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1 Introduction

Knowing the education production function and understanding the sources of inefficiency

in elementary and secondary education is sufficiently important to justify the continuing

research on these topics. Grosskopf et al. (1997) estimate that the state of Texas could

reduce educational spending by about 30% and achieve the same outcomes, if its schools

were operated efficiently. If this estimate applies nationwide, it implies that in the United

States vast amounts of resources are wasted in education. Whatever the value of the wasted

resources, it is surely small compared to the human and economic costs of inferior education.

Research on the education production function has resulted in the ‘Does Money Matter?’

Burtless (1996) controversy. The consensus appears to be that providing more resources–

money–to schools may improve outcomes, but that there is no guarantee. Hanushek (1996),

who shows that U.S. schools have had large increases in resources with little if any improve-

ment in outcomes, argues that we do not know how to improve school systems’ efficiency, and

that the failure to observe improved performance along with the increased resources demon-

strates inefficiency. Hedges and Greenwald (1996), among others, argue that the absence of

improved performance associated with the increased resources is because of confounding fac-

tors that are not held constant in this simple comparison. Hanushek, Hedges and Greenwald,

and others agree that schools and teachers matter, but Hanushek, particularly, believes that

such indicators as education and experience are not reliable measures of quality in schools

and teachers. No easy decision rules exist for local or state decision makers to judge whether

schools are receiving an appropriate amount of resources and whether the resources received

are being used effectively.

Hanushek’s position is much like that of Chubb and Moe (1990), who find that student ability,

school organization, and family background are the chief determinants of student success.
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They argue that school autonomy is a crucial element of effective school organization. They

present evidence that schools where principals and teachers have more autonomy are more

effective. Moreover, their regression analysis suggests that a school’s economic resources are

not a determinant of student achievement. This contradicts their descriptive analysis, which

shows that high-performance schools use significantly more resources. They conclude that

the simple correlation between student performance and school resources disappears when

other variables, presumably family background, are included in the regression.

To the extent that the conclusions about the effects of resources and teacher quality depend

upon the traditional estimate of education production functions, these conclusions are sus-

pect. The presence of X inefficiency Levin (1997) in schools may mean that more efficient

management of the school could lead to substantially better outcomes without increasing

spending. Recent econometric estimates of models that account for X inefficiency show a

positive marginal effect of resources on performance Bates (1997), Brewer (1996), Deller and

Rudnicki (1993), Ruggiero (1996) and Adkins and Moomaw (2003).

Data envelopment analysis (DEA) is another tool that has been used to study the ineffi-

ciency of schools. Ruggerio and Vitaliano (1999) compare DEA results to those obtained

from econometric estimation of a stochastic production frontier for a sample of 520 New

York school districts. The advantages of DEA are that it handles multiple outputs and is

nonparametric. On the other hand, it cannot account for random variations in output that

are due to factors omitted from the model; all deviations from the frontier are assigned to

inefficiency. The similarity in results obtained by Ruggerio and Vitaliano (1999) using DEA

and a stochastic frontier provides some evidence that the choice may not be very important.

In this paper we estimate a stochastic production frontier, which like other such estimates,

finds that economic resources matter for performance. In addition, we use an the estimator
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proposed by Battese and Coelli (1995) to simultaneously estimate the parameters of the

stochastic frontier and the determinants of X inefficiency. The maximum likelihood estimator

permits the prediction of the inefficiencies for each individual for each time period that data

are available. This paper contributes to the ‘money matters’ controversy, as well as new

information about the sources of school efficiency. In particular, we obtain estimates of the

effects of school district size, teacher education and experience, and teacher salary that may

be helpful in the policy conversation.

2 The Stochastic Frontier Model

A number of studies have estimated stochastic production frontiers and used the predicted

efficiencies in a second stage regression to determine reasons for differing efficiencies. In

the first stage the predicted inefficiencies are estimated under the assumption that they are

independently and identically distributed. Regressing other variables on the inefficiencies in

a second stage often violates the usual assumption that the mean of the model’s errors be

independent of the regressors. Accordingly, Kumbhakar et al. (1991) find two serious prob-

lems with such a procedure. First, technical inefficiency may be correlated with the inputs;

if so the inefficiencies and the parameters of the second stage regression are inconsistently

estimated. Second, the use of OLS in the second stage ignores the fact that the dependent

variable (technical inefficiency) is inherently one-sided. OLS may yield predictions that are

inconsistent with this fact and it is therefore not appropriate.1

Kumbhakar et al. (1991), Reifschneider and Stevenson (1991), and Huang and Liu (1994)

have proposed models of technical inefficiency in the context of stochastic frontier models. In

these cross-sectional models, the parameters of the stochastic frontier and the determinants
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of inefficiency are estimated simultaneously given appropriate distributional assumptions

about the model’s errors.

2.1 Statistical Model

Battese and Coelli (1995) proposed a stochastic frontier model for use with panel data in

which the inefficiencies can be expressed as specific functions of explanatory variables. The

model can be expressed as

Yit = xitβ + (Vit − Uit) i = 1, . . . , N t = 1, . . . , T (1)

where Yit is the production of firm i in time period t; xit is a kx1 vector of inputs; β is a

vector of unknown parameters; Vit are random variables which are assumed to be indepen-

dently and identically distributed N(0, σ2
v) and independent of Uit which are non-negative

random variables that account for technical inefficiencies in production; Uit are assumed

to be independently distributed as truncations at zero of the N(mit, σ
2
U) distribution. The

mean inefficiency is a deterministic function of p explanatory variables:

mit = zitδ (2)

where δ is a px1 vector of parameters to be estimated. Following Battese and Corra (1977)

let σ2 = σ2
V + σ2

U and γ = σ2
U/(σ2

V + σ2
U).

The inefficiencies, Uit, in equation (1) can be specified as:

Uit = zitδ + Wit (3)
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where Wit is defined by the truncation of the normal distribution with mean zero and vari-

ance, σ2. Then, the technical inefficiency of the ith firm at time t is

TEit = exp (−Uit) = exp (−zitδ −Wit) (4)

The conditional expectation of TEit is given in equation (A.10) of Battese and Coelli (1993)

which can be used to produce predictions for each school for each time period.

The parameters of the model (β, δ, σ2, and γ) are estimated using the maximum likelihood

estimator (MLE); the log-likelihood function can be found in the appendix.2

2.2 Translog Production

The translog functional form is used because it offers great flexibility in specifying the nature

of production. The translog model can be interpreted as a second-order approximation to

the unknown, but true, functional form.

In this paper output is measured as average district performance on one of several standard-

ized tests. The inputs are functions of instructional expenditures per student (I$/S) and

other expenditures per student (O$/S). For Oklahoma school production the basic translog

model is:

ln Scoreit = β0 + ln (
I$

S
)β1 + ln (

O$

S
)β2 + [ln (

I$

S
)]2β3+

[ln (
O$

S
)]2β4 + ln (

I$

S
) ln (

O$

S
)β5 + (Vit − Uit) (5)

Equation (5), however, ignores the role of student characteristics and family background in

educational achievement. Data available to measure these effects are percent of students

5



eligible for subsidized lunch (LUNCH) as a measure of poverty, percent minority students

(MIN), and percent of students classified as possessing limited English proficiency (LEP).

We rewrite the production frontier as

ln Scoreit = β0 + LUNCHβ1 + MINβ2 + LEPβ3 + ln(
I$

S
)β4 + ln (

O$

S
)β5

+ [ln (
I$

S
)]2β6 + [ln (

O$

S
)]2β7 + ln (

I$

S
) ln (

O$

S
)β8 + (Vit − Uit) (6)

This specification follows Bradford et al. (1969) and Ruggiero (1996) and assumes that a

change in an environmental variable, e.g. LUNCH, results in a parallel shift in the frontier.

Historically, many studies have shown that disadvantaged students tend to perform below

average, and consequently we anticipate that LUNCH, LEP and MIN will shift the frontier

down. The coefficients of the environmental variables are part of the education production

function, just as are the coefficients of the spending variables. The difference is that the

district administrators, within limits, allocate resources between teachers and other inputs,

but they have no choice over the environmental variables.

2.3 Modelling Inefficiency

The inefficiencies are modeled as functions of other exogenous variables. These variables are

observed factors that may explain differences in technical efficiency across school districts in

Oklahoma. The factors affecting the technical efficiency of a school district are of two types.

First, are data on 3 factors that represent differences in input quality under the control of the

school district: average teacher salary (SALARY), average years of experience for teachers

(YRSEXP), and the proportion of teachers having an advanced degree (DEG). Second are

data on quantity adjustments available to district administrators (the Student-Teacher ratio),
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and on adjustments available to district or state policy makers (total Enrollment and total

Enrollment2).

Economic theory predicts that the use of higher quality inputs increases output, ceteris

paribus. Hence, a teacher’s possession of an advanced degree and additional experience, to

the extent that these signal higher quality, are expected to reduce inefficiency. Although

Hanushek (1996) is skeptical of the usefulness of these variables, we believe that the hy-

potheses should be retested using the frontier estimator.

The effect of salary is more complicated. If pay were related to performance, one might argue

that higher salaries would motivate, as well as result from, better teaching, just the result

reported by Cooper and Cohn (1997) in their study of South Carolina’s incentive pay system.

Although teacher pay is usually not based on teaching performance, it is possible that higher

salary may induce better performance because of its effect on morale. We believe, however,

that salary reflects teacher quality because of selectivity. The higher the salaries offered

in the district, the better the applicant pool from which principals or other administrators

choose. The better the applicant pool, the more likely is an administrator to make a good

draw. Furthermore, a higher salary slows the attrition of teachers with higher opportunity

cost, presumably the more productive teachers.

There is accumulating evidence that smaller classes yield better education outcomes Krueger

(1997). However, smaller classes are also more costly for the district to provide. Hence,

smaller classes may actually be less efficient than larger ones even though they generate

higher test scores.3

Finally, we believe that the size of a school district may affect its organizational efficiency.

Chubb and Moe (1990), for instance, find a modest positive effect of school size on organi-
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zational efficiency.

3 Data

In early 1990 the Oklahoma legislature passed a comprehensive educational reform bill with

the hope of improving educational performance in K-12 public schooling. One of the bill’s

provisions sets up the Education Indicators program whose express purpose is to assess the

performance of public schools and districts. The data used in this study were obtained from

reports compiled by the Oklahoma Office of Accountability under the Education Indicators

program. The data are from the academic years 1990-1991 through 1994-1995 and include

418 school districts in the state of Oklahoma.4 Like Ruggerio and Vitaliano (1999) we use

test scores to measure school output. Output is measured as the district average percentiles

of the Iowa Test of Basic Skills (ITBS) for grades 3 (IT3) and 7 (IT7), and of the Test

of Achievement and Proficiency (TAP) for grades 9 (TAP9) and 11 (TAP11). District

enrollment (ADM) is measured as the average daily membership in the school district for

the year rounded to the nearest whole number. It is calculated by dividing the total days of

membership throughout the year by the number of days taught. Instructional expenditures

per student (I$/S) is the total expenditures for the school district devoted to instruction

divided by ADM. Other expenditures (O$/S) is the expenditure per student devoted to

administrative and other school operations. Salary (SALARY) is the average teacher salary

computed by dividing the gross salaries and fringe benefits of the district by the number of

full-time equivalent ( FTE) teachers for the school year. Each of the variables measured in

dollars has been deflated by the consumer price index.

As pointed out by Adkins and Moomaw (2003), the Oklahoma data are particularly useful
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in estimating educational production functions because of the large variation in many of

the variables. Scanning the ranges or observing the sizes of the standard deviation relative

to the mean in Table 1 shows that variation. The variation in spending across districts is

particularly relevant because it helps establish the exogeneity of spending per student. An

important source of this variation is created by the way local property taxes flow to the

school district. In particular, a significant portion of local property taxes flow from public

utilities – electric power generation, natural gas service, and pipelines – which are taxed

based on the location of their physical plant. This means that a school district fortunate

enough to have a power generating plant (or other utility) in its confines has a high revenue

base independent of the income of district residents. The exogenous variation in revenue

and spending per student helps to identify the production function. Furthermore, nearly

all Oklahoma school districts tax local property at the maximum rate allowed by the state

constitution. Therefore, local variations in demand have no straightforward way of being

translated into variations in expenditure.5

Years of experience is measured by dividing total years experience in the district by the

number of FTE teachers. The percentage of teaching staff with an advanced degree is

computed by dividing the number of FTE teachers with a master’s degree or higher by the

total number of FTE teachers. LUNCH is the percentage of Oklahoma students eligible for

federally funded or reduced payment lunch in the school. MIN is the percent of “nonwhite”

students (e.g., American Indian, black, Hispanic, Asian) in the district. The data also include

the percent of students classified as possessing limited English proficiency (LEP). Summary

statistics of the variables can be found in Table 1.
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4 Results

The MLEs are obtained using each of 4 output measures: 3rd grade, 7th grade, 9th grade

and 11th grade test scores. The coefficient estimates and their corresponding t-ratios for

the frontier production functions are presented in Table 2. Output elasticities have been

computed based on the mean values of ln (I$/S) and ln (O$/S) and are summarized in

Table 3.

The elasticities of test scores with respect to instructional and noninstructional spending are

statistically positive at the 5% level. An increase in instructional expenditures per student

is estimated to increase test scores for all grades. The effects are generally larger in grade

3 than in the other grades considered. Even in grade 3 the effect of increasing the instruc-

tional spending per student is small. A one percent higher level of instructional spending

is predicted to increase third grade test scores by 0.29 percent and the other test scores by

from 0.16 to 0.23 percent. Other expenditures per student also have positive elasticities with

respect to test scores, ranging from 0.07 to 0.10. Although these elasticities may seem small,

the instruction elasticities and the average of the instructional and noninstructional elastic-

ities are larger than those summarized by Betts (1995). In addition, a simple calculation

suggests underspending on instruction. At the means, a one percent decrease in noninstruc-

tional spending releases sufficient funds for a 0.6 percent increase in instructional spending.

The reduction in noninstructional spending would reduce third grade test scores by 0.08

percent, but the increase in instructional spending would increase them by 0.17 percent.

Smaller net improvements would be realized with this same reallocation for grades 9 and 11,

but it would cause a slight test score reduction for 7th grade. Although the exercise must

be interpreted with care, it suggests the kinds of analyses possible with a well-estimated

stochastic frontier. The small elasticities (which are evaluated at the sample means) indi-
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cate that improving test scores through additional spending is possible at the margin, but

substantial improvements in district performance are probably prohibitively expensive.

As expected, LUNCH and MIN each shift the frontier down for all grades considered. These

results simply confirm the conventional wisdom regarding the importance of variation in

students, their family backgrounds, income and so on for educational performance. LEP,

however, is not significant. If school districts could operate on the frontier, the estimate

shows that spending more per student in districts with higher percentages of disadvantaged

students could overcome some of the impediments to learning created by the environment.

According to our estimates increasing teacher salary reduces inefficiency by statistically

significant amounts in all grades considered. Likewise, increasing the percentage of faculty

with advanced degrees improves technical efficiency in all grades. Years experience increases

technical efficiency in all grades, except for grade 3. (It is not implausible that youthful

exuberance could over come lack of experience in early but not in later grades, but we do

not want to push the point.) Although finding one of these quality indicators significant in

a study is not unusual, finding all three indicators significant is. We believe that this is a

result of the efficiency gains obtained by simultaneously estimating the parameters of the

stochastic frontier and the determinants of inefficiency using the MLE.

Larger student/teacher ratios reduce technical inefficiency in grades 3, 7 and 9. This result

does not contradict the estimated positive elasticity for instructional spending. It simply

suggests that some types of instructional spending have bigger returns than others. In

particular, the results suggest that using higher salaries to attract more-qualified and more-

experienced teachers is an effective way to improve efficiency. Reducing class size from its

existing levels is not.
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Another policy recommendation comes from the estimate of the effects of size on efficiency.

According to our estimates, larger districts have a greater degree of technical efficiency.

Although the inefficiency decreases at a diminishing rate, the optimal size for technical

efficiency is in the range of 18,000 to 22,000 students. Only the Oklahoma City and Tulsa

City school districts in Oklahoma have enrollments beyond this range (over 35,000 were

enrolled in each district). Thus, these results suggest that increasing school district size will

improve efficiency.

The results are consistent with the notion that administrative policies affect efficiency. Bates

(1997) and Deller and Rudnicki (1993) test for, but do not find, such relationships. Bates

uses simple correlations to test for relationships between efficiency and teaching expenditure,

and nonteaching expenditure, and socioeconomic background; the estimated correlations are

small, only 0.04, -0.09, and 0.04, respectively. Deller and Rudnicki use several parametric

and nonparametric tests for an association between efficiency and school administrative type,

school administrative spending, and school size. They find no patterns. Our ability to detect

a relationship may be due to the use of a more efficient one-stage estimator for the frontier

and the determinants of inefficiency.

4.1 Efficiency of High Schools

In the preceding models, no effort was made to control for the input quality beyond student

characteristics. For instance, if a school district performs poorly in grades K-9, even a

well-run effective high school might produce students with low test scores. Consequently,

another model is proposed for grade 11 where the cohort’s performance in grade nine (i.e.,

ln scorei,t−2) enters the model as an explanatory variable. While this reduces the size of the

panel to 3 observations for each school district, it enables us to measure the value added by
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the district by holding the prior performance of the cohort constant in the regression.

The results are found in the last two columns of Table 2. The elasticity of the 11th grade

scores with respect to the 9th grade test scores is 0.60. This elasticity is at least twice that

of any of the spending elasticities previously reported. This may suggest that improving

elementary performance may be the best way to improve high school performance. Although

the spending elasticities in this estimate are positive, they are small, 0.04 and 0.05. Moreover,

they suggest that noninstructional spending may be under emphasized, if we are concerned

with the ability of high schools to add value to the students coming out of lower grades.

LUNCH is a significant environmental variable. Not only is this poverty indicator associated

with a lower frontier in terms of student test scores, but it reduces the ability of high schools

to overcome past poor performance. MIN is not significant in this “value-added” equation,

perhaps suggesting that environment handicaps due to discrimination play their biggest role

in the early years. LEP takes a positive and significant coefficient, suggesting that limited

In general, English proficiency is not a problem in Oklahoma.

Of the teacher characteristics, years of experience appears to be more important than either

the possession of an advanced degree or of salary. More experience is associated with greater

technical efficiency in the value-added model. Although advanced degree and salary are not

significant, the signs of coefficients are the same as in the earlier models. In particular salary

is associated with a small increase in efficiency, with its coefficient approaching significance

at 0.10. As before, larger student-teacher ratios are associated with greater efficiency, and

efficiency increases at a decreasing rate with district size.

In our discussion we emphasize the results for 3rd grade and 11th grade. The third grade re-

sults are important because they measure student performance early in the students’ school-
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ing and have the closest correspondence between outputs and inputs. The third grade

observations most closely meet the criteria suggested by Ferguson and Ladd (1996) for us-

ing one-year district observations for spending, school variables, and background variables:

stability in these variables over time and in the allocation of inputs to schools over districts.

The consistency of the grades 7, 9, 11 results with the grade 3 results may indicate that these

assumptions may be appropriate for the other grades as well. Nevertheless, it is important

to compare the results of this specification with the results from a value-added approach.

Comparing the 11th grade results with and without 9th grade constant shows that elastic-

ities are smaller and that the determinants of inefficiency are estimated with less precision

in the value-added equation. In general, however, the results for the value-added equation

are similar to those for grade 3.

The results suggest in general spending more on instruction will improve test scores. In

addition, they suggest that allocating more resources to instruction (and away from non-

instruction) can lead to small improvements in school district performance, particularly in

lower grades.

Student characteristics appear to be important, but are largely beyond a district’s control.

Public schools educate (or try to, anyway) all eligible children in a district; they cannot pick

and choose who to admit to their schools.6

4.2 Robustness

The residual differences in district performance may include factors that are beyond its

control and result in performance differences that are not due to inefficiency. Including

available information on student characteristics as done above is one way to control for some
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of these differences. A more traditional approach would be to include district level dummy

variables in the production function (first stage) portion of the model. This would effectively

eliminate any biases in the parameter estimates that arise from the omission of time-invariant

variables (that are possibly unobservable) that are correlated with included explanatory

variables. Unfortunately, this also serves to mask possible inefficiency by allowing each

district to essentially have its own frontier.

To gain an idea of whether omitted explanatory variables bias the estimated elasticities, a

fixed effects model is estimated for the augmented production function. The resulting elas-

ticities and their estimated standard errors are presented in table 5. Although the elasticities

are not directly comparable,7 their similarity to those in table 3 is striking. In the Grade

3, 7, and 11 results the estimated elasticity of test scores with respect to I$/S are within

.025 of one another. In the fixed effects model, O$/S elasticities tend to be smaller, but are

estimated to lie within a very narrow range, i.e., between .05 and .074. Estimator precision

is relatively low for Grade 9 and for Grade 11 holding 9th grade performance constant. Con-

sequently, the elasticities of test scores with respect to I$/S are insignificant in these models.

Nevertheless, the overall similarity between the two sets of results increases our confidence

that biases induced by omitted variables, if any, are small.

4.3 Measuring Efficiency

The estimation of the models by maximum likelihood enables the computation of estimates

of technical efficiency for each school district for each year. In Table 4 are the median

predicted efficiencies for each grade and year of the study. Grade 11 tends to be the least

efficient except when 9th grade achievement is held constant. Then, grade 11 is the most

efficient. If prior achievement is not held constant, grade 7 is most efficient. Grade 9 reaches
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maximum efficiency in 1992, and grades 7-11 show continuous improvement. Again, the

measured inefficiency results for the value-added equation do not differ fundamentally from

the grade 3 results.

The efficiency levels in this study lie between those of Grosskopf et al. (1997) and Deller and

Rudnicki (1993). For instance, our median 3rd grade efficiency is 0.90 compared to a mean

value of 0.71 for the former and a median of 0.91 Although the difference between 0.91 and

0.90 is trivial, Oklahoma has a greater concentration of school districts with low efficiencies

than Deller and Rudnicki found for Maine.

5 Conclusion

Without school level data the results should be interpreted cautiously. Nevertheless, they

suggest that although money matters, there is wide variation in the efficiency with which

districts use available resources to educate students. Large districts tend to be more efficient

than small ones. Teacher characteristics are important, although for the high school value

added equation, experience is the only characteristic that counts. Youthful teachers may be

more effective in lower grades, but more experienced ones are more effective in higher grades.

Higher salaries may attract better teachers who in turn improve district efficiency despite

their higher costs. There also is some evidence that school districts could benefit from

reallocating money away from noninstructional purposes to instruction and from district

consolidation.

Studies of education production and its efficiency suggests that: (a) schools or school districts

matter Deller and Rudnicki (1993), (b) principals matter Chubb and Moe (1990) teachers

matter Ferguson and Ladd (1996); class size matters Krueger (1997); computers matter
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Betts (1995), and so on. In addition, our study suggests that teacher experience, advanced

degrees, and salary also matter.

Notes

1See Kumbhakar et al. (1991) for discussion.

2Computations were performed using FRONTIER 4.1 Coelli (1996).

3One of the limitations of our data are that student-teacher ratios are reported at the district level, and

therefor may not be a very accurate measure of actual class size.

4There are actually over 600 school districts in Oklahoma. We eliminated from our sample all of the

so-called “dependent” districts that do not offer 1st through 12th grades. In addition, in the years since

1995 changing variable definitions and test instruments have made panel studies using the Oklahoma data

difficult.

5This is similar to the argument that the passage of California’s Proposition 13 “eliminated the demand

side for local education expenditures.” used by Dynarski et al. (1989).

6Of course, districts are able to effectively accomplish the same thing on a school by school basis by

reassigning children to other schools within its district. The aggregation of our data by district and not by

school does not allow us to comment on this proposition.

7The slope coefficients in the fixed effects model are estimated under completely different assumptions

about the behavior of the random error and exclude the influence of “second stage” model.

17



References

Adkins, Lee C. and Ronald L. Moomaw (2003), ‘The impact of local funding on the technical

efficiency of oklahoma schools’, Economics Letters 81, 31–37.

Bates, Jim (1997), ‘Measuring predetermined socioeconomic ‘inputs’ when assessing the

efficiency of educational outputs’, Applied Economics 29, 85–93.

Battese, George E. and G. S. Corra (1977), ‘Estimation of a production frontier with ap-

plication to the pastoral zone of eastern australia’, Australian Journal of Agricultural

Economics 21, 169–179.

Battese, George E. and Tim J. Coelli (1993), A Stochastic Frontier Production Incorporating

a Model for Technical Inefficiency Effects,, Working Papers in Applied Statistics, No. 65,

Department of Economics, University of New England, Amrmidale, NSW, Australia.

Battese, George E. and Tim J. Coelli (1995), ‘A model for technical inefficiency effects in a

stochastic frontier production function for panel data’, Empirical Economics 20, 325–332.

Betts, Julian R. (1995), Which types of school spending are most effective? new evidence on

the school quality debate, Discussion Paper 95-03, Department of Economics, University

of California, San Diego.

Bradford, David, Rick Malt and Wallace Oates (1969), ‘The rising cost of local public ser-

vices: Some evidence and reflections’, National Tax Journal 22, 185–202.

Brewer, Dominic J. (1996), ‘Does more school district administration lower educational pro-

ductivity? some evidence on the “administrative blob” in new york public schools’, Eco-

nomics of Education Review 15, 111–124.

Burtless, Gary, ed. (1996), Does Money Matter? The Effect of School Resources on Student

Achievement and Adult Success, Brookings Institution Press, Washington DC.

18



Chubb, John E. and Terry M. Moe (1990), Politics Markets & American Schools, Brookings

Institution Press, Washington DC.

Coelli, Tim J. (1996), A Guide to FRONTIER 4.1: A Computer Program for Stochastic

Frontier Production and Cost Estimation,, Centre for Efficiency and Productivity Analysis

Working Paper 96/07, Department of Economics, University of New England, Amrmidale,

NSW, Australia.

Deller, Steven C. and Edward Rudnicki (1993), ‘Production efficiency in elementary educa-

tion: The case of maine public schools’, Economics of Education Review 12, 45–57.

Dynarski, Mark, Robert Schwab and Ernest Zampelli (1989), ‘Local characteristics and

public production: The case of education’, Journal of Urban Economics 26, 250–263.

Ferguson, Ronald and Helen Ladd (1996), How and why money matters: An analy-

sis of alabama schools, in R.Ferguson and H.Ladd, eds, ‘Holding Schools Accountable:

Performance-Based Reform in Education’, Brookings Institution Press, Washington DC.

Grosskopf, Shawna, Kathy J. Hayes, Lori L. Taylor and William L. Weber (1997), ‘Budget-

constrained frontier measures of fiscal equality and efficiency in schooling’, Review of

Economics and Statistics 79, 116–124.

Hanushek, Eric A. (1996), School resources and student performance, in G.burtless, ed.,

‘Does Money Matter? The Effect of School Resources on Student Achievement and Adult

Success’, Brookings Institution Press, Washington DC, pp. 43–73.

Hedges, Larry V. and Rob Greenwald (1996), Have times changed? the relationship be-

tween school resources and student achievement, in G.burtless, ed., ‘Does Money Matter?

The Effect of School Resources on Student Achievement and Adult Success’, Brookings

Institution Press, Washington DC, pp. 74–92.

19



Huang, C. J. and J. T. Liu (1994), ‘Estimation of a non-neutral stochastic frontier production

function’, Journal of Productivity Analysis 5, 171–180.

Krueger, Alan B. (1997), Experimental estimates of education production functions, Working

Paper 6051, National Bureau of Economic Research.

Kumbhakar, Subal C., S. Ghosh and T. McGuckin (1991), ‘A generalized production fron-

tier approach ofr estimating determinants of inefficiency in u.s. dairy farms’, Journal of

Economics and Business Statistics 9, 279–286.

Levin, Henry M. (1997), ‘Raising school productivity: An x-efficiency approach’, Economics

of Education Review 16, 303–311.

Reifschneider, D. and R. Stevenson (1991), ‘Systematic departures from the frontier: A

framework for the analysis of firm inefficiency’, International Economic Review 32, 715–

723.

Ruggerio, John and Donald F. Vitaliano (1999), ‘Assessing the efficiency of public schools

using data envelopment analysis and frontier regression’, Contemporary Economic Policy

17, 321–331.

Ruggiero, John (1996), ‘Efficiency of educational production: An analysis of new york school

districts’, Review of Economics and Statistics 78, 499–509.

20



Variable T Mean Std Dev Minimum Maximum

-----------------------------------------------------------

IT3 2073 58.0424 11.2374 7.0000 94.00

IT7 2072 58.0275 9.3049 24.0000 88.00

TAP9 2075 58.0679 9.3618 18.0000 87.00

TAP11 2061 52.9184 9.9580 13.0000 83.00

Total$/S 2090 3648.11 814.6493 2160.00 9847.00

I$/S 2090 2275.48 480.3793 1427.00 5593.00

O$/S 2090 1372.63 425.4767 573.000 5598.00

ADM 2090 1338.65 3445.00 86.000 41831.00

TEACHERS 2090 84.4167 199.3964 10.000 2553.00

SALARY 2090 25753.31 2533.92 19155.0 33474.00

DEGREE 2090 35.7406 14.1658 2.0000 89.00

YRSEXP 2090 12.0636 2.5242 5.0000 27.00

LUNCH 2090 46.5972 17.7563 5.0000 100.00

MIN 2090 23.6045 16.8830 0 100.00

LEP 2090 12.0050 3.5504 0 39.00

STU/TEACH 2090 14.0523 2.3356 6.4166 24.43

-----------------------------------------------------------

Table 1: Means, Standard Deviations, Minimum and Maximum values of each of the variables
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Grade 3 Grade 7 Grade 9 Grade 11 Grade 11
W/ 9th g. score

(I$/S) 0.2854 0.1570 0.1864 0.2270 0.0397
Standard Error 0.0276 0.0223 0.0239 0.0254 0.0281
(O$/S) 0.0801 0.1031 0.0785 0.0728 0.0484
Standard Error 0.0193 0.0157 0.0155 0.0167 0.0201

Table 3: Elasticities of test scores with respect to instructional and noninstructional expen-
ditures per student evaluated at their means

Year
1990 1991 1992 1993 1994

Grade 3 0.865 0.874 0.886 0.901 0.910
Grade 7 0.906 0.905 0.925 0.927 0.928
Grade 9 0.909 0.917 0.925 0.917 0.919
Grade 11 0.874 0.882 0.905 0.903 0.911

Grade 11 0.938 0.934 0.933
w/ 9th const

Table 4: Predicted median efficiencies by year for grades 3, 7, 9, and 11 for model 1 and for
grade 11 when that cohort’s 9th grade score is included in the production function.

Grade 3 Grade 7 Grade 9 Grade 11 Grade 11
W/ 9th g. score

(I$/S) 0.3048 0.1349 0.0290 0.2185 -0.0419
Standard Error 0.0370 0.0278 0.0287 0.0343 0.0482
(O$/S) 0.0739 0.0599 0.0494 0.0478 0.0510
Standard Error 0.0277 0.0208 0.0214 0.0250 0.0331

Table 5: Elasticities of test scores with respect to instructional and noninstructional expen-
ditures per student evaluated at their means estimated using a fixed effects model
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