariance matrices used in selectivity 

models capture the finite sample variability of the Heckit two-step estimator? 

• Second, is it possible to use bootstrapping to improve finite sample inference?  Three aspects of this 

question are: 

o Do bootstrap standard errors match finite sample variability better than nominal standard 

errors computed from asymptotic covariance matrices? 

o Do critical values of test statistics generated by bootstrapping pivotal t-statistics lead to better  

test size (and power?) than those based on usual asymptotic theory? 

o Does modern software make obtaining bootstrap standard errors and critical values feasible 

for empirical researchers? 

Our plan is to develop the model and Heckman’s two-step estimator in Sections 2 and 3, respectively, and then 

describe the alternative covariance matrix estimators we consider in Section 4.  In Section 5 we comment on the 

practices used in empirical research and some choices available in commercial software. Section 6 contains the 

design of the Monte Carlo experiment as well as discussion of the output measures we recover.  Section 7 presents 

the results of the Monte Carlo experiment, followed by conclusions in Section 8. 
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2. The Selectivity Model 

 

Following Greene (1997, 974-981) consider a model consisting of two equations.  The first equation is the 

“selection equation,” which is defined as 

* , 1, ,i i iz w u i N′= γ + = …          (2.1) 

where  is a latent variable, γ is a K×1 vector of parameters, *
iz iw′  is a 1×K row vector of observations on K 

exogenous variables and ui is a random disturbance.  The latent variable is unobservable, but we do observe the 

dichotomous variable  

*1
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i
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z

otherwise
 >

= 


0
         (2.2) 

The second equation is the linear model of interest.  It is  

, 1, , ,i i iy x e i n N n′= β + = >…        (2.3) 

where yi is an observable random variable, β is an M×1 vector of parameters, ix′  is a 1×M vector of exogenous 

variables and ei is a random disturbance.  We assume that the random disturbances are jointly distributed as 
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          (2.4) 

A “selectivity problem” arises when yi is observed only when zi = 1, and if 0ρ ≠ .  In such a situation, the 

ordinary least squares estimator of β in (2.3) is biased and inconsistent.  A consistent estimator is the two-step 

procedure suggested by Heckman (1979) and clarified by Greene (1981).  It is known as “Heckman’s two-step 

estimator,” or more simply as “Heckit.”  The basis for this estimation procedure is the conditional regression 

function 

[ ] [ ] [ ] ( )| 0 | |i i i i i i i i i i eE y z E y u w x E e u w x′ ′ ′ ′> = > − γ = β + > − γ = β + ρ ⋅σ λ i    (2.5) 

where  

( )
( )

i
i

i

w
w

′φ γ
λ =

′Φ γ
          (2.6) 

 
2 



is the “inverse Mill’s ratio,” φ(⋅) is the standard normal probability density function evaluated at the argument, and 

Φ(⋅) is the cumulative distribution function for a standard normal random variable evaluated at the argument.  In a 

regression equation format, 

[ ] ( )| 0i i i i i e i i i iy E y z v x v x vλ′ ′= > + = β + ρ⋅σ λ + = β + β λ i+      (2.7) 

where the random disturbance vi has conditional mean and variance given by 

[ ] ( ) ( )2 2| 0 0, var | 0 1i i i i e iE v z v z> = > = σ − ρ δ       (2.8) 

with 

(i i i iw′δ = λ λ + γ)           (2.9) 

Thus the regression error vi in (2.7) is heteroskedastic. 

If  were known and nonstochastic, then the selectivity corrected model (2.7) could be estimated by 

generalized least squares.  Alternatively, the heteroskedastic model (2.7) could be estimated by ordinary least 

squares, and the heteroskedasticity consistent covariance matrix estimator (HCE) of Huber (1967), Eicker (1967) 

and White (1980) used for hypothesis testing and construction of confidence intervals.  Unfortunately λ  is not 

known and must estimated, introducing variability not accounted for by a heteroskedasticity correction. 

iλ

i

 

3. Heckit:  The Heckman Two-Step Estimator 

 

The widespread use of Heckit is no doubt in part due to the ease with which it is computed.  In the first step of 

this two-stage estimation process, the method of maximum likelihood is used to estimate the probit model 

parameters γ, based upon the observable random variable zi.  Denote the MLE as γ̂  and its asymptotic covariance 

matrix as V. We will compute V as the negative of the inverse Hessian evaluated at the MLE.  Specifically, if  is 

the (Bernoulli) probability function of z

1if

i, then 

 ( ) ( )( )1
1ln ln 1i iz z

i i if w w
−

′ ′= Φ γ − Φ γ              (3.1) 

and the log-likelihood function for the probit model is .  For convenience let  and 

.  Then, for future reference, the gradient vector of the probit model log-likelihood function is 

1 1
lnN

ii
L

=
= ∑ 1f )

)i

(i iw′φ = φ γ

(i w′Φ = Φ γ
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′ ′φ γ φ γ∂
= − −

′∂γ Φ γ − Φ γ∑ ∑ i w
′ i       (3.2) 

and the Hessian is 

 
( ) ( ) ( )( )

( )

2
1
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N
i i i i i i

i i i i
i i i

w wL
z z

=

 ′ ′φ + γ Φ φ − γ − Φ∂
2 iw w′= − φ + −

′∂γ∂γ Φ − Φ  
∑      (3.3) 

Then, using the negative of the inverse Hessian evaluated at the MLE, we compute the asymptotic covariance matrix 

V of the probit estimator as 

12
1L

V
−

 ∂
= −  ′∂γ∂γ 

          (3.4) 

Given the MLE , we compute γ̂ ˆ ˆ( ) (i i iw w′λ = φ γ Φ γ̂)′ , i = 1, …, n.  The variable ˆ
iλ  is used as a regressor in the 

second step equation, 

( ) *ˆ ˆ ˆ ˆ
i i i i i i i i i i i i iy x v x v x v x vλ λ λ

λ

β  ′ ′ ′ ′= β + β λ + + β λ − λ = β + β λ + = λ + = β +   β � � i    (3.5) 
� �

Stacking the n complete observations in (3.5) into matrices, the Heckit estimator of the M + 1 parameters *β  is the 

ordinary least squares estimator applied to the augmented regression in (3.5), that is 

( ) 1
*b X X X

−
′=
� � �

y′          (3.6) 

An estimator of σ  is 2
e ( )2 2ˆˆ ˆ ˆe v v n bλ

′ + δ
� �

σ = , where , *v̂ y Xb= −
��

bλ  is the least squares estimator of β , δ  is the 

plug-in estimator of δ  in (2.9), and 

λ
ˆ

i

i 1

n
ii=

δ∑δ̂ = ˆ / n . An estimator of ρ is 2 2ˆ ˆ ebλ
2ρ = σ . 

 

4. Heckit:  Alternative Covariance Matrix Estimators Considered in the Monte Carlo 

 

The focus in this paper is the computation of the covariance matrix estimate.  There are a number of alternatives 

used in the literature, some of which are appropriate and some of which are not.   

(1) One alternative is to use the standard estimator for the covariance matrix of the OLS estimator, 

 ( ) ( )
1

2 2 ˆ ˆˆ ˆ,
1OLS v v

v vV X X
n M

− ′
′= σ σ =

− +
� �� �

       (4.1) 
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This estimator is incorrect for two reasons:  it ignores the heteroskedasticity in (2.7), even if we assume λi is known, 

and it ignores that in (3.5)  is stochastic. ˆ
iλ

(2) A second possibility is to account for the heteroskedasticity in (2.7), using the estimator 

( ) ( ) ( )1 1
2 2 ˆˆHET eV X X X I X X

− −
 ′ ′ ′= σ − ρ ∆
 � � � � � �

X       (4.2) 

where  is a diagonal matrix with nonzero elements ( )ˆˆ
idiag∆ = δ ˆ

iδ .  This estimator is the covariance matrix of the 

ordinary least squares estimator in the presence of heteroskedasticity of the form in (2.8).  This estimator does not 

account for the fact that  in (3.5) is stochastic.  The error term  in (3.5) is for each observation a function of the 

probit MLE γ .  This means that cov

ˆ
iλ iv

�

ˆ ( , ) 0i jv v ≠
� �

, which (4.2) does not account for. 

(3) In this same spirit, one might use the White (1980) heteroskedasticity consistent estimator (HCE) 

( ) ( )1 1

HCE pV X X X D X X X
− −

′ ′ ′=
� � � � � �

        (4.3) 

where Dp is a diagonal matrix. For the basic heteroskedasticity consistent estimator 
0HCV  the squared least squares 

residuals are on the diagonal, .  This estimator suffers the same flaw as V( )2
0 îD diag v=

� HET, but is easier to 

compute since 
0HCV  is readily available in most regression software. 

We also consider a modification of the standard heteroskedasticity consistent estimator 
0HCV .  This modification 

is denoted 
3HCV  by Davidson and MacKinnon (1993, p. 554) and has been studied recently by Long and Ervin 

(2000).  To obtain 
3HCV  we replace the diagonal matrix D0 with ( )( )2

2
3 ˆ 1i i iD diag v x X ′ ′= − 

 � �� � �
1X x− . Davidson and 

MacKinnon note (1993, p.70) that in a linear regression model with homoskedastic errors the expected value of 

these weighted residuals would equal the error variance. 

Justification for using 
0HCV  is found in Lee (1982).  Amemiya (1984, p.33) summarizes the argument by noting 

that the Heckman estimator is consistent under assumptions less restrictive than the usual bivariate normality of the 

error terms. Under the less restrictive assumptions White’s HCE provides a consistent estimator of the asymptotic 

covariance matrix. The specific form we use is Lee (1982, p. 365) equation (51), which is 

 ( ) ( ) ( )
0

1 1
Lee HCV X X V X GVG X X X− −′ ′ ′= −

� � � � � �
′  
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where G is the matrix with i’th row iλ ′β ∂λ ∂γ .  See (4.8) below for the derivative. 

(4) The asymptotic covariance matrix for b  was obtained by Heckman (1979, p. 159) and refined by Greene 

(1981, pp. 795-798).  It is, following Greene (1997, p. 981), 

*

( ) ( ) ( )1 1
2 2 ˆˆHECK eV X X X I X Q X

− −
 ′ ′ ′= σ − ρ ∆ +
 � � � � � �

X

*
i′

      (4.4) 

where  with V the asymptotic covariance matrix of the probit estimator, the negative of 

the inverse Hessian, and with W being the regressor matrix from the probit estimation in the first stage. 

2 ˆˆ  and ,Q FVF F X W′′= ρ = ∆
�

(5) An asymptotically equivalent, but seldom if ever used in selectivity models, asymptotic covariance matrix 

estimator is based on the Murphy-Topel (1985) general result.  We are including the MT estimator because of its use 

in an increasingly wide variety of contexts, and its availability as an automated command in LIMDEP 8.0.  In 

Greene’s (1997, p.467) notation 

 ( )*, , ,i i i i i i i iy h x w v x v x vλ′= β γ + = β + β λ + = β +
�

      (4.5) 

Let  [see equation (4.2)].  Then the unconditional covariance matrix of the least squares 

estimator is 

( )* ˆcov | i HET eb Vλ = = σ2
bV

 [ ]2
MT e b bV V V CVC RVC CVR V′ ′ ′= σ + − − b        (4.6) 

where V is the asymptotic covariance matrix of the probit estimator.  The matrix C is given by 

 0 0
*, , i

i i i
h h hC x x x λ

∂λ∂ ∂ ∂
= ⋅ = = = β

′∂γ ∂γ ∂γ∂β∑ � ′ ′
      (4.7) 

where 

 
( )
( )

( ) ( ) ( )2
ii

i i i i

i

w
w w w w

w
iγ

′φ γ∂λ ′ ′ ′ ′= − Φ γ ⋅ γ + φ γ = λ′ ′Φ γ ∂γ  
′       (4.8) 

The matrix R is 

 1lnˆ i
i i

f
R x v

∂
=

′∂γ∑ � �
         (4.9) 

For i = 1, …, n the selectivity indicator zi = 1 in the probit model so that for these observations the i’th term of the 

log-likelihood function L1 is (1ln i i )f w′= Φ γ  and 
( )
( )

1ln ii
i i

i

wf
w w

w i

′φ γ∂ ′ ′= = λ
′Φ γ′∂γ

. 
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(6) Hardin (2002, 2003) has introduced a robust variance estimator for two-stage estimators similar in 

construction to the Murphy-Topel estimator. In it, which we call VRMT, the matrix C in (4.6) is replaced by 

2
* 2

1 2

L
C

∂
= −

′∂θ ∂θ
          (4.10) 

where L2 is the log-likelihood function of the second stage estimator, conditional on the parameters in the first stage.  

In the context of Heckit the first stage estimator is probit, and 1θ = γ .  The second stage is least squares estimation 

of the augmented model (4.5), so (*
2 )λ

′′ ′β = β βθ = . To compute the matrix C* we write the log-likelihood 

function for the second stage regression as 

 
( )22 2 2

2
1 1

2
1

1 1 1 1 1 1ln 2 ln / ln 2 ln /
2 2 2 2 2 2

ln

n n

i i i i
i i

n

i
i

L y x

f

λ
= =

=

  ′= − π − σ − − β − λ β σ = − π − σ − σ    

=

∑ ∑

∑

2 2v 
  (4.11) 

Then, 

( )
(

2
* 2

ln 1 i i i ii

i i i i

y x xf
y x

λ

λ

′− β − λ β δ
=  ′− β − λ β λδβ σ  )          (4.12a) 

and  

22
2

* 2

2 2

ln 1
i

ii
i

i i
ii i

ii i
i

xx
f

ix
v

v

λ
λ

γ γ
λ

λ

β∂λ    −−β    σ′∂γ∂    ′ ′= =
 β′ ∂λ ∂λ  ∂β ∂γ σ   − λ− λ β     σ λ σ′ ′∂γ ∂γ    

λ = λ     (4.12b) 

Finally, 

 *

1

n

i i
i

C x Xγ
=

′ ′= − λ = − Λ∑ γ          (4.13) 

where X  is a matrix whose rows are ix′  and γΛ  is a matrix with rows iγ′λ  which is given in (4.8). 

The second modification of the Murphy-Topel estimator Hardin introduces is to replace the probit covariance 

matrix V by the “sandwich” estimator V V , where  1
s opgV V−= ⋅ ⋅

1 1 1
opg

L L
V − ∂ ∂ 

=  ′∂γ ∂γ 
 

where L1 is the probit log-likelihood function, and Vopg is the “outer product of the gradient” estimator of the probit 

covariance matrix.   
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(7) Our concern is not just the asymptotic reliability of covariance matrix estimators.  Selectivity corrections 

are often applied in samples that are not “large.”  It is known that standard errors computed from asymptotically 

valid covariance matrices can seriously understate true estimator variability in finite samples (Horowitz, 1997).  In 

the context of models with limited dependent variables this has been illustrated by Griffiths, Hill and Pope (1987).  

We use the bootstrap approach (Freedman and Peters, 1984 a,b; Jeong and Maddala, 1993) to compute measures of 

finite sample variability.  As suggested by Jeong and Maddala (1993, p. 577) we resample, with replacement, from 

the rows of the data matrix to create a large number of “bootstrap samples.”  LIMDEP and STATA employ this 

scheme for automated bootstrapping. Using each bootstrap sample we re-estimate the model, storing the parameter 

estimates as we go.  The bootstrap estimate of the estimator standard error is the sample standard deviation of all the 

estimates. 

Horowitz (1997) argues that while the bootstrap can be used to approximate standard errors of estimation, it is 

preferable to use the bootstrap to obtain critical values for t-statistics that are used as a basis for hypothesis testing.  

The crux of the argument is that bootstrap standard errors converge to the true standard errors as the sample size gets 

larger, but that bootstrapped critical values of test statistics converge to the true critical values at an even faster rate.  

Thus, instead of computing bootstrap standard errors and using these as a basis for a new t-statistic, it is perhaps 

better to bypass the computation of the standard error and just compute the critical value of the commonly used 

asymptotic t-statistic. 

Using standard econometric practice, to test the null hypothesis 0
0 : kH kβ = β  against the alternative 

0
0 : kH kβ ≠ β  we use the t-statistic ( ) ( )0

k k kse b= − βt b , where ( )kse b  is a valid asymptotic standard error for the 

consistent estimator b .  For example, k ( )kse b  might be the Heckit standard error from VHECK, or the standard error 

computed from the Murphy-Topel asymptotic covariance matrix VMT.  The null hypothesis is rejected if | | , 

where t

ct t≥

c is the critical value from the standard normal or t-distribution.   

The problem is that using the standard critical values with t-statistics derived from asymptotic theory leads to 

tests with incorrect size, or probability of type I error.  Horowitz suggests that we can obtain improved critical 

values using the bootstrap.  In each bootstrap sample we obtain the t-statistic value for the (true in the sample) 

hypothesis 0 : k kH bβ = .  That is, we compute for each bootstrap sample ( )ˆ
b b kt b= β − bse , where  is an estimate ˆ

bβ
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from a consistent estimator in the b’th bootstrap sample, and seb is the value of the asymptotic standard error of the 

estimator .  In the bootstrap world it is , the estimate based on the original and full sample, that plays the role 

of the true parameter value. Hence the statistic t

ˆ
bβ kb

b is centered at the “true in the sample” parameter value, and it is 

asymptotically pivotal.  The absolute values of these t-statistics are sorted by magnitude and the positive t-critical 

value tc is chosen to be the upper α-percentile value.  We will report, from the Monte Carlo experiment that we 

outline in the next section, both the standard errors computed by the bootstrap, and the bootstrap t-critical values. 

 

5. Approaches in the Empirical Literature:  Some Comments 

 

At least four different strategies are being used to obtain standard errors in selectivity models appearing in the 

applied literature. 

 

Heckman’s Asymptotic Covariance Matrix:  Many authors cite the analytic results of Heckman (1979) or 

Greene (1981), who derive expressions for asymptotic covariance matrices in selectivity models, as the source of 

their standard errors.  We may include in this group the authors who indicate they use software packages LIMDEP 

or STATA which will compute the Heckman asymptotic covariance matrix.  It is our view that authors of empirical 

papers should clearly state which software is being used, which version, and the commands for options actually 

employed.  Not doing so hinders the work of other researchers in the area and obscures calculations that may be 

incorrect.  For example, early versions of STATA 6.0 contained an error when computing the Heckman asymptotic 

covariance matrix, a reminder that we should all keep our software updated. 

 

Maximum Likelihood Estimator:  Less seldom used in applications is the method of maximum likelihood. The 

most recent versions of LIMDEP and STATA include both two-step estimator and maximum likelihood options.  In 

addition, both packages offer a Huber/White/sandwich estimator for the asymptotic covariance matrix when 

maximum likelihood estimation is chosen. Examples in the applied literature are Hunter (2000) and Wu and Kwok 

(2002). Nawata (1994) notes that standard software routines for finding the MLE may not converge, or may 

converge to a local rather than a global maximum.  This may explain why the two-step estimator is widely used 

instead of maximum likelihood. 
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Nawata (1994) offers an alternative to standard optimization routines for maximizing the log-likelihood 

function. Nawata and Nagase (1996) compare the finite sample properties of the MLE and Heckit. They conclude, 

confirming the result in Nawata (1993), that a key indicator to the likely performance of Heckit relative to the MLE 

is the collinearity between the systematic portion of the selection equation and the regressors in the equation of 

interest. If the selection (probit) equation and the equation of interest have a substantial number of variables in 

common then the Heckit estimator is not a good choice relative to the MLE. Nawata and McAleer (2001) compare 

the t-test, likelihood ratio test and Lagrange multiplier test of the hypothesis that the errors in the selection equation 

and equation of interest are uncorrelated using maximum likelihood.  They find that even if there is no collinearity 

between the regressors in the two equations the t-test based on maximum estimates performs poorly due to poor 

variance estimates. 

 

White’s Heteroskedasticity Consistent Estimator:  We discovered a large group of authors who rely upon 

White’s HCE in selectivity models.  Puhani (2000, p.55) states: “In order to obtain a simple and consistent estimator 

of the asymptotic variance-covariance matrix, Lee (1982, p.364f.) suggests to use White’s (1980) method.” We are 

extremely curious about this point.  We note first that blind use of the HCE does not account for the fact that the 

parameters of the first stage probit model are estimated.  Second, Lee (1982, p.365) indicates that he suggests HCE 

only for part of his two-step estimator’s (which is a generalization of the standard Heckit estimator) variance-

covariance matrix. We are unsure whether applied researchers have relied on Lee’s (1982, p.364) sentence “A 

relatively simpler approach which avoids the above complication is to adopt the method in White (1980),” assuming 

it means that a simple heteroskedasticity correction is adequate asymptotically in the two-step estimation process. 

Amemiya (1984, p.33) summarizes the argument by noting that the Heckman estimator is consistent under 

assumptions less restrictive than the usual bivariate normality of the error terms. Under the less restrictive 

assumptions White’s HCE provides a consistent estimator of the asymptotic covariance matrix.  

Simpson (1986, p. 801), in the context of a model somewhat more involved than the usual selectivity model, 

acknowledges that 

“Ordinary least squares estimates … will be consistent, but the resulting standard errors will 
be incorrect and the estimation of correct standard errors will be complex.  Therefore, the 
estimates of the standard errors reported … use White’s (1980) procedure to adjust for 
heteroskedasticity induced by sample selection.  This procedure does not correct for the fact that γ  
is unknown and must be estimated.” (Italics added).   
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Similarly, Ermisch and Wright (1993, p. 123) obtain t-statistics using OLS standard errors, but then say, 

“When the t-statistics are computed from standard errors corrected for heteroskedasticity 
using White’s (1980) method, conclusions about statistical significance are the same.  These t-
statistics are not, however, the appropriate ones….  While they correct for heteroskedasticity, they 
do not allow for the fact that the λ regressor is estimated. (Italics added.) The correct asymptotic 
standard errors for the dichotomous selection case are derived in Heckman (1979, pp. 158-59).” 

 
 

Ordinary Least Squares:  Another strategy is to use least squares regression. The ill-conditioning in the Heckit 

regression model, which includes the inverse Mills ratio, becomes severe when the variables in the probit selection 

equation are highly correlated with the variables in the regression equation. The ill-conditioning in the augmented 

regression occurs in this case because the inverse Mills ratio, despite the fact that it is a nonlinear function the 

selection equation variables, is well approximated by a linear function over broad ranges. In such cases Monte Carlo 

evidence exists [summarized in Puhani (2000)] supporting the small sample estimation efficiency of OLS relative to 

Heckit and Heckit alternatives.   

 

Recent Developments in Covariance Matrix Estimation: In recent years the standard approaches to computing 

standard errors have been expanded in two directions.  First, the use of bootstrapping has become more refined.  

Originally used as an empirical method for computing standard errors, bootstrapping is now seen as a basis for 

computing empirically relevant critical values for hypothesis tests [Horowitz (1997), Deis and Hill (1998), Horowitz 

and Savin (2000)].  The advantage of this approach is that it leads to the use of a test procedure having Type I error 

specified by the researcher in finite samples.  As Horowitz and Savin (2000) point out, this feature facilitates power 

comparisons among alternative tests.  

Newer versions of the software STATA and LIMDEP have automated bootstrap commands. These can be used 

to obtain bootstrap standard errors for any estimation procedure via resampling the data. With the appropriate 

modifications the pivotal statistics can be resampled, making bootstrap critical values easy to obtain.  Some sample 

programs are provided in the appendix to this paper showing the commands required. 

“Sandwich” covariance matrix estimators are being used in a wide variety of contexts.  The heteroskedasticity-

consistent covariance matrix estimator (HCE) introduced by Huber (1967), Eicker (1967) and White (1980) is 

ubiquitous. The software STATA offers robust covariance estimation as an option for virtually all models that can 

be estimated by maximum likelihood [STATA 7.0 User’s Guide, p.254].  These robust covariance estimators are 

used to obtain “consistent estimates of the covariance matrix under misspecified working covariances as well as 
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under heteroscedastic errors” [Kauermann and Carroll (2001, p. 1387)].  Recently Hardin (2002) has proposed a 

sandwich estimator for two-step models, a class of models that includes Heckit. He develops a sandwich covariance 

matrix estimator similar in construction to the Murphy-Topel (1985) estimator for two-step estimators, and he 

provides instructions for using STATA to implement the estimator. LIMDEP 8.0 offers a general procedure for two-

step estimators with the Murphy-Topel covariance matrices automated for some special cases. 

It is our conjecture that bootstrapping a pivotal t-statistic, using a standard error from any consistent asymptotic 

covariance matrix estimator for the Heckit model (or any other), should yield critical values such that hypothesis 

tests are the proper size. Then the question is “Do any of the alternative covariance matrix estimators lead to power 

advantages?” We have not yet investigated this question. 

 

6. The Monte Carlo Design 

 

The Monte Carlo Design we employ is that of Zuehlke and Zeman (1991) with a modification used by Nawata and 

Nagase (1996).  The performance of each covariance estimator is examined under various circumstances likely to 

affect their performances.  The sample size, severity of censoring, degree of selection bias and the correlation 

between the independent variables in the selection and regression equations are all varied within the Monte Carlo 

experiment.   

The specific model we employ consists of the selection equation  

*
1 2 1 1 , 1, ,i i i i iz w u w u i= γ + γ + = γ + + = … N       (6.1) 

The sample size N = 100 and 400.  The value of the parameter 1γ  controls the degree of censoring.  Following 

Zuehlke and Zeman (1991) we specifiy [ ]1 .96, 0 or .96−γ = , which correspond to expected sub-samples of size n 

equaling 25%, 50% and 75% of N, given that ( )~ 0,1iu nid  

The regression equation of interest is 

1 2 100 1 , 1, , ,i i i i iy x e x e i n N= β + β + = + + = >… n

)1

     (6.2) 

We assume the regression error (~ 0,i ee nid σ = .  The selection bias is controlled through the error correlation 

 in (2.4).   [0, .5 or 1]ρ =
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The remaining element of the experiment is the correlation between the regressor w in the selection equation 

and the regressor x in the regression equation.  Following Nawata and Nagase (1996) we specify this correlation to 

be [ ].90, .95 or 1xwρ = .  Varying , ρ and 1γ xwρ  as describes gives us 27 Monte Carlo design points for each sample 

size N.  For each design point and sample size we generate 500 Monte Carlo samples.  We use 200 bootstrap 

samples. 

The Monte Carlo results we report are designed to measure  

(i)  The finite sample accuracy of nominal standard errors of the Heckit estimator based on the alternative 

covariance matrix estimators described in section 4.  The accuracy is evaluated by comparing the average nominal 

standard errors to the Monte Carlo estimates’ standard deviations. 

(ii)  The size of t-tests of significance based on each standard error method for the slope parameter in the 

regression equation, based on the usual asymptotic critical values 1.645±  for tests of nominal 10% size and 

for nominal 5% size tests. That is, we compute the t-statistic 1.96±

ˆ
m

m
m

t
se

β − β
=           (6.3) 

where  are Heckit estimates for parameters in the augmented regression equation from the Monte Carlo 

sample and the true parameter value, respectively, and 

ˆ  and mβ β

mse  is a standard error computed from the Monte Carlo 

sample.  The true null hypothesis is rejected if mt ≥ ct , with  = 1.645 or 1.96. The test size is the percentage of 

times in 500 Monte Carlo samples we reject the null hypothesis. Clearly we prefer tests of an assumed nominal size 

of .05 or .10 to have actual size close to those values. 

ct

(iii)  The size of t-tests of significance based on bootstrapping critical values of the distribution of the “pivotal” 

statistic associated with each standard error method. Specifically, in each Monte Carlo sample m we resample, with 

replacement, from the rows of the data matrix [  to obtain a bootstrap sample b of size N.  A pivotal statistic 

is obtained for each of 200 bootstrap samples by computing 

]y z x w

ˆ ˆ
b m

b
b

t
se

β − β
=           (6.4) 

where  are Heckit estimates for parameters in the augmented regression equation from the bootstrap and 

Monte Carlo samples respectively, and 

ˆ  and bβ ˆ
mβ

bse  is a standard error computed from the bootstrap sample. Recall that for 
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the m’th Monte Carlo sample, the estimate ˆ
mβ  based on the full sample is the “true in the sample” value and thus 

using it to center the t-statistic makes it asymptotically pivotal.  The bootstrap critical values are obtained by taking 

the .90 and .95 percentiles of empirical distribution of bt , for the nominal 10% and 5% size tests, respectively.  The 

size of a two-tailed test using the bootstrap critical values is computed by calculating the percentage of the time the 

t-statistic in (6.3) falls above or below the computed percentiles.  That is, a nominal 5% test is obtained by rejecting 

the (true) null hypothesis if mt ≥ ct , with  being the bootstrap critical value, which is the 95ct
th percentile of the 

sorted bt  values.  The actual test size using the bootstrap critical values is the percentage of times in 500 Monte 

Carlo samples we reject the null hypothesis. 

ρ

 
7. The Monte Carlo Results 

 

When viewing the tabled results recall that the interpretation of the parameters controlling the experimental design: 

• γ1 controls the degree of censoring in the sample.  When γ1 = −0.96, 0.0, 0.96 the sizes of the selected sub-

samples of size n are approximately 25%, 50% and 75 %, respectively, of the original sample of N 

observations.  

• ρ is the correlation between the errors in the regression and selection equation. It takes the values 0.0 

(under which OLS on the sub-sample is BLUE), 0.5 and 1.0.  As the value of ρ increases the magnitude of 

the selection problem, as measured by eλβ = ρ ⋅σ , increases. 

• xw  is the correlation between the explanatory variables in the selection equation and the regression model 

of interest. The parameter xwρ  takes the values 0.90, 0.95 and 1.0.  The latter case represents the undesirable 

situation in which the explanatory variables in the selection equation are identical to those in the regression 

equation.   

• The columns labeled OLS are results that use the standard errors from V  in (4.1). Columns labeled 

HCE0 contain results based on the covariance matrix estimator 

OLS

0HCV , and so on. 

Table 1.a reports for N = 100 the average of the nominal (asymptotic) standard errors relative to the true 

estimator standard error as measured by the sampling variation of the Heckit estimator of the parameter β .  The 2
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column labeled MCSE is the standard error of the estimates in the Monte Carlo simulation.  This is the true finite 

sample variability.  Several cases are of interest: 

 When γ1 = −0.96 and ρxw=1 the Monte Carlo standard errors become significantly larger than in the other 

cases.  This is an indication of the general difficulties encountered when the independent variables used in 

each of the two-steps are the same, especially if the sample for the regression is heavily censored.   

 When ρ = 0, the OLS standard error should accurately reflect the sampling variation of the Heckit estimator 

since it is BLUE.  For the extreme design point γ1 = −0.96 or 0.0, and 1xwρ = , the OLS estimator 

understates the Heckit estimator variability.  The other estimators HCE3, HECK (and its near image, MT) 

and BOOT all overestimate the variability in this case.  Bootstrap standard errors measure finite sample 

variation quite well when ρ = 0 except for the case when 1xwρ = . Given ρ = 0 and , the 

performance of HCE3, HECK and BOOT improve as the degree of censoring diminishes. 

1xwρ =

 Of the two White HCE estimators, the usual HCE0 tends to understate the finite sample variation of Heckit 

and HCE3 tends to overstate it, but by a relatively small margin.  Both estimators improve as censoring is 

reduced. 

 When the degree of censoring is large the Murphy-Topel and Robust Murphy-Topel estimators are not 

reliable for this sample size.  For less censored cases, in this example, the usual MT estimator performs 

better than the robust version, RMT.  Indeed, the MT estimator mirrors the results of HECK even in this 

small sample. 

 The LEE estimator is appropriate when errors are non-normal, but in this case it severely understates the 

true sample variation of Heckit when censoring is severe or moderate.  In our experiment we did not 

consider non-normal errors or the robustness of alternative standard error estimators. 

 Comparing HECK and BOOT, we see that HECK does not fare well when censoring is large, but it 

becomes progressively better as the degree of censoring declines.  When censoring is severe (γ1 = −0.96) 

the bootstrap estimator of sampling variation is strongly preferred, except for 1xwρ = .  If censoring is 

moderate (γ1 = 0.0) BOOT is preferred when ρ = 0.  For other cases of moderate censoring HECK and 

BOOT are similar, except in the unusual case ρ = 0.5 and .95xwρ = .  In the case with mild censoring (γ1 = 

0.96) HECK and BOOT perform similarly. 
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Table 1.b reports for N = 400 the same information as Table 1.a.  Having more data is better, and all estimators 

more accurately capture finite sampling variation of the Heckit estimator.  Furthermore, the same relative 

relationships exist between them.  When the degree of censoring is large, HECK does not do as well as BOOT or 

HCE3. The bootstrap standard error BOOT also provides a close measure of  finite sample variation in other 

designs.  The exceptions are the designs γ1 = 0.0, ρ = 0.5 and 0.90xwρ =  and γ1 = 0.96, ρ = 0 and .  In these 

anomalous cases all standard errors understate the true variation. 

1xwρ =

 

Table 2.a and 2.b report for N = 100 and N = 400, respectively, the α = .05 critical values for asymptotic tests.  

These critical values were computed by sorting the absolute values of the difference between the Monte Carlo 

Heckit estimates and the true parameter value divided by the relevant asymptotic standard error.  Given the evidence 

in Table 1 it is not surprising that these critical values are not ±1.96, as asymptotic theory would predict.  

 When N = 100 and γ1 = −0.96 (censoring is severe), the empirically determined critical values are quite 

different from ±1.96 for all estimators in almost all cases. This is especially true for .   1xwρ =

 It is worth noting, however, that even when N = 100, for γ1 = 0.0 or 0.96 (less severe censoring) and ρ = 0.5 

or 1.0 (moderate or severe selection bias) with 0.90xwρ =  or 0.95xwρ = , then the usual Heckit standard 

error, HCE3 and BOOT are in a range consistent with the usual 1.96.   

 For N = 100, using the bootstrap standard error, BOOT, produces nominal critical values closer to ±1.96 

than HECK when censoring is severe, but the results illustrate that simply using bootstrap standard errors 

does not solve the problem of testing in small samples. 

 When N = 400 using the bootstrap standard error yields a t-statistic whose critical values are close to ±1.96 

even in the severe censoring case.  Compare, for example, the critical values based on BOOT with those 

from HECK (and the others) when censoring is severe and 1xwρ = .  Blindly comparing a Heckit t-statistic 

to ±1.96 is a less troubling when using the bootstrap standard error than the alternatives. In this context 

HCE3 also provides a definite improvement over HECK. 

 When γ1 = 0.0 or 0.96 (less severe censoring) and 1xwρ = , BOOT, HCE3 and other estimators exhibit 

critical values that are larger than 1.96. 
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In Tables 3.a and 3.b we report for N = 100 and N = 400, respectively, the sizes of the nominal α = .05 

asymptotic tests.  These sizes are computed by calculating the percentage of true null hypotheses rejected in the 

Monte Carlo experiment, when the t-statistics based on alternative standard error estimators are compared to ±1.96.  

 

 When N = 100, HECK is does not produce tests of predicted size when censoring is severe (γ1 = −0.96) or 

if .  Using the bootstrap standard error in these cases is certainly better, except when ρ .  In 

other cases using the bootstrap standard error is a good choice; comparing the resulting t-statistic to ±1.96 

leads to tests of approximately the correct size.  The exception to this rule is when censoring is moderate (γ

1xwρ = 1xw =

1 

= 0.0), ρ = 0 (so that OLS is BLUE) and 1xwρ = .  

 When N = 100, HCE3 results in less size distortion than HCE0, which rejects too frequently, a finding 

consistent with its “too small” standard errors noted in Table 1.a.  If the usual critical values ±1.96 are 

employed, then using standard error HCE3 by far the best alternative in our simulation when censoring is 

severe and ρ .  In fact using HCE3 seems a good choice overall, with its only real problem occurring 

when censoring is moderate and the error correlation is ρ = 0.5 and 

1xw =

1xwρ = . 

 When N = 400 using t-statistics based on the bootstrap standard error yield sizes closer to the nominal α = 

.05 value than using HECK, especially for 1xwρ = .   

 MT and HECK perform similarly. RMT under-rejects in all cases when censoring is not severe. HCE3 is 

again preferable to HCE0 over all degrees of censoring and in virtually all cases. 

 

Tables 4.a and 4.b contain the sizes of the nominal α = .05 tests based on bootstrap critical values using the 

pivotal statistic in equation (6.4).  The usefulness of bootstrapping critical values is immediately obvious. 

 When N = 100, using bootstrap critical values for the t-statistic based on HECK provides tests of close to 

proper size in all cases other than .  The Murphy-Topel (MT) results are very similar to HECK and 

the robust version RMT is close, though with a few more extreme values. 

1xwρ =

 HCE3 seems to perform relatively well with the bootstrap critical values, even when  and censoring 

is severe (γ

1xwρ =

1 = −.96) or not (γ1 = 0.96).   
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 If N = 400, using the bootstrap critical values with HCE3 again seems a good alternative across all designs. 

For smaller amounts of censoring (γ1 = 0.96) there is very little difference across the empirical sizes no 

matter which standard error is used. 

 If N = 400, using HECK with bootstrap critical values is a good choice when censoring is not severe. 

 
8. Summary and Conclusions 

Our research goals for this work were: 

• First, how do the alternative versions of asymptotic variance-covariance matrices used in selectivity 

models capture the finite sample variability of the Heckit two-step estimator?  The answer depends on 

the degree of censoring and on whether the explanatory variables in the selection and regression 

equation differ or not.  With severe censoring and if the explanatory variables in the two equations are 

identical, then none of the asymptotic standard error formulations is reliable in small samples.  In 

larger samples the bootstrap does a good job in reflecting estimator variability, as does the White HCE 

in which the diagonal matrix of squared residuals is weighted, element-wise, by the squared reciprocals 

of the diagonal of an identity less the “hat” matrix, which we have called 
3HCV , following Davidson 

and MacKinnon (1993). These are both better choices than the usual Heckit asymptotic covariance 

matrix in the sense of coming closer to the finite sample variation or being slightly conservative.  If 

selection and regression equations have different variables, and if the sample is small, the bootstrap 

does relatively well if censoring is strong or moderate.  

• Second, is it possible to use bootstrapping to improve finite sample inference?  Three aspects of this 

question are: 

o Do bootstrap standard errors match finite sample variability better than nominal standard 

errors computed from asymptotic covariance matrices? As noted in the previous summary 

point, the answer to this is yes, unless censoring is severe, and the explanatory variables in the 

selection and regression equations are the same. 

o Do critical values of test statistics generated by bootstrapping pivotal t-statistics lead to better 

test size than those based on usual asymptotic theory?  The answer is yes, and this is the most 

interesting and useful finding in the current research.   
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 If censoring is severe, or when the sample is small, we recommend using HCE3 with 

bootstrapped critical values when carrying out tests about the slope parameters, or 

when constructing interval estimates.   

 If the sample is large and censoring is moderate or less severe, then using the 

standard Heckit standard errors with bootstrapped critical values is satisfactory. 

o Does modern software make obtaining bootstrap standard errors and critical values feasible 

for empirical researchers?  Yes.  Sample programs in the appendix show that it is simple to 

obtain bootstrap standard errors, and almost as simple to obtain bootstrap critical values with 

Heckit or HCE3 standard errors. 
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Table 1.a Nominal standard errors relative to the Monte Carlo standard errors, N=100 
Coefficient:  β2 
 
  γ1     ρ         ρxw     MCSE    OLS   HCE0   HCE3   HECK    MT    RMT    LEE    Boot xw 

 
-0.96  0.0  0.90  0.3879 0.9830 0.8865 1.0694 0.9277 0.9270 0.9971 0.8700 0.9923 
-0.96  0.0  0.95  0.5654 0.9868 0.8852 1.0988 0.9571 0.9564 1.0808 0.8837 1.0284 
-0.96  0.0  1.00  1.4435 0.8550 0.6240 1.2476 1.2703 1.2555 1.2485 0.9763 1.4686 
-0.96  0.5  0.90  0.3796 1.0066 0.9107 1.0793 0.9557 0.9556 0.9779 0.9054 1.0346 
-0.96  0.5  0.95  0.7730 1.0203 0.8775 1.1497 0.9063 0.9050 1.0484 0.8593 1.0210 
-0.96  0.5  1.00  1.3504 0.8554 0.6831 1.0929 1.1962 1.1827 1.1726 0.8989 1.2761 
-0.96  1.0  0.90  0.2679 0.9476 0.8611 1.0579 0.9103 0.9101 0.9738 0.8758 1.0019 
-0.96  1.0  0.95  0.4568 0.9137 0.8295 1.0870 0.9117 0.9111 0.9903 0.8414 1.0435 
-0.96  1.0  1.00  1.9669 0.8628 0.7620 1.0860 1.3601 1.3675 1.3373 0.9200 1.1929 
 0.00  0.0  0.90  0.3131 1.0177 0.9655 1.0705 0.9886 0.9877 1.1285 0.9635 1.0152 
 0.00  0.0  0.95  0.3901 1.0063 0.9362 1.0654 1.0259 1.0222 1.2529 0.9381 1.0186 
 0.00  0.0  1.00  0.7672 0.9378 0.8461 1.0414 1.1127 1.0966 1.0906 0.9610 1.0871 
 0.00  0.5  0.90  0.2966 0.9811 0.9370 1.0348 0.9503 0.9494 1.0354 0.9276 0.9869 
 0.00  0.5  0.95  0.2904 0.9389 0.7811 1.1728 1.0037 0.9982 1.3274 0.8900 1.1165 
 0.00  0.5  1.00  0.6089 0.8743 0.7671 1.0205 1.0587 1.0387 1.0435 0.8958 1.0490 
 0.00  1.0  0.90  0.2121 0.9640 0.9029 1.0333 0.9611 0.9558 1.0926 0.9356 0.9735 
 0.00  1.0  0.95  0.2728 0.9088 0.9199 1.0548 0.9937 0.9853 1.2130 0.9139 0.9897 
 0.00  1.0  1.00  0.5708 0.7867 0.7927 0.9392 0.9993 0.9769 0.9738 0.8800 0.9681 
 0.96  0.0  0.90  0.1996 1.0309 0.9808 1.0662 1.0213 1.0173 1.7107 0.9769 1.0060 
 0.96  0.0  0.95  0.2625 0.9917 0.9514 1.0307 0.9841 0.9792 1.2908 0.9456 0.9646 
 0.96  0.0  1.00  0.3075 1.0136 0.9637 1.0443 1.0560 1.0372 1.0508 1.0208 1.0291 
 0.96  0.5  0.90  0.1996 0.9957 0.9610 1.0288 0.9909 0.9881 1.4615 0.9650 0.9834 
 0.96  0.5  0.95  0.2585 1.0170 0.9638 1.0644 1.0111 1.0062 1.4529 0.9726 0.9961 
 0.96  0.5  1.00  0.2967 0.9830 0.9018 1.0746 1.0675 1.0553 1.1216 0.9842 1.0610 
 0.96  1.0  0.90  0.1888 1.0125 0.9813 1.0606 1.0228 1.0165 1.3934 0.9865 1.0029 
 0.96  1.0  0.95  0.1975 0.9735 0.9575 1.0591 1.0353 1.0165 1.6213 0.9888 0.9845 
 0.96  1.0  1.00  0.2725 0.9297 0.8682 1.0424 1.0678 1.0451 1.1670 0.9735 1.0310 
 

Table 1.b Nominal standard errors relative to the Monte Carlo standard errors, N=400 
Coefficient:  β2 
 
   γ1     ρ         ρxw    MCSE   OLS    HCE0   HCE3   HECK    MT    RMT    LEE    Boot xw 

 
-0.96  0.0  0.90  0.2388 0.9658 0.9419 0.9905 0.9517 0.9516 0.9662 0.9230 0.9695 
-0.96  0.0  0.95  0.3108 1.0394 0.9988 1.0544 1.0250 1.0248 1.0603 0.9913 1.0274 
-0.96  0.0  1.00  0.8865 1.0087 0.9258 1.0422 1.1326 1.1263 1.1234 0.9715 1.0391 
-0.96  0.5  0.90  0.2047 0.9403 0.9186 0.9631 0.9302 0.9300 0.9466 0.9184 0.9404 
-0.96  0.5  0.95  0.3032 0.9442 0.9164 0.9666 0.9307 0.9302 0.9552 0.9197 0.9478 
-0.96  0.5  1.00  0.8982 0.9134 0.8637 0.9848 1.0635 1.0575 1.0532 0.9010 0.9758 
-0.96  1.0  0.90  0.1440 0.8999 0.9024 0.9508 0.9319 0.9295 0.9361 0.8939 0.9311 
-0.96  1.0  0.95  0.1933 1.0029 0.9542 1.0033 0.9718 0.9693 0.9833 0.9513 0.9786 
-0.96  1.0  1.00  0.5204 0.8198 0.8906 1.0814 1.1485 1.1340 1.1334 0.9338 1.0567 
 0.00  0.0  0.90  0.1398 1.0055 0.9805 1.0144 1.0027 1.0026 1.0727 0.9813 0.9980 
 0.00  0.0  0.95  0.1853 1.0034 0.9890 1.0190 1.0005 1.0000 1.0517 0.9860 1.0030 
 0.00  0.0  1.00  0.2964 1.0171 0.9411 1.0613 1.0565 1.0538 1.0552 0.9676 1.0519 
 0.00  0.5  0.90  0.1405 0.9445 0.9344 0.9601 0.9472 0.9461 0.9871 0.9378 0.9497 
 0.00  0.5  0.95  0.1795 1.0264 1.0090 1.0423 1.0298 1.0284 1.1029 1.0018 1.0260 
 0.00  0.5  1.00  0.3006 1.0294 1.0116 1.0753 1.0810 1.0742 1.0740 1.0142 1.0578 
 0.00  1.0  0.90  0.1063 1.0008 1.0015 1.0265 1.0159 1.0118 1.0206 1.0004 1.0200 
 0.00  1.0  0.95  0.1412 0.8934 0.9371 0.9723 0.9739 0.9634 1.0001 0.9400 0.9625 
 0.00  1.0  1.00  0.2503 0.7969 0.8545 0.9801 1.0071 0.9893 0.9970 0.8980 0.9633 
 0.96  0.0  0.90  0.1111 0.9841 0.9701 0.9894 0.9818 0.9817 1.1602 0.9661 0.9759 
 0.96  0.0  0.95  0.1138 1.0576 1.0454 1.0714 1.0580 1.0574 1.2216 1.0505 1.0575 
 0.96  0.0  1.00  0.1769 0.9365 0.9182 0.9487 0.9533 0.9502 0.9554 0.9369 0.9431 
 0.96  0.5  0.90  0.0997 0.9909 0.9797 1.0010 0.9955 0.9941 1.1672 0.9802 0.9893 
 0.96  0.5  0.95  0.1376 0.9956 0.9874 1.0095 1.0003 0.9975 1.1762 0.9831 1.0013 
 0.96  0.5  1.00  0.1643 1.0011 0.9894 1.0332 1.0421 1.0354 1.0474 1.0014 1.0290 
 0.96  1.0  0.90  0.0966 0.9825 0.9757 0.9941 0.9963 0.9887 1.0744 0.9811 0.9890 
 0.96  1.0  0.95  0.1079 0.8835 0.9273 0.9545 0.9596 0.9468 1.0662 0.9410 0.9567 
 0.96  1.0  1.00  0.1409 0.8950 0.9288 0.9600 0.9861 0.9672 0.9778 0.9635 0.9733 
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Table 2.a Nominal .05 critical values for asymptotic tests, N=100 
Coefficient:  β2 
 
   γ1     ρ        ρxw xw    OLS    HCE0   HCE3   HECK    MT    RMT    LEE    BOOT 
 
-0.96  0.0  0.90   2.1564 2.4997 2.0921 2.2959 2.2960 2.2913 2.4987 2.2475 
-0.96  0.0  0.95   1.9765 2.4784 2.0300 1.9034 1.9148 1.8836 2.4783 2.1307 
-0.96  0.0  1.00   2.1854 3.3944 2.2879 1.0708 1.0896 1.0890 2.4424 1.4372 
-0.96  0.5  0.90   2.0495 2.4514 2.0473 2.1605 2.1606 2.1153 2.4514 2.0689 
-0.96  0.5  0.95   1.9881 2.5483 2.0967 2.4759 2.4722 2.4870 2.5119 2.1011 
-0.96  0.5  1.00   2.1838 2.9830 2.1977 1.2258 1.2676 1.2799 2.2716 1.5520 
-0.96  1.0  0.90   2.1766 2.5664 2.1281 2.2015 2.2045 1.9579 2.5658 2.1364 
-0.96  1.0  0.95   2.1372 2.5000 1.9635 2.0984 2.0981 1.9684 2.4867 2.0471 
-0.96  1.0  1.00   2.3388 2.8207 2.1199 1.2288 1.2198 1.2635 2.2081 1.6392 
 0.00  0.0  0.90   1.9518 2.0702 1.8953 1.9681 1.9701 1.8695 2.0635 2.0093 
 0.00  0.0  0.95   2.1152 2.2941 2.0492 1.8647 1.8697 1.7915 2.2503 2.0836 
 0.00  0.0  1.00   2.0411 2.3298 1.8919 1.2812 1.2866 1.3344 1.9916 1.6607 
 0.00  0.5  0.90   2.0201 2.1913 2.0182 2.0889 2.0950 1.9332 2.1881 2.1184 
 0.00  0.5  0.95   2.0782 2.8374 2.1033 1.9094 1.9186 1.6178 2.7738 1.9887 
 0.00  0.5  1.00   2.3039 2.7945 2.3425 1.5838 1.6462 1.6463 2.4435 2.0065 
 0.00  1.0  0.90   2.0709 2.3460 2.0931 2.0664 2.0850 2.0038 2.3231 2.1118 
 0.00  1.0  0.95   2.1359 2.2299 1.9406 1.9634 1.9823 1.6567 2.2175 2.0637 
 0.00  1.0  1.00   2.3178 2.7172 2.3249 2.0401 2.0613 1.9249 2.3276 2.1305 
 0.96  0.0  0.90   1.9096 2.0825 1.9320 1.8630 1.8879 1.6744 2.0453 2.0021 
 0.96  0.0  0.95   1.9942 2.1298 1.9958 1.9569 1.9955 1.8357 2.0626 2.1470 
 0.96  0.0  1.00   1.9253 2.1346 1.9263 1.6599 1.7813 1.7885 1.9637 1.9374 
 0.96  0.5  0.90   2.1139 2.2656 2.1211 2.1102 2.1126 1.7838 2.2339 2.2155 
 0.96  0.5  0.95   1.9368 1.9385 1.7726 1.9358 1.9411 1.6993 1.9153 1.9506 
 0.96  0.5  1.00   2.0130 2.2224 1.9966 1.7260 1.7470 1.6652 2.0930 1.8365 
 0.96  1.0  0.90   2.0607 2.1647 2.0214 2.0333 2.0370 1.5831 2.1646 2.0948 
 0.96  1.0  0.95   1.9905 2.0239 1.8937 1.8877 1.9386 1.4887 1.9670 1.9886 
 0.96  1.0  1.00   2.1119 2.3250 2.0976 1.8567 1.8631 1.7598 2.1743 2.0130 
  

Table 2.b Nominal .05 critical values for asymptotic tests, N=400 
Coefficient:  β2 
 
   γ1     ρ         ρxw xw    OLS     HCE0   HCE3   HECK    MT     RMT   LEE    BOOT 
 
-0.96  0.0  0.90   2.0500 2.1451 2.0523 2.0785 2.0795 2.0447 2.1435 2.1276 
-0.96  0.0  0.95   1.8944 2.0885 1.9700 1.9001 1.8986 1.8787 2.0874 2.0033 
-0.96  0.0  1.00   1.8752 2.2606 2.0678 1.3247 1.3388 1.3454 2.1320 1.9484 
-0.96  0.5  0.90   2.1030 2.1336 2.0331 2.1268 2.1280 2.0869 2.1313 2.0827 
-0.96  0.5  0.95   2.1649 2.1965 2.0492 2.1724 2.1748 2.1238 2.1959 2.1395 
-0.96  0.5  1.00   2.0592 2.2756 2.0304 1.4440 1.4656 1.4657 2.0921 1.9184 
-0.96  1.0  0.90   2.2114 2.2487 2.1376 2.1462 2.1491 2.1304 2.2427 2.2424 
-0.96  1.0  0.95   2.0727 2.1301 2.0216 2.1494 2.1520 2.1324 2.1224 2.1424 
-0.96  1.0  1.00   2.3443 2.4222 2.0593 1.8965 1.8980 1.8969 2.2716 1.9422 
 0.00  0.0  0.90   1.9659 2.0334 1.9766 1.9674 1.9665 1.9243 2.0330 1.9672 
 0.00  0.0  0.95   1.8788 1.9846 1.9231 1.8731 1.8791 1.8339 1.9735 1.9741 
 0.00  0.0  1.00   1.9069 2.1461 2.0072 1.6711 1.6868 1.6884 2.1198 1.9156 
 0.00  0.5  0.90   2.0941 2.1415 2.0938 2.0622 2.0679 1.9699 2.1296 2.1316 
 0.00  0.5  0.95   1.9059 1.9633 1.9035 1.9073 1.9237 1.7781 1.9625 1.9302 
 0.00  0.5  1.00   1.9118 1.9348 1.8304 1.7409 1.7682 1.7681 1.9340 1.8751 
 0.00  1.0  0.90   1.9238 1.8755 1.8320 1.9160 1.9227 1.8550 1.8742 1.8836 
 0.00  1.0  0.95   2.1775 2.2601 2.1856 2.0703 2.0854 1.9107 2.2142 2.1287 
 0.00  1.0  1.00   2.3878 2.5730 2.2710 1.9941 2.0103 1.9815 2.4375 2.1631 
 0.96  0.0  0.90   1.9685 2.0711 2.0390 1.9733 1.9735 1.8247 2.0570 2.0502 
 0.96  0.0  0.95   1.9170 1.8881 1.8575 1.8954 1.9034 1.6659 1.8753 1.8722 
 0.96  0.0  1.00   2.1018 2.2210 2.1754 1.9464 1.9670 1.9777 2.1772 2.0706 
 0.96  0.5  0.90   1.9689 2.0432 2.0042 1.9731 1.9788 1.7784 2.0251 2.0590 
 0.96  0.5  0.95   1.9287 2.0100 1.9722 1.9223 1.9223 1.8189 2.0015 2.0391 
 0.96  0.5  1.00   1.9138 2.0252 1.9444 1.7525 1.7698 1.7754 1.9883 1.9547 
 0.96  1.0  0.90   1.9865 1.8974 1.8620 1.9589 1.9754 1.8189 1.8956 1.9626 
 0.96  1.0  0.95   2.1878 2.0817 2.0182 2.0688 2.0788 1.8654 2.0299 2.0396 
 0.96  1.0  1.00   2.1758 2.2229 2.1715 2.0610 2.0626 2.0304 2.1527 2.1981 
  



Table 3.a Sizes of the nominal .05 asymptotic tests, N=100 
Coefficient:  β2 

   γ1     ρ         ρxw    OLS    HCE0   HCE3   HECK    MT    RMT    LEE    BOOT xw 

 
-0.96  0.0  0.90   0.0780 0.1180 0.0580 0.0940 0.0940 0.0900 0.1180 0.0920 
-0.96  0.0  0.95   0.0540 0.0940 0.0600 0.0380 0.0380 0.0380 0.0940 0.0680 
-0.96  0.0  1.00   0.0720 0.1940 0.0740 0.0000 0.0000 0.0000 0.1360 0.0040 
-0.96  0.5  0.90   0.0680 0.1020 0.0580 0.0760 0.0760 0.0700 0.1020 0.0640 
-0.96  0.5  0.95   0.0560 0.1000 0.0500 0.1040 0.1040 0.1040 0.0980 0.0640 
-0.96  0.5  1.00   0.0740 0.1500 0.0700 0.0020 0.0020 0.0020 0.0900 0.0180 
-0.96  1.0  0.90   0.0660 0.1000 0.0680 0.0680 0.0680 0.0480 0.1000 0.0660 
-0.96  1.0  0.95   0.0760 0.1300 0.0500 0.0680 0.0680 0.0500 0.1300 0.0540 
-0.96  1.0  1.00   0.0940 0.1640 0.0620 0.0000 0.0020 0.0020 0.0940 0.0200 
 0.00  0.0  0.90   0.0480 0.0660 0.0460 0.0500 0.0500 0.0420 0.0660 0.0600 
 0.00  0.0  0.95   0.0660 0.0880 0.0580 0.0400 0.0420 0.0320 0.0820 0.0620 
 0.00  0.0  1.00   0.0540 0.0900 0.0440 0.0000 0.0000 0.0000 0.0520 0.0100 
 0.00  0.5  0.90   0.0580 0.0740 0.0500 0.0600 0.0600 0.0480 0.0740 0.0660 
 0.00  0.5  0.95   0.0680 0.1620 0.0700 0.0400 0.0460 0.0200 0.1540 0.0500 
 0.00  0.5  1.00   0.0780 0.1580 0.1000 0.0100 0.0120 0.0120 0.1160 0.0520 
 0.00  1.0  0.90   0.0700 0.1060 0.0620 0.0720 0.0720 0.0580 0.1000 0.0760 
 0.00  1.0  0.95   0.0720 0.0820 0.0420 0.0500 0.0540 0.0280 0.0780 0.0540 
 0.00  1.0  1.00   0.1140 0.1360 0.0880 0.0600 0.0620 0.0440 0.1020 0.0620 
 0.96  0.0  0.90   0.0420 0.0640 0.0440 0.0440 0.0440 0.0240 0.0580 0.0640 
 0.96  0.0  0.95   0.0520 0.0760 0.0500 0.0460 0.0540 0.0380 0.0620 0.0700 
 0.96  0.0  1.00   0.0420 0.0660 0.0460 0.0140 0.0180 0.0260 0.0500 0.0460 
 0.96  0.5  0.90   0.0680 0.0860 0.0680 0.0640 0.0640 0.0340 0.0820 0.0800 
 0.96  0.5  0.95   0.0480 0.0460 0.0380 0.0440 0.0460 0.0300 0.0420 0.0480 
 0.96  0.5  1.00   0.0540 0.0920 0.0520 0.0140 0.0160 0.0080 0.0700 0.0360 
 0.96  1.0  0.90   0.0620 0.0680 0.0540 0.0640 0.0640 0.0180 0.0660 0.0600 
 0.96  1.0  0.95   0.0560 0.0640 0.0420 0.0460 0.0460 0.0060 0.0520 0.0520 
 0.96  1.0  1.00   0.0680 0.1140 0.0620 0.0360 0.0360 0.0200 0.0860 0.0500 
  

 
Table 3.b Sizes of the nominal .05 asymptotic tests, N=400 
Coefficient:  β2 
 
   γ1     ρ         ρxw    OLS    HCE0   HCE3   HECK     MT    RMT   LEE    BOOT xw 

 
-0.96  0.0  0.90   0.0580 0.0740 0.0560 0.0620 0.0620 0.0580 0.0740 0.0700 
-0.96  0.0  0.95   0.0460 0.0680 0.0500 0.0460 0.0460 0.0420 0.0680 0.0520 
-0.96  0.0  1.00   0.0460 0.0880 0.0580 0.0000 0.0000 0.0000 0.0720 0.0480 
-0.96  0.5  0.90   0.0740 0.0760 0.0540 0.0740 0.0740 0.0680 0.0760 0.0680 
-0.96  0.5  0.95   0.0620 0.0780 0.0600 0.0680 0.0680 0.0680 0.0780 0.0720 
-0.96  0.5  1.00   0.0560 0.0860 0.0520 0.0000 0.0020 0.0020 0.0680 0.0460 
-0.96  1.0  0.90   0.0780 0.0880 0.0780 0.0660 0.0660 0.0600 0.0880 0.0800 
-0.96  1.0  0.95   0.0600 0.0700 0.0540 0.0620 0.0640 0.0640 0.0700 0.0620 
-0.96  1.0  1.00   0.1140 0.1020 0.0600 0.0400 0.0400 0.0380 0.0800 0.0460 
 0.00  0.0  0.90   0.0500 0.0620 0.0540 0.0520 0.0520 0.0420 0.0620 0.0500 
 0.00  0.0  0.95   0.0420 0.0540 0.0420 0.0380 0.0380 0.0360 0.0520 0.0500 
 0.00  0.0  1.00   0.0420 0.0660 0.0500 0.0120 0.0160 0.0180 0.0640 0.0460 
 0.00  0.5  0.90   0.0640 0.0720 0.0680 0.0600 0.0620 0.0520 0.0720 0.0760 
 0.00  0.5  0.95   0.0480 0.0500 0.0460 0.0460 0.0460 0.0320 0.0500 0.0480 
 0.00  0.5  1.00   0.0400 0.0480 0.0400 0.0160 0.0200 0.0200 0.0460 0.0340 
 0.00  1.0  0.90   0.0420 0.0400 0.0360 0.0360 0.0380 0.0300 0.0400 0.0420 
 0.00  1.0  0.95   0.0800 0.0780 0.0700 0.0540 0.0560 0.0440 0.0720 0.0640 
 0.00  1.0  1.00   0.1140 0.1260 0.0980 0.0540 0.0560 0.0520 0.1080 0.0800 
 0.96  0.0  0.90   0.0520 0.0640 0.0580 0.0520 0.0520 0.0320 0.0640 0.0660 
 0.96  0.0  0.95   0.0440 0.0460 0.0420 0.0440 0.0440 0.0260 0.0460 0.0380 
 0.96  0.0  1.00   0.0600 0.0720 0.0640 0.0480 0.0500 0.0500 0.0620 0.0580 
 0.96  0.5  0.90   0.0500 0.0580 0.0540 0.0500 0.0500 0.0240 0.0560 0.0600 
 0.96  0.5  0.95   0.0460 0.0540 0.0520 0.0420 0.0440 0.0380 0.0540 0.0540 
 0.96  0.5  1.00   0.0400 0.0620 0.0480 0.0260 0.0260 0.0240 0.0520 0.0460 
 0.96  1.0  0.90   0.0540 0.0480 0.0480 0.0480 0.0500 0.0400 0.0480 0.0500 
 0.96  1.0  0.95   0.0920 0.0800 0.0640 0.0700 0.0740 0.0300 0.0620 0.0640 
 0.96  1.0  1.00   0.0820 0.0800 0.0720 0.0560 0.0600 0.0560 0.0680 0.0700 
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Table 4.a Sizes of the nominal .05 bootstrap tests, N=100 
Coefficient:  β2 
 
   γ1     ρ         ρxw xw     OLS    HCE0   HCE3   HECK    MT     RMT    LEE 
 
-0.96  0.0  0.90   0.0740 0.0620 0.0620 0.0720 0.0720 0.0860 0.0660 
-0.96  0.0  0.95   0.0520 0.0400 0.0460 0.0480 0.0480 0.0780 0.0480 
-0.96  0.0  1.00   0.0400 0.0600 0.0420 0.0100 0.0120 0.0120 0.0680 
-0.96  0.5  0.90   0.0540 0.0560 0.0580 0.0520 0.0520 0.0560 0.0560 
-0.96  0.5  0.95   0.0440 0.0560 0.0580 0.0640 0.0640 0.1000 0.0560 
-0.96  0.5  1.00   0.0380 0.0540 0.0440 0.0220 0.0260 0.0380 0.0460 
-0.96  1.0  0.90   0.0540 0.0620 0.0640 0.0620 0.0620 0.0580 0.0620 
-0.96  1.0  0.95   0.0380 0.0380 0.0520 0.0640 0.0620 0.0680 0.0400 
-0.96  1.0  1.00   0.0320 0.0400 0.0400 0.0200 0.0220 0.0260 0.0460 
 0.00  0.0  0.90   0.0540 0.0420 0.0420 0.0500 0.0480 0.0520 0.0440 
 0.00  0.0  0.95   0.0600 0.0460 0.0440 0.0640 0.0640 0.0900 0.0500 
 0.00  0.0  1.00   0.0300 0.0220 0.0200 0.0020 0.0040 0.0060 0.0180 
 0.00  0.5  0.90   0.0600 0.0480 0.0500 0.0540 0.0520 0.0560 0.0460 
 0.00  0.5  0.95   0.0860 0.1060 0.0800 0.0860 0.0860 0.0800 0.1180 
 0.00  0.5  1.00   0.0700 0.0780 0.0720 0.0500 0.0540 0.0560 0.0820 
 0.00  1.0  0.90   0.0680 0.0680 0.0720 0.0680 0.0660 0.0800 0.0700 
 0.00  1.0  0.95   0.0560 0.0440 0.0440 0.0540 0.0540 0.0560 0.0480 
 0.00  1.0  1.00   0.0620 0.0560 0.0560 0.1060 0.0980 0.1020 0.0700 
 0.96  0.0  0.90   0.0560 0.0460 0.0480 0.0560 0.0520 0.0740 0.0500 
 0.96  0.0  0.95   0.0660 0.0600 0.0620 0.0640 0.0680 0.0820 0.0580 
 0.96  0.0  1.00   0.0340 0.0340 0.0320 0.0220 0.0280 0.0520 0.0240 
 0.96  0.5  0.90   0.0700 0.0620 0.0620 0.0680 0.0680 0.0820 0.0640 
 0.96  0.5  0.95   0.0400 0.0360 0.0340 0.0480 0.0480 0.0560 0.0400 
 0.96  0.5  1.00   0.0520 0.0440 0.0460 0.0580 0.0620 0.0860 0.0600 
 0.96  1.0  0.90   0.0520 0.0500 0.0480 0.0560 0.0560 0.0480 0.0500 
 0.96  1.0  0.95   0.0380 0.0360 0.0380 0.0420 0.0420 0.0580 0.0380 
 0.96  1.0  1.00   0.0660 0.0560 0.0560 0.0820 0.0800 0.0760 0.0760 
  

 
Table 4.b Sizes of the nominal .05 bootstrap tests, N=400 
Coefficient:  β2 
 
   γ1     ρ         ρxw xw     OLS   HCE0   HCE3   HECK     MT    RMT     LEE 
 
-0.96  0.0  0.90   0.0660 0.0660 0.0640 0.0640 0.0640 0.0680 0.0660 
-0.96  0.0  0.95   0.0480 0.0500 0.0500 0.0460 0.0460 0.0500 0.0500 
-0.96  0.0  1.00   0.0560 0.0480 0.0420 0.0280 0.0280 0.0280 0.0620 
-0.96  0.5  0.90   0.0700 0.0560 0.0560 0.0700 0.0700 0.0640 0.0560 
-0.96  0.5  0.95   0.0760 0.0720 0.0680 0.0780 0.0760 0.0760 0.0720 
-0.96  0.5  1.00   0.0560 0.0500 0.0460 0.0340 0.0340 0.0340 0.0580 
-0.96  1.0  0.90   0.0820 0.0640 0.0640 0.0760 0.0760 0.0840 0.0620 
-0.96  1.0  0.95   0.0660 0.0600 0.0600 0.0640 0.0660 0.0640 0.0600 
-0.96  1.0  1.00   0.0640 0.0560 0.0520 0.1260 0.1200 0.1140 0.0760 
 0.00  0.0  0.90   0.0480 0.0500 0.0520 0.0540 0.0540 0.0620 0.0500 
 0.00  0.0  0.95   0.0400 0.0320 0.0320 0.0480 0.0460 0.0520 0.0320 
 0.00  0.0  1.00   0.0560 0.0520 0.0520 0.0540 0.0540 0.0560 0.0560 
 0.00  0.5  0.90   0.0740 0.0760 0.0760 0.0740 0.0740 0.0680 0.0760 
 0.00  0.5  0.95   0.0480 0.0420 0.0420 0.0500 0.0500 0.0540 0.0420 
 0.00  0.5  1.00   0.0380 0.0300 0.0260 0.0620 0.0640 0.0620 0.0340 
 0.00  1.0  0.90   0.0340 0.0260 0.0260 0.0380 0.0380 0.0440 0.0260 
 0.00  1.0  0.95   0.0620 0.0580 0.0580 0.0680 0.0660 0.0740 0.0580 
 0.00  1.0  1.00   0.0960 0.0840 0.0840 0.0900 0.0880 0.0920 0.0920 
 0.96  0.0  0.90   0.0620 0.0600 0.0600 0.0620 0.0620 0.0740 0.0580 
 0.96  0.0  0.95   0.0380 0.0360 0.0360 0.0420 0.0400 0.0420 0.0360 
 0.96  0.0  1.00   0.0600 0.0520 0.0540 0.0700 0.0660 0.0680 0.0580 
 0.96  0.5  0.90   0.0600 0.0640 0.0640 0.0640 0.0640 0.0600 0.0640 
 0.96  0.5  0.95   0.0460 0.0420 0.0420 0.0520 0.0480 0.0620 0.0460 
 0.96  0.5  1.00   0.0520 0.0460 0.0460 0.0580 0.0520 0.0480 0.0520 
 0.96  1.0  0.90   0.0440 0.0400 0.0400 0.0440 0.0440 0.0540 0.0400 
 0.96  1.0  0.95   0.0580 0.0500 0.0500 0.0680 0.0620 0.0840 0.0480 
 0.96  1.0  1.00   0.0700 0.0640 0.0640 0.0760 0.0740 0.0740 0.0640 

  
 



 

Computational Appendix 

In this appendix we provide bare bones code in Stata 8.0 and LIMDEP 8.0 to carry out bootstrapping in the Heckit 
model.  The data, code files and output are available at 
 
http://www.bus.lsu.edu/economics/faculty/chill/personal/Heckit.htm 
 
The Example 
 
The data are from Thomas Mroz’s widely cited example (1987, “The Sensitivity of an Empirical Model of Married 
Women’s Hours of Work to Economic and Statistical Assumptions,” Econometrica, 55, 765-799) and consist of 753 
observations from the 1987 Panel Study of Income Dynamics.   

 
The linear model of interest has the logarithm of wage dependent on education, experience and age:   

 
( ) 2

1 2 3 4 5ln wage ed ex ex age e= β + β + β + β + β +                                               (A.1) 
 
However, many in the sample are observed with zero wages, suggesting that there may be sample selection bias; 
omitted factors in the wage equation may be correlated with a decision to work.  The selection equation considered 
is:   
 

* 2
1 2 3 4 5 6 6z ed ex ex age klt v= γ + γ + γ + γ + γ + γ +                                              (A.2) 

 
where klt6 is the number of children less than 6 years old present. The latent variable, z*, is only observed in one of 
two states; either one works for wages (z=1) or does not (z=0). The correlation between v and e is ρ.  
 

Stata 8.0: The .do file 
 
clear 
#delimit ;  
use c:\stata\mroz; 
heckman lwage educ exper expersq age, 
   select(educ exper expersq age kidslt6) twostep; 
 
scalar b1=_b[exper]; 
scalar se1=_se[exper]; 
 
di "   Coefficient b1 " b1   "  Standard Error  "  se1; 
set seed 1431241 ; 
bootstrap "heckman lwage educ exper expersq age, 
    select (educ exper expersq age kidslt6) twostep 
    "  "_b[exper] _se[exper] e(lambda) e(rho)", 
    reps(400) level(95) saving(bsstboot) replace;  
drop _all; 
 
use bsstboot; 
 
gen ttest1=(_bs_1 - b1)/ _bs_2;  
gen abt=abs(ttest1); 
 
_pctile abt, p(95); 
di " The 97.5% critical value is " r(r1) ; 
summarize ttest1 abt, detail ; 
histogram ttest1, bin(20) normal ; 
 
 

program notes:  If the estimated ρ is outside [−1,1], Stata truncates the estimate and makes the error variance 
computation consistent. To obtain results comparable to LIMDEP, use the rhotrunc option.  We are not 
advocating one approach or the other. 
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LIMDEP 8.0 command file 
 
reset 
read;file=c:\mroz.raw;nobs=753;nvar=22;names=inlf,hours,kidslt6,kidsge6, 
          age,educ,wage,repwage,hushrs,husage,huseduc,huswage,faminc,mtr,motheduc,fatheduc,unem, 
          city,exper,nwifeinc,lwage,expersq$ 
 
? M defines coefficient of interest.  NSAM is number of bootstraps 
? In this example same variables are in selection and regression equations 
 
 
namelist; w=one,educ,exper,expersq,age,kidslt6 $ 
namelist; x=one,educ,exper,expersq,age $ 
calc; m=3; nsam=400; k = col(x)+1$ 
matrix; boott = init(nsam,k,0); bootest = init(nsam,k,0) $ 
 
probit  ; lhs=inlf; rhs=w; hold $ 
select  ; lhs=lwage; rhs=x$ 
matrix  ; truebeta = b $ 
 
calc; iter=0 $ 
 
proc 
calc; iter=iter+1 $ 
draw;n=753;replace$ 
probit  ; lhs=inlf; rhs=w; hold $ 
select  ; lhs=lwage; rhs=x$ 
 
? tvec = absolute values of t-stats centered at sample estimates 
 
matrix; bhat = b; se = vecd(varb); sevec = esqr(se); rse = diri(sevec);  
        dvec = bhat-truebeta; tvec = dirp(dvec,rse); tvec = dirp(tvec,tvec);  
        tvec = esqr(tvec); boott(iter,*) = tvec'; bootest(iter,*) = bhat' $ 
endproc 
 
exec; n=nsam; silent $ 
matrix; tm=part(boott,1,nsam,m,m); bm=part(bootest,1,nsam,m,m) $       
sample; 1-400 $ 
create; boot_bm=bm$ 
dstat; rhs=boot_bm$ 
 
? To sort t-statistics must create variable 
 
create; boot_tm=tm$ 
sort; lhs = boot_tm $ 
calc; nval = .95*nsam+1 $ 
matrix; list; tc = part(boot_tm,nval,nval,1,1) $ 
 
stop $ 
 
program notes:  If the estimated ρ is outside [−1,1], LIMDEP truncates the estimate. Reminder--in Project Settings 
specify enough memory for sample size of 753 observations. 
 


	Table 1.a Nominal standard errors relative to the Monte Carlo standard errors, N=100

